520 lines
12 KiB
C
520 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Author: Andy Fleming <afleming@freescale.com>
|
|
* Kumar Gala <galak@kernel.crashing.org>
|
|
*
|
|
* Copyright 2006-2008, 2011-2012, 2015 Freescale Semiconductor Inc.
|
|
*/
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/of.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/fsl/guts.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mpic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/fsl_pm.h>
|
|
|
|
#include <sysdev/fsl_soc.h>
|
|
#include <sysdev/mpic.h>
|
|
#include "smp.h"
|
|
|
|
struct epapr_spin_table {
|
|
u32 addr_h;
|
|
u32 addr_l;
|
|
u32 r3_h;
|
|
u32 r3_l;
|
|
u32 reserved;
|
|
u32 pir;
|
|
};
|
|
|
|
static u64 timebase;
|
|
static int tb_req;
|
|
static int tb_valid;
|
|
|
|
static void mpc85xx_give_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
|
|
while (!tb_req)
|
|
barrier();
|
|
tb_req = 0;
|
|
|
|
qoriq_pm_ops->freeze_time_base(true);
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* e5500/e6500 have a workaround for erratum A-006958 in place
|
|
* that will reread the timebase until TBL is non-zero.
|
|
* That would be a bad thing when the timebase is frozen.
|
|
*
|
|
* Thus, we read it manually, and instead of checking that
|
|
* TBL is non-zero, we ensure that TB does not change. We don't
|
|
* do that for the main mftb implementation, because it requires
|
|
* a scratch register
|
|
*/
|
|
{
|
|
u64 prev;
|
|
|
|
asm volatile("mfspr %0, %1" : "=r" (timebase) :
|
|
"i" (SPRN_TBRL));
|
|
|
|
do {
|
|
prev = timebase;
|
|
asm volatile("mfspr %0, %1" : "=r" (timebase) :
|
|
"i" (SPRN_TBRL));
|
|
} while (prev != timebase);
|
|
}
|
|
#else
|
|
timebase = get_tb();
|
|
#endif
|
|
mb();
|
|
tb_valid = 1;
|
|
|
|
while (tb_valid)
|
|
barrier();
|
|
|
|
qoriq_pm_ops->freeze_time_base(false);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void mpc85xx_take_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
|
|
tb_req = 1;
|
|
while (!tb_valid)
|
|
barrier();
|
|
|
|
set_tb(timebase >> 32, timebase & 0xffffffff);
|
|
isync();
|
|
tb_valid = 0;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void smp_85xx_cpu_offline_self(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
local_irq_disable();
|
|
hard_irq_disable();
|
|
/* mask all irqs to prevent cpu wakeup */
|
|
qoriq_pm_ops->irq_mask(cpu);
|
|
|
|
idle_task_exit();
|
|
|
|
mtspr(SPRN_TCR, 0);
|
|
mtspr(SPRN_TSR, mfspr(SPRN_TSR));
|
|
|
|
generic_set_cpu_dead(cpu);
|
|
|
|
cur_cpu_spec->cpu_down_flush();
|
|
|
|
qoriq_pm_ops->cpu_die(cpu);
|
|
|
|
while (1)
|
|
;
|
|
}
|
|
|
|
static void qoriq_cpu_kill(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 500; i++) {
|
|
if (is_cpu_dead(cpu)) {
|
|
#ifdef CONFIG_PPC64
|
|
paca_ptrs[cpu]->cpu_start = 0;
|
|
#endif
|
|
return;
|
|
}
|
|
msleep(20);
|
|
}
|
|
pr_err("CPU%d didn't die...\n", cpu);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* To keep it compatible with old boot program which uses
|
|
* cache-inhibit spin table, we need to flush the cache
|
|
* before accessing spin table to invalidate any staled data.
|
|
* We also need to flush the cache after writing to spin
|
|
* table to push data out.
|
|
*/
|
|
static inline void flush_spin_table(void *spin_table)
|
|
{
|
|
flush_dcache_range((ulong)spin_table,
|
|
(ulong)spin_table + sizeof(struct epapr_spin_table));
|
|
}
|
|
|
|
static inline u32 read_spin_table_addr_l(void *spin_table)
|
|
{
|
|
flush_dcache_range((ulong)spin_table,
|
|
(ulong)spin_table + sizeof(struct epapr_spin_table));
|
|
return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static void wake_hw_thread(void *info)
|
|
{
|
|
void fsl_secondary_thread_init(void);
|
|
unsigned long inia;
|
|
int cpu = *(const int *)info;
|
|
|
|
inia = *(unsigned long *)fsl_secondary_thread_init;
|
|
book3e_start_thread(cpu_thread_in_core(cpu), inia);
|
|
}
|
|
#endif
|
|
|
|
static int smp_85xx_start_cpu(int cpu)
|
|
{
|
|
int ret = 0;
|
|
struct device_node *np;
|
|
const u64 *cpu_rel_addr;
|
|
unsigned long flags;
|
|
int ioremappable;
|
|
int hw_cpu = get_hard_smp_processor_id(cpu);
|
|
struct epapr_spin_table __iomem *spin_table;
|
|
|
|
np = of_get_cpu_node(cpu, NULL);
|
|
cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
|
|
if (!cpu_rel_addr) {
|
|
pr_err("No cpu-release-addr for cpu %d\n", cpu);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* A secondary core could be in a spinloop in the bootpage
|
|
* (0xfffff000), somewhere in highmem, or somewhere in lowmem.
|
|
* The bootpage and highmem can be accessed via ioremap(), but
|
|
* we need to directly access the spinloop if its in lowmem.
|
|
*/
|
|
ioremappable = *cpu_rel_addr > virt_to_phys(high_memory - 1);
|
|
|
|
/* Map the spin table */
|
|
if (ioremappable)
|
|
spin_table = ioremap_coherent(*cpu_rel_addr,
|
|
sizeof(struct epapr_spin_table));
|
|
else
|
|
spin_table = phys_to_virt(*cpu_rel_addr);
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
|
|
if (qoriq_pm_ops && qoriq_pm_ops->cpu_up_prepare)
|
|
qoriq_pm_ops->cpu_up_prepare(cpu);
|
|
|
|
/* if cpu is not spinning, reset it */
|
|
if (read_spin_table_addr_l(spin_table) != 1) {
|
|
/*
|
|
* We don't set the BPTR register here since it already points
|
|
* to the boot page properly.
|
|
*/
|
|
mpic_reset_core(cpu);
|
|
|
|
/*
|
|
* wait until core is ready...
|
|
* We need to invalidate the stale data, in case the boot
|
|
* loader uses a cache-inhibited spin table.
|
|
*/
|
|
if (!spin_event_timeout(
|
|
read_spin_table_addr_l(spin_table) == 1,
|
|
10000, 100)) {
|
|
pr_err("timeout waiting for cpu %d to reset\n",
|
|
hw_cpu);
|
|
ret = -EAGAIN;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
flush_spin_table(spin_table);
|
|
out_be32(&spin_table->pir, hw_cpu);
|
|
#ifdef CONFIG_PPC64
|
|
out_be64((u64 *)(&spin_table->addr_h),
|
|
__pa(ppc_function_entry(generic_secondary_smp_init)));
|
|
#else
|
|
#ifdef CONFIG_PHYS_ADDR_T_64BIT
|
|
/*
|
|
* We need also to write addr_h to spin table for systems
|
|
* in which their physical memory start address was configured
|
|
* to above 4G, otherwise the secondary core can not get
|
|
* correct entry to start from.
|
|
*/
|
|
out_be32(&spin_table->addr_h, __pa(__early_start) >> 32);
|
|
#endif
|
|
out_be32(&spin_table->addr_l, __pa(__early_start));
|
|
#endif
|
|
flush_spin_table(spin_table);
|
|
err:
|
|
local_irq_restore(flags);
|
|
|
|
if (ioremappable)
|
|
iounmap(spin_table);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int smp_85xx_kick_cpu(int nr)
|
|
{
|
|
int ret = 0;
|
|
#ifdef CONFIG_PPC64
|
|
int primary = nr;
|
|
#endif
|
|
|
|
WARN_ON(nr < 0 || nr >= num_possible_cpus());
|
|
|
|
pr_debug("kick CPU #%d\n", nr);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (threads_per_core == 2) {
|
|
if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT)))
|
|
return -ENOENT;
|
|
|
|
booting_thread_hwid = cpu_thread_in_core(nr);
|
|
primary = cpu_first_thread_sibling(nr);
|
|
|
|
if (qoriq_pm_ops && qoriq_pm_ops->cpu_up_prepare)
|
|
qoriq_pm_ops->cpu_up_prepare(nr);
|
|
|
|
/*
|
|
* If either thread in the core is online, use it to start
|
|
* the other.
|
|
*/
|
|
if (cpu_online(primary)) {
|
|
smp_call_function_single(primary,
|
|
wake_hw_thread, &nr, 1);
|
|
goto done;
|
|
} else if (cpu_online(primary + 1)) {
|
|
smp_call_function_single(primary + 1,
|
|
wake_hw_thread, &nr, 1);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If getting here, it means both threads in the core are
|
|
* offline. So start the primary thread, then it will start
|
|
* the thread specified in booting_thread_hwid, the one
|
|
* corresponding to nr.
|
|
*/
|
|
|
|
} else if (threads_per_core == 1) {
|
|
/*
|
|
* If one core has only one thread, set booting_thread_hwid to
|
|
* an invalid value.
|
|
*/
|
|
booting_thread_hwid = INVALID_THREAD_HWID;
|
|
|
|
} else if (threads_per_core > 2) {
|
|
pr_err("Do not support more than 2 threads per CPU.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = smp_85xx_start_cpu(primary);
|
|
if (ret)
|
|
return ret;
|
|
|
|
done:
|
|
paca_ptrs[nr]->cpu_start = 1;
|
|
generic_set_cpu_up(nr);
|
|
|
|
return ret;
|
|
#else
|
|
ret = smp_85xx_start_cpu(nr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
generic_set_cpu_up(nr);
|
|
|
|
return ret;
|
|
#endif
|
|
}
|
|
|
|
struct smp_ops_t smp_85xx_ops = {
|
|
.cause_nmi_ipi = NULL,
|
|
.kick_cpu = smp_85xx_kick_cpu,
|
|
.cpu_bootable = smp_generic_cpu_bootable,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = generic_cpu_disable,
|
|
.cpu_die = generic_cpu_die,
|
|
#endif
|
|
#if defined(CONFIG_KEXEC_CORE) && !defined(CONFIG_PPC64)
|
|
.give_timebase = smp_generic_give_timebase,
|
|
.take_timebase = smp_generic_take_timebase,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
#ifdef CONFIG_PPC32
|
|
atomic_t kexec_down_cpus = ATOMIC_INIT(0);
|
|
|
|
static void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
|
|
{
|
|
local_irq_disable();
|
|
|
|
if (secondary) {
|
|
cur_cpu_spec->cpu_down_flush();
|
|
atomic_inc(&kexec_down_cpus);
|
|
/* loop forever */
|
|
while (1);
|
|
}
|
|
}
|
|
|
|
static void mpc85xx_smp_kexec_down(void *arg)
|
|
{
|
|
if (ppc_md.kexec_cpu_down)
|
|
ppc_md.kexec_cpu_down(0,1);
|
|
}
|
|
#else
|
|
static void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int sibling = cpu_last_thread_sibling(cpu);
|
|
bool notified = false;
|
|
int disable_cpu;
|
|
int disable_threadbit = 0;
|
|
long start = mftb();
|
|
long now;
|
|
|
|
local_irq_disable();
|
|
hard_irq_disable();
|
|
mpic_teardown_this_cpu(secondary);
|
|
|
|
if (cpu == crashing_cpu && cpu_thread_in_core(cpu) != 0) {
|
|
/*
|
|
* We enter the crash kernel on whatever cpu crashed,
|
|
* even if it's a secondary thread. If that's the case,
|
|
* disable the corresponding primary thread.
|
|
*/
|
|
disable_threadbit = 1;
|
|
disable_cpu = cpu_first_thread_sibling(cpu);
|
|
} else if (sibling != crashing_cpu &&
|
|
cpu_thread_in_core(cpu) == 0 &&
|
|
cpu_thread_in_core(sibling) != 0) {
|
|
disable_threadbit = 2;
|
|
disable_cpu = sibling;
|
|
}
|
|
|
|
if (disable_threadbit) {
|
|
while (paca_ptrs[disable_cpu]->kexec_state < KEXEC_STATE_REAL_MODE) {
|
|
barrier();
|
|
now = mftb();
|
|
if (!notified && now - start > 1000000) {
|
|
pr_info("%s/%d: waiting for cpu %d to enter KEXEC_STATE_REAL_MODE (%d)\n",
|
|
__func__, smp_processor_id(),
|
|
disable_cpu,
|
|
paca_ptrs[disable_cpu]->kexec_state);
|
|
notified = true;
|
|
}
|
|
}
|
|
|
|
if (notified) {
|
|
pr_info("%s: cpu %d done waiting\n",
|
|
__func__, disable_cpu);
|
|
}
|
|
|
|
mtspr(SPRN_TENC, disable_threadbit);
|
|
while (mfspr(SPRN_TENSR) & disable_threadbit)
|
|
cpu_relax();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void mpc85xx_smp_machine_kexec(struct kimage *image)
|
|
{
|
|
#ifdef CONFIG_PPC32
|
|
int timeout = INT_MAX;
|
|
int i, num_cpus = num_present_cpus();
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT)
|
|
smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
|
|
|
|
while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
|
|
( timeout > 0 ) )
|
|
{
|
|
timeout--;
|
|
}
|
|
|
|
if ( !timeout )
|
|
printk(KERN_ERR "Unable to bring down secondary cpu(s)");
|
|
|
|
for_each_online_cpu(i)
|
|
{
|
|
if ( i == smp_processor_id() ) continue;
|
|
mpic_reset_core(i);
|
|
}
|
|
#endif
|
|
|
|
default_machine_kexec(image);
|
|
}
|
|
#endif /* CONFIG_KEXEC_CORE */
|
|
|
|
static void smp_85xx_setup_cpu(int cpu_nr)
|
|
{
|
|
mpic_setup_this_cpu();
|
|
}
|
|
|
|
void __init mpc85xx_smp_init(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
|
|
np = of_find_node_by_type(NULL, "open-pic");
|
|
if (np) {
|
|
smp_85xx_ops.probe = smp_mpic_probe;
|
|
smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
|
|
smp_85xx_ops.message_pass = smp_mpic_message_pass;
|
|
} else
|
|
smp_85xx_ops.setup_cpu = NULL;
|
|
|
|
if (cpu_has_feature(CPU_FTR_DBELL)) {
|
|
/*
|
|
* If left NULL, .message_pass defaults to
|
|
* smp_muxed_ipi_message_pass
|
|
*/
|
|
smp_85xx_ops.message_pass = NULL;
|
|
smp_85xx_ops.cause_ipi = doorbell_global_ipi;
|
|
smp_85xx_ops.probe = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_FSL_CORENET_RCPM
|
|
/* Assign a value to qoriq_pm_ops on PPC_E500MC */
|
|
fsl_rcpm_init();
|
|
#else
|
|
/* Assign a value to qoriq_pm_ops on !PPC_E500MC */
|
|
mpc85xx_setup_pmc();
|
|
#endif
|
|
if (qoriq_pm_ops) {
|
|
smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
|
|
smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
smp_85xx_ops.cpu_offline_self = smp_85xx_cpu_offline_self;
|
|
smp_85xx_ops.cpu_die = qoriq_cpu_kill;
|
|
#endif
|
|
}
|
|
smp_ops = &smp_85xx_ops;
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
|
|
ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
|
|
#endif
|
|
}
|