linuxdebug/sound/pci/ice1712/quartet.c

1089 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ALSA driver for ICEnsemble VT1724 (Envy24HT)
*
* Lowlevel functions for Infrasonic Quartet
*
* Copyright (c) 2009 Pavel Hofman <pavel.hofman@ivitera.com>
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <sound/core.h>
#include <sound/tlv.h>
#include <sound/info.h>
#include "ice1712.h"
#include "envy24ht.h"
#include <sound/ak4113.h>
#include "quartet.h"
struct qtet_spec {
struct ak4113 *ak4113;
unsigned int scr; /* system control register */
unsigned int mcr; /* monitoring control register */
unsigned int cpld; /* cpld register */
};
struct qtet_kcontrol_private {
unsigned int bit;
void (*set_register)(struct snd_ice1712 *ice, unsigned int val);
unsigned int (*get_register)(struct snd_ice1712 *ice);
const char * const texts[2];
};
enum {
IN12_SEL = 0,
IN34_SEL,
AIN34_SEL,
COAX_OUT,
IN12_MON12,
IN12_MON34,
IN34_MON12,
IN34_MON34,
OUT12_MON34,
OUT34_MON12,
};
static const char * const ext_clock_names[3] = {"IEC958 In", "Word Clock 1xFS",
"Word Clock 256xFS"};
/* chip address on I2C bus */
#define AK4113_ADDR 0x26 /* S/PDIF receiver */
/* chip address on SPI bus */
#define AK4620_ADDR 0x02 /* ADC/DAC */
/*
* GPIO pins
*/
/* GPIO0 - O - DATA0, def. 0 */
#define GPIO_D0 (1<<0)
/* GPIO1 - I/O - DATA1, Jack Detect Input0 (0:present, 1:missing), def. 1 */
#define GPIO_D1_JACKDTC0 (1<<1)
/* GPIO2 - I/O - DATA2, Jack Detect Input1 (0:present, 1:missing), def. 1 */
#define GPIO_D2_JACKDTC1 (1<<2)
/* GPIO3 - I/O - DATA3, def. 1 */
#define GPIO_D3 (1<<3)
/* GPIO4 - I/O - DATA4, SPI CDTO, def. 1 */
#define GPIO_D4_SPI_CDTO (1<<4)
/* GPIO5 - I/O - DATA5, SPI CCLK, def. 1 */
#define GPIO_D5_SPI_CCLK (1<<5)
/* GPIO6 - I/O - DATA6, Cable Detect Input (0:detected, 1:not detected */
#define GPIO_D6_CD (1<<6)
/* GPIO7 - I/O - DATA7, Device Detect Input (0:detected, 1:not detected */
#define GPIO_D7_DD (1<<7)
/* GPIO8 - O - CPLD Chip Select, def. 1 */
#define GPIO_CPLD_CSN (1<<8)
/* GPIO9 - O - CPLD register read/write (0:write, 1:read), def. 0 */
#define GPIO_CPLD_RW (1<<9)
/* GPIO10 - O - SPI Chip Select for CODEC#0, def. 1 */
#define GPIO_SPI_CSN0 (1<<10)
/* GPIO11 - O - SPI Chip Select for CODEC#1, def. 1 */
#define GPIO_SPI_CSN1 (1<<11)
/* GPIO12 - O - Ex. Register Output Enable (0:enable, 1:disable), def. 1,
* init 0 */
#define GPIO_EX_GPIOE (1<<12)
/* GPIO13 - O - Ex. Register0 Chip Select for System Control Register,
* def. 1 */
#define GPIO_SCR (1<<13)
/* GPIO14 - O - Ex. Register1 Chip Select for Monitor Control Register,
* def. 1 */
#define GPIO_MCR (1<<14)
#define GPIO_SPI_ALL (GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK |\
GPIO_SPI_CSN0 | GPIO_SPI_CSN1)
#define GPIO_DATA_MASK (GPIO_D0 | GPIO_D1_JACKDTC0 | \
GPIO_D2_JACKDTC1 | GPIO_D3 | \
GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK | \
GPIO_D6_CD | GPIO_D7_DD)
/* System Control Register GPIO_SCR data bits */
/* Mic/Line select relay (0:line, 1:mic) */
#define SCR_RELAY GPIO_D0
/* Phantom power drive control (0:5V, 1:48V) */
#define SCR_PHP_V GPIO_D1_JACKDTC0
/* H/W mute control (0:Normal, 1:Mute) */
#define SCR_MUTE GPIO_D2_JACKDTC1
/* Phantom power control (0:Phantom on, 1:off) */
#define SCR_PHP GPIO_D3
/* Analog input 1/2 Source Select */
#define SCR_AIN12_SEL0 GPIO_D4_SPI_CDTO
#define SCR_AIN12_SEL1 GPIO_D5_SPI_CCLK
/* Analog input 3/4 Source Select (0:line, 1:hi-z) */
#define SCR_AIN34_SEL GPIO_D6_CD
/* Codec Power Down (0:power down, 1:normal) */
#define SCR_CODEC_PDN GPIO_D7_DD
#define SCR_AIN12_LINE (0)
#define SCR_AIN12_MIC (SCR_AIN12_SEL0)
#define SCR_AIN12_LOWCUT (SCR_AIN12_SEL1 | SCR_AIN12_SEL0)
/* Monitor Control Register GPIO_MCR data bits */
/* Input 1/2 to Monitor 1/2 (0:off, 1:on) */
#define MCR_IN12_MON12 GPIO_D0
/* Input 1/2 to Monitor 3/4 (0:off, 1:on) */
#define MCR_IN12_MON34 GPIO_D1_JACKDTC0
/* Input 3/4 to Monitor 1/2 (0:off, 1:on) */
#define MCR_IN34_MON12 GPIO_D2_JACKDTC1
/* Input 3/4 to Monitor 3/4 (0:off, 1:on) */
#define MCR_IN34_MON34 GPIO_D3
/* Output to Monitor 1/2 (0:off, 1:on) */
#define MCR_OUT34_MON12 GPIO_D4_SPI_CDTO
/* Output to Monitor 3/4 (0:off, 1:on) */
#define MCR_OUT12_MON34 GPIO_D5_SPI_CCLK
/* CPLD Register DATA bits */
/* Clock Rate Select */
#define CPLD_CKS0 GPIO_D0
#define CPLD_CKS1 GPIO_D1_JACKDTC0
#define CPLD_CKS2 GPIO_D2_JACKDTC1
/* Sync Source Select (0:Internal, 1:External) */
#define CPLD_SYNC_SEL GPIO_D3
/* Word Clock FS Select (0:FS, 1:256FS) */
#define CPLD_WORD_SEL GPIO_D4_SPI_CDTO
/* Coaxial Output Source (IS-Link) (0:SPDIF, 1:I2S) */
#define CPLD_COAX_OUT GPIO_D5_SPI_CCLK
/* Input 1/2 Source Select (0:Analog12, 1:An34) */
#define CPLD_IN12_SEL GPIO_D6_CD
/* Input 3/4 Source Select (0:Analog34, 1:Digital In) */
#define CPLD_IN34_SEL GPIO_D7_DD
/* internal clock (CPLD_SYNC_SEL = 0) options */
#define CPLD_CKS_44100HZ (0)
#define CPLD_CKS_48000HZ (CPLD_CKS0)
#define CPLD_CKS_88200HZ (CPLD_CKS1)
#define CPLD_CKS_96000HZ (CPLD_CKS1 | CPLD_CKS0)
#define CPLD_CKS_176400HZ (CPLD_CKS2)
#define CPLD_CKS_192000HZ (CPLD_CKS2 | CPLD_CKS0)
#define CPLD_CKS_MASK (CPLD_CKS0 | CPLD_CKS1 | CPLD_CKS2)
/* external clock (CPLD_SYNC_SEL = 1) options */
/* external clock - SPDIF */
#define CPLD_EXT_SPDIF (0 | CPLD_SYNC_SEL)
/* external clock - WordClock 1xfs */
#define CPLD_EXT_WORDCLOCK_1FS (CPLD_CKS1 | CPLD_SYNC_SEL)
/* external clock - WordClock 256xfs */
#define CPLD_EXT_WORDCLOCK_256FS (CPLD_CKS1 | CPLD_WORD_SEL |\
CPLD_SYNC_SEL)
#define EXT_SPDIF_TYPE 0
#define EXT_WORDCLOCK_1FS_TYPE 1
#define EXT_WORDCLOCK_256FS_TYPE 2
#define AK4620_DFS0 (1<<0)
#define AK4620_DFS1 (1<<1)
#define AK4620_CKS0 (1<<2)
#define AK4620_CKS1 (1<<3)
/* Clock and Format Control register */
#define AK4620_DFS_REG 0x02
/* Deem and Volume Control register */
#define AK4620_DEEMVOL_REG 0x03
#define AK4620_SMUTE (1<<7)
/*
* Conversion from int value to its binary form. Used for debugging.
* The output buffer must be allocated prior to calling the function.
*/
static char *get_binary(char *buffer, int value)
{
int i, j, pos;
pos = 0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 8; ++j) {
if (value & (1 << (31-(i*8 + j))))
buffer[pos] = '1';
else
buffer[pos] = '0';
pos++;
}
if (i < 3) {
buffer[pos] = ' ';
pos++;
}
}
buffer[pos] = '\0';
return buffer;
}
/*
* Initial setup of the conversion array GPIO <-> rate
*/
static const unsigned int qtet_rates[] = {
44100, 48000, 88200,
96000, 176400, 192000,
};
static const unsigned int cks_vals[] = {
CPLD_CKS_44100HZ, CPLD_CKS_48000HZ, CPLD_CKS_88200HZ,
CPLD_CKS_96000HZ, CPLD_CKS_176400HZ, CPLD_CKS_192000HZ,
};
static const struct snd_pcm_hw_constraint_list qtet_rates_info = {
.count = ARRAY_SIZE(qtet_rates),
.list = qtet_rates,
.mask = 0,
};
static void qtet_ak4113_write(void *private_data, unsigned char reg,
unsigned char val)
{
snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR,
reg, val);
}
static unsigned char qtet_ak4113_read(void *private_data, unsigned char reg)
{
return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data,
AK4113_ADDR, reg);
}
/*
* AK4620 section
*/
/*
* Write data to addr register of ak4620
*/
static void qtet_akm_write(struct snd_akm4xxx *ak, int chip,
unsigned char addr, unsigned char data)
{
unsigned int tmp, orig_dir;
int idx;
unsigned int addrdata;
struct snd_ice1712 *ice = ak->private_data[0];
if (snd_BUG_ON(chip < 0 || chip >= 4))
return;
/*dev_dbg(ice->card->dev, "Writing to AK4620: chip=%d, addr=0x%x,
data=0x%x\n", chip, addr, data);*/
orig_dir = ice->gpio.get_dir(ice);
ice->gpio.set_dir(ice, orig_dir | GPIO_SPI_ALL);
/* set mask - only SPI bits */
ice->gpio.set_mask(ice, ~GPIO_SPI_ALL);
tmp = ice->gpio.get_data(ice);
/* high all */
tmp |= GPIO_SPI_ALL;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop chip select */
if (chip)
/* CODEC 1 */
tmp &= ~GPIO_SPI_CSN1;
else
tmp &= ~GPIO_SPI_CSN0;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* build I2C address + data byte */
addrdata = (AK4620_ADDR << 6) | 0x20 | (addr & 0x1f);
addrdata = (addrdata << 8) | data;
for (idx = 15; idx >= 0; idx--) {
/* drop clock */
tmp &= ~GPIO_D5_SPI_CCLK;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* set data */
if (addrdata & (1 << idx))
tmp |= GPIO_D4_SPI_CDTO;
else
tmp &= ~GPIO_D4_SPI_CDTO;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise clock */
tmp |= GPIO_D5_SPI_CCLK;
ice->gpio.set_data(ice, tmp);
udelay(100);
}
/* all back to 1 */
tmp |= GPIO_SPI_ALL;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* return all gpios to non-writable */
ice->gpio.set_mask(ice, 0xffffff);
/* restore GPIOs direction */
ice->gpio.set_dir(ice, orig_dir);
}
static void qtet_akm_set_regs(struct snd_akm4xxx *ak, unsigned char addr,
unsigned char mask, unsigned char value)
{
unsigned char tmp;
int chip;
for (chip = 0; chip < ak->num_chips; chip++) {
tmp = snd_akm4xxx_get(ak, chip, addr);
/* clear the bits */
tmp &= ~mask;
/* set the new bits */
tmp |= value;
snd_akm4xxx_write(ak, chip, addr, tmp);
}
}
/*
* change the rate of AK4620
*/
static void qtet_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate)
{
unsigned char ak4620_dfs;
if (rate == 0) /* no hint - S/PDIF input is master or the new spdif
input rate undetected, simply return */
return;
/* adjust DFS on codecs - see datasheet */
if (rate > 108000)
ak4620_dfs = AK4620_DFS1 | AK4620_CKS1;
else if (rate > 54000)
ak4620_dfs = AK4620_DFS0 | AK4620_CKS0;
else
ak4620_dfs = 0;
/* set new value */
qtet_akm_set_regs(ak, AK4620_DFS_REG, AK4620_DFS0 | AK4620_DFS1 |
AK4620_CKS0 | AK4620_CKS1, ak4620_dfs);
}
#define AK_CONTROL(xname, xch) { .name = xname, .num_channels = xch }
#define PCM_12_PLAYBACK_VOLUME "PCM 1/2 Playback Volume"
#define PCM_34_PLAYBACK_VOLUME "PCM 3/4 Playback Volume"
#define PCM_12_CAPTURE_VOLUME "PCM 1/2 Capture Volume"
#define PCM_34_CAPTURE_VOLUME "PCM 3/4 Capture Volume"
static const struct snd_akm4xxx_dac_channel qtet_dac[] = {
AK_CONTROL(PCM_12_PLAYBACK_VOLUME, 2),
AK_CONTROL(PCM_34_PLAYBACK_VOLUME, 2),
};
static const struct snd_akm4xxx_adc_channel qtet_adc[] = {
AK_CONTROL(PCM_12_CAPTURE_VOLUME, 2),
AK_CONTROL(PCM_34_CAPTURE_VOLUME, 2),
};
static const struct snd_akm4xxx akm_qtet_dac = {
.type = SND_AK4620,
.num_dacs = 4, /* DAC1 - Output 12
*/
.num_adcs = 4, /* ADC1 - Input 12
*/
.ops = {
.write = qtet_akm_write,
.set_rate_val = qtet_akm_set_rate_val,
},
.dac_info = qtet_dac,
.adc_info = qtet_adc,
};
/* Communication routines with the CPLD */
/* Writes data to external register reg, both reg and data are
* GPIO representations */
static void reg_write(struct snd_ice1712 *ice, unsigned int reg,
unsigned int data)
{
unsigned int tmp;
mutex_lock(&ice->gpio_mutex);
/* set direction of used GPIOs*/
/* all outputs */
tmp = 0x00ffff;
ice->gpio.set_dir(ice, tmp);
/* mask - writable bits */
ice->gpio.set_mask(ice, ~(tmp));
/* write the data */
tmp = ice->gpio.get_data(ice);
tmp &= ~GPIO_DATA_MASK;
tmp |= data;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop output enable */
tmp &= ~GPIO_EX_GPIOE;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop the register gpio */
tmp &= ~reg;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise the register GPIO */
tmp |= reg;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise all data gpios */
tmp |= GPIO_DATA_MASK;
ice->gpio.set_data(ice, tmp);
/* mask - immutable bits */
ice->gpio.set_mask(ice, 0xffffff);
/* outputs only 8-15 */
ice->gpio.set_dir(ice, 0x00ff00);
mutex_unlock(&ice->gpio_mutex);
}
static unsigned int get_scr(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->scr;
}
static unsigned int get_mcr(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->mcr;
}
static unsigned int get_cpld(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->cpld;
}
static void set_scr(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_SCR, val);
spec->scr = val;
}
static void set_mcr(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_MCR, val);
spec->mcr = val;
}
static void set_cpld(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_CPLD_CSN, val);
spec->cpld = val;
}
static void proc_regs_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_ice1712 *ice = entry->private_data;
char bin_buffer[36];
snd_iprintf(buffer, "SCR: %s\n", get_binary(bin_buffer,
get_scr(ice)));
snd_iprintf(buffer, "MCR: %s\n", get_binary(bin_buffer,
get_mcr(ice)));
snd_iprintf(buffer, "CPLD: %s\n", get_binary(bin_buffer,
get_cpld(ice)));
}
static void proc_init(struct snd_ice1712 *ice)
{
snd_card_ro_proc_new(ice->card, "quartet", ice, proc_regs_read);
}
static int qtet_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val;
val = get_scr(ice) & SCR_MUTE;
ucontrol->value.integer.value[0] = (val) ? 0 : 1;
return 0;
}
static int qtet_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new, smute;
old = get_scr(ice) & SCR_MUTE;
if (ucontrol->value.integer.value[0]) {
/* unmute */
new = 0;
/* un-smuting DAC */
smute = 0;
} else {
/* mute */
new = SCR_MUTE;
/* smuting DAC */
smute = AK4620_SMUTE;
}
if (old != new) {
struct snd_akm4xxx *ak = ice->akm;
set_scr(ice, (get_scr(ice) & ~SCR_MUTE) | new);
/* set smute */
qtet_akm_set_regs(ak, AK4620_DEEMVOL_REG, AK4620_SMUTE, smute);
return 1;
}
/* no change */
return 0;
}
static int qtet_ain12_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[3] =
{"Line In 1/2", "Mic", "Mic + Low-cut"};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static int qtet_ain12_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val, result;
val = get_scr(ice) & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
switch (val) {
case SCR_AIN12_LINE:
result = 0;
break;
case SCR_AIN12_MIC:
result = 1;
break;
case SCR_AIN12_LOWCUT:
result = 2;
break;
default:
/* BUG - no other combinations allowed */
snd_BUG();
result = 0;
}
ucontrol->value.integer.value[0] = result;
return 0;
}
static int qtet_ain12_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new, tmp, masked_old;
old = get_scr(ice);
masked_old = old & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
tmp = ucontrol->value.integer.value[0];
if (tmp == 2)
tmp = 3; /* binary 10 is not supported */
tmp <<= 4; /* shifting to SCR_AIN12_SEL0 */
if (tmp != masked_old) {
/* change requested */
switch (tmp) {
case SCR_AIN12_LINE:
new = old & ~(SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
set_scr(ice, new);
/* turn off relay */
new &= ~SCR_RELAY;
set_scr(ice, new);
break;
case SCR_AIN12_MIC:
/* turn on relay */
new = old | SCR_RELAY;
set_scr(ice, new);
new = (new & ~SCR_AIN12_SEL1) | SCR_AIN12_SEL0;
set_scr(ice, new);
break;
case SCR_AIN12_LOWCUT:
/* turn on relay */
new = old | SCR_RELAY;
set_scr(ice, new);
new |= SCR_AIN12_SEL1 | SCR_AIN12_SEL0;
set_scr(ice, new);
break;
default:
snd_BUG();
}
return 1;
}
/* no change */
return 0;
}
static int qtet_php_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val;
/* if phantom voltage =48V, phantom on */
val = get_scr(ice) & SCR_PHP_V;
ucontrol->value.integer.value[0] = val ? 1 : 0;
return 0;
}
static int qtet_php_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new;
old = new = get_scr(ice);
if (ucontrol->value.integer.value[0] /* phantom on requested */
&& (~old & SCR_PHP_V)) /* 0 = voltage 5V */ {
/* is off, turn on */
/* turn voltage on first, = 1 */
new = old | SCR_PHP_V;
set_scr(ice, new);
/* turn phantom on, = 0 */
new &= ~SCR_PHP;
set_scr(ice, new);
} else if (!ucontrol->value.integer.value[0] && (old & SCR_PHP_V)) {
/* phantom off requested and 1 = voltage 48V */
/* is on, turn off */
/* turn voltage off first, = 0 */
new = old & ~SCR_PHP_V;
set_scr(ice, new);
/* turn phantom off, = 1 */
new |= SCR_PHP;
set_scr(ice, new);
}
if (old != new)
return 1;
/* no change */
return 0;
}
#define PRIV_SW(xid, xbit, xreg) [xid] = {.bit = xbit,\
.set_register = set_##xreg,\
.get_register = get_##xreg, }
#define PRIV_ENUM2(xid, xbit, xreg, xtext1, xtext2) [xid] = {.bit = xbit,\
.set_register = set_##xreg,\
.get_register = get_##xreg,\
.texts = {xtext1, xtext2} }
static const struct qtet_kcontrol_private qtet_privates[] = {
PRIV_ENUM2(IN12_SEL, CPLD_IN12_SEL, cpld, "An In 1/2", "An In 3/4"),
PRIV_ENUM2(IN34_SEL, CPLD_IN34_SEL, cpld, "An In 3/4", "IEC958 In"),
PRIV_ENUM2(AIN34_SEL, SCR_AIN34_SEL, scr, "Line In 3/4", "Hi-Z"),
PRIV_ENUM2(COAX_OUT, CPLD_COAX_OUT, cpld, "IEC958", "I2S"),
PRIV_SW(IN12_MON12, MCR_IN12_MON12, mcr),
PRIV_SW(IN12_MON34, MCR_IN12_MON34, mcr),
PRIV_SW(IN34_MON12, MCR_IN34_MON12, mcr),
PRIV_SW(IN34_MON34, MCR_IN34_MON34, mcr),
PRIV_SW(OUT12_MON34, MCR_OUT12_MON34, mcr),
PRIV_SW(OUT34_MON12, MCR_OUT34_MON12, mcr),
};
static int qtet_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(private.texts),
private.texts);
}
static int qtet_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] =
(private.get_register(ice) & private.bit) ? 1 : 0;
return 0;
}
static int qtet_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new;
old = private.get_register(ice);
if (ucontrol->value.integer.value[0])
new = old | private.bit;
else
new = old & ~private.bit;
if (old != new) {
private.set_register(ice, new);
return 1;
}
/* no change */
return 0;
}
#define qtet_sw_info snd_ctl_boolean_mono_info
#define QTET_CONTROL(xname, xtype, xpriv) \
{.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname,\
.info = qtet_##xtype##_info,\
.get = qtet_sw_get,\
.put = qtet_sw_put,\
.private_value = xpriv }
static const struct snd_kcontrol_new qtet_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = qtet_sw_info,
.get = qtet_mute_get,
.put = qtet_mute_put,
.private_value = 0
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Phantom Power",
.info = qtet_sw_info,
.get = qtet_php_get,
.put = qtet_php_put,
.private_value = 0
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog In 1/2 Capture Switch",
.info = qtet_ain12_enum_info,
.get = qtet_ain12_sw_get,
.put = qtet_ain12_sw_put,
.private_value = 0
},
QTET_CONTROL("Analog In 3/4 Capture Switch", enum, AIN34_SEL),
QTET_CONTROL("PCM In 1/2 Capture Switch", enum, IN12_SEL),
QTET_CONTROL("PCM In 3/4 Capture Switch", enum, IN34_SEL),
QTET_CONTROL("Coax Output Source", enum, COAX_OUT),
QTET_CONTROL("Analog In 1/2 to Monitor 1/2", sw, IN12_MON12),
QTET_CONTROL("Analog In 1/2 to Monitor 3/4", sw, IN12_MON34),
QTET_CONTROL("Analog In 3/4 to Monitor 1/2", sw, IN34_MON12),
QTET_CONTROL("Analog In 3/4 to Monitor 3/4", sw, IN34_MON34),
QTET_CONTROL("Output 1/2 to Monitor 3/4", sw, OUT12_MON34),
QTET_CONTROL("Output 3/4 to Monitor 1/2", sw, OUT34_MON12),
};
static const char * const follower_vols[] = {
PCM_12_PLAYBACK_VOLUME,
PCM_34_PLAYBACK_VOLUME,
NULL
};
static
DECLARE_TLV_DB_SCALE(qtet_master_db_scale, -6350, 50, 1);
static struct snd_kcontrol *ctl_find(struct snd_card *card,
const char *name)
{
struct snd_ctl_elem_id sid = {0};
strscpy(sid.name, name, sizeof(sid.name));
sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_find_id(card, &sid);
}
static void add_followers(struct snd_card *card,
struct snd_kcontrol *master, const char * const *list)
{
for (; *list; list++) {
struct snd_kcontrol *follower = ctl_find(card, *list);
if (follower)
snd_ctl_add_follower(master, follower);
}
}
static int qtet_add_controls(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
int err, i;
struct snd_kcontrol *vmaster;
err = snd_ice1712_akm4xxx_build_controls(ice);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(qtet_controls); i++) {
err = snd_ctl_add(ice->card,
snd_ctl_new1(&qtet_controls[i], ice));
if (err < 0)
return err;
}
/* Create virtual master control */
vmaster = snd_ctl_make_virtual_master("Master Playback Volume",
qtet_master_db_scale);
if (!vmaster)
return -ENOMEM;
add_followers(ice->card, vmaster, follower_vols);
err = snd_ctl_add(ice->card, vmaster);
if (err < 0)
return err;
/* only capture SPDIF over AK4113 */
return snd_ak4113_build(spec->ak4113,
ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream);
}
static inline int qtet_is_spdif_master(struct snd_ice1712 *ice)
{
/* CPLD_SYNC_SEL: 0 = internal, 1 = external (i.e. spdif master) */
return (get_cpld(ice) & CPLD_SYNC_SEL) ? 1 : 0;
}
static unsigned int qtet_get_rate(struct snd_ice1712 *ice)
{
int i;
unsigned char result;
result = get_cpld(ice) & CPLD_CKS_MASK;
for (i = 0; i < ARRAY_SIZE(cks_vals); i++)
if (cks_vals[i] == result)
return qtet_rates[i];
return 0;
}
static int get_cks_val(int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(qtet_rates); i++)
if (qtet_rates[i] == rate)
return cks_vals[i];
return 0;
}
/* setting new rate */
static void qtet_set_rate(struct snd_ice1712 *ice, unsigned int rate)
{
unsigned int new;
unsigned char val;
/* switching ice1724 to external clock - supplied by ext. circuits */
val = inb(ICEMT1724(ice, RATE));
outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
new = (get_cpld(ice) & ~CPLD_CKS_MASK) | get_cks_val(rate);
/* switch to internal clock, drop CPLD_SYNC_SEL */
new &= ~CPLD_SYNC_SEL;
/* dev_dbg(ice->card->dev, "QT - set_rate: old %x, new %x\n",
get_cpld(ice), new); */
set_cpld(ice, new);
}
static inline unsigned char qtet_set_mclk(struct snd_ice1712 *ice,
unsigned int rate)
{
/* no change in master clock */
return 0;
}
/* setting clock to external - SPDIF */
static int qtet_set_spdif_clock(struct snd_ice1712 *ice, int type)
{
unsigned int old, new;
old = new = get_cpld(ice);
new &= ~(CPLD_CKS_MASK | CPLD_WORD_SEL);
switch (type) {
case EXT_SPDIF_TYPE:
new |= CPLD_EXT_SPDIF;
break;
case EXT_WORDCLOCK_1FS_TYPE:
new |= CPLD_EXT_WORDCLOCK_1FS;
break;
case EXT_WORDCLOCK_256FS_TYPE:
new |= CPLD_EXT_WORDCLOCK_256FS;
break;
default:
snd_BUG();
}
if (old != new) {
set_cpld(ice, new);
/* changed */
return 1;
}
return 0;
}
static int qtet_get_spdif_master_type(struct snd_ice1712 *ice)
{
unsigned int val;
int result;
val = get_cpld(ice);
/* checking only rate/clock-related bits */
val &= (CPLD_CKS_MASK | CPLD_WORD_SEL | CPLD_SYNC_SEL);
if (!(val & CPLD_SYNC_SEL)) {
/* switched to internal clock, is not any external type */
result = -1;
} else {
switch (val) {
case (CPLD_EXT_SPDIF):
result = EXT_SPDIF_TYPE;
break;
case (CPLD_EXT_WORDCLOCK_1FS):
result = EXT_WORDCLOCK_1FS_TYPE;
break;
case (CPLD_EXT_WORDCLOCK_256FS):
result = EXT_WORDCLOCK_256FS_TYPE;
break;
default:
/* undefined combination of external clock setup */
snd_BUG();
result = 0;
}
}
return result;
}
/* Called when ak4113 detects change in the input SPDIF stream */
static void qtet_ak4113_change(struct ak4113 *ak4113, unsigned char c0,
unsigned char c1)
{
struct snd_ice1712 *ice = ak4113->change_callback_private;
int rate;
if ((qtet_get_spdif_master_type(ice) == EXT_SPDIF_TYPE) &&
c1) {
/* only for SPDIF master mode, rate was changed */
rate = snd_ak4113_external_rate(ak4113);
/* dev_dbg(ice->card->dev, "ak4113 - input rate changed to %d\n",
rate); */
qtet_akm_set_rate_val(ice->akm, rate);
}
}
/*
* If clock slaved to SPDIF-IN, setting runtime rate
* to the detected external rate
*/
static void qtet_spdif_in_open(struct snd_ice1712 *ice,
struct snd_pcm_substream *substream)
{
struct qtet_spec *spec = ice->spec;
struct snd_pcm_runtime *runtime = substream->runtime;
int rate;
if (qtet_get_spdif_master_type(ice) != EXT_SPDIF_TYPE)
/* not external SPDIF, no rate limitation */
return;
/* only external SPDIF can detect incoming sample rate */
rate = snd_ak4113_external_rate(spec->ak4113);
if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) {
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
}
/*
* initialize the chip
*/
static int qtet_init(struct snd_ice1712 *ice)
{
static const unsigned char ak4113_init_vals[] = {
/* AK4113_REG_PWRDN */ AK4113_RST | AK4113_PWN |
AK4113_OCKS0 | AK4113_OCKS1,
/* AK4113_REQ_FORMAT */ AK4113_DIF_I24I2S | AK4113_VTX |
AK4113_DEM_OFF | AK4113_DEAU,
/* AK4113_REG_IO0 */ AK4113_OPS2 | AK4113_TXE |
AK4113_XTL_24_576M,
/* AK4113_REG_IO1 */ AK4113_EFH_1024LRCLK | AK4113_IPS(0),
/* AK4113_REG_INT0_MASK */ 0,
/* AK4113_REG_INT1_MASK */ 0,
/* AK4113_REG_DATDTS */ 0,
};
int err;
struct qtet_spec *spec;
struct snd_akm4xxx *ak;
unsigned char val;
/* switching ice1724 to external clock - supplied by ext. circuits */
val = inb(ICEMT1724(ice, RATE));
outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
/* qtet is clocked by Xilinx array */
ice->hw_rates = &qtet_rates_info;
ice->is_spdif_master = qtet_is_spdif_master;
ice->get_rate = qtet_get_rate;
ice->set_rate = qtet_set_rate;
ice->set_mclk = qtet_set_mclk;
ice->set_spdif_clock = qtet_set_spdif_clock;
ice->get_spdif_master_type = qtet_get_spdif_master_type;
ice->ext_clock_names = ext_clock_names;
ice->ext_clock_count = ARRAY_SIZE(ext_clock_names);
/* since Qtet can detect correct SPDIF-in rate, all streams can be
* limited to this specific rate */
ice->spdif.ops.open = ice->pro_open = qtet_spdif_in_open;
ice->spec = spec;
/* Mute Off */
/* SCR Initialize*/
/* keep codec power down first */
set_scr(ice, SCR_PHP);
udelay(1);
/* codec power up */
set_scr(ice, SCR_PHP | SCR_CODEC_PDN);
/* MCR Initialize */
set_mcr(ice, 0);
/* CPLD Initialize */
set_cpld(ice, 0);
ice->num_total_dacs = 2;
ice->num_total_adcs = 2;
ice->akm = kcalloc(2, sizeof(struct snd_akm4xxx), GFP_KERNEL);
ak = ice->akm;
if (!ak)
return -ENOMEM;
/* only one codec with two chips */
ice->akm_codecs = 1;
err = snd_ice1712_akm4xxx_init(ak, &akm_qtet_dac, NULL, ice);
if (err < 0)
return err;
err = snd_ak4113_create(ice->card,
qtet_ak4113_read,
qtet_ak4113_write,
ak4113_init_vals,
ice, &spec->ak4113);
if (err < 0)
return err;
/* callback for codecs rate setting */
spec->ak4113->change_callback = qtet_ak4113_change;
spec->ak4113->change_callback_private = ice;
/* AK41143 in Quartet can detect external rate correctly
* (i.e. check_flags = 0) */
spec->ak4113->check_flags = 0;
proc_init(ice);
qtet_set_rate(ice, 44100);
return 0;
}
static const unsigned char qtet_eeprom[] = {
[ICE_EEP2_SYSCONF] = 0x28, /* clock 256(24MHz), mpu401, 1xADC,
1xDACs, SPDIF in */
[ICE_EEP2_ACLINK] = 0x80, /* I2S */
[ICE_EEP2_I2S] = 0x78, /* 96k, 24bit, 192k */
[ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, in, out-ext */
[ICE_EEP2_GPIO_DIR] = 0x00, /* 0-7 inputs, switched to output
only during output operations */
[ICE_EEP2_GPIO_DIR1] = 0xff, /* 8-15 outputs */
[ICE_EEP2_GPIO_DIR2] = 0x00,
[ICE_EEP2_GPIO_MASK] = 0xff, /* changed only for OUT operations */
[ICE_EEP2_GPIO_MASK1] = 0x00,
[ICE_EEP2_GPIO_MASK2] = 0xff,
[ICE_EEP2_GPIO_STATE] = 0x00, /* inputs */
[ICE_EEP2_GPIO_STATE1] = 0x7d, /* all 1, but GPIO_CPLD_RW
and GPIO15 always zero */
[ICE_EEP2_GPIO_STATE2] = 0x00, /* inputs */
};
/* entry point */
struct snd_ice1712_card_info snd_vt1724_qtet_cards[] = {
{
.subvendor = VT1724_SUBDEVICE_QTET,
.name = "Infrasonic Quartet",
.model = "quartet",
.chip_init = qtet_init,
.build_controls = qtet_add_controls,
.eeprom_size = sizeof(qtet_eeprom),
.eeprom_data = qtet_eeprom,
},
{ } /* terminator */
};