2327 lines
65 KiB
C
2327 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* fs/ext4/fast_commit.c
|
|
*
|
|
* Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
|
|
*
|
|
* Ext4 fast commits routines.
|
|
*/
|
|
#include "ext4.h"
|
|
#include "ext4_jbd2.h"
|
|
#include "ext4_extents.h"
|
|
#include "mballoc.h"
|
|
|
|
/*
|
|
* Ext4 Fast Commits
|
|
* -----------------
|
|
*
|
|
* Ext4 fast commits implement fine grained journalling for Ext4.
|
|
*
|
|
* Fast commits are organized as a log of tag-length-value (TLV) structs. (See
|
|
* struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
|
|
* TLV during the recovery phase. For the scenarios for which we currently
|
|
* don't have replay code, fast commit falls back to full commits.
|
|
* Fast commits record delta in one of the following three categories.
|
|
*
|
|
* (A) Directory entry updates:
|
|
*
|
|
* - EXT4_FC_TAG_UNLINK - records directory entry unlink
|
|
* - EXT4_FC_TAG_LINK - records directory entry link
|
|
* - EXT4_FC_TAG_CREAT - records inode and directory entry creation
|
|
*
|
|
* (B) File specific data range updates:
|
|
*
|
|
* - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
|
|
* - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
|
|
*
|
|
* (C) Inode metadata (mtime / ctime etc):
|
|
*
|
|
* - EXT4_FC_TAG_INODE - record the inode that should be replayed
|
|
* during recovery. Note that iblocks field is
|
|
* not replayed and instead derived during
|
|
* replay.
|
|
* Commit Operation
|
|
* ----------------
|
|
* With fast commits, we maintain all the directory entry operations in the
|
|
* order in which they are issued in an in-memory queue. This queue is flushed
|
|
* to disk during the commit operation. We also maintain a list of inodes
|
|
* that need to be committed during a fast commit in another in memory queue of
|
|
* inodes. During the commit operation, we commit in the following order:
|
|
*
|
|
* [1] Lock inodes for any further data updates by setting COMMITTING state
|
|
* [2] Submit data buffers of all the inodes
|
|
* [3] Wait for [2] to complete
|
|
* [4] Commit all the directory entry updates in the fast commit space
|
|
* [5] Commit all the changed inode structures
|
|
* [6] Write tail tag (this tag ensures the atomicity, please read the following
|
|
* section for more details).
|
|
* [7] Wait for [4], [5] and [6] to complete.
|
|
*
|
|
* All the inode updates must call ext4_fc_start_update() before starting an
|
|
* update. If such an ongoing update is present, fast commit waits for it to
|
|
* complete. The completion of such an update is marked by
|
|
* ext4_fc_stop_update().
|
|
*
|
|
* Fast Commit Ineligibility
|
|
* -------------------------
|
|
*
|
|
* Not all operations are supported by fast commits today (e.g extended
|
|
* attributes). Fast commit ineligibility is marked by calling
|
|
* ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
|
|
* to full commit.
|
|
*
|
|
* Atomicity of commits
|
|
* --------------------
|
|
* In order to guarantee atomicity during the commit operation, fast commit
|
|
* uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
|
|
* tag contains CRC of the contents and TID of the transaction after which
|
|
* this fast commit should be applied. Recovery code replays fast commit
|
|
* logs only if there's at least 1 valid tail present. For every fast commit
|
|
* operation, there is 1 tail. This means, we may end up with multiple tails
|
|
* in the fast commit space. Here's an example:
|
|
*
|
|
* - Create a new file A and remove existing file B
|
|
* - fsync()
|
|
* - Append contents to file A
|
|
* - Truncate file A
|
|
* - fsync()
|
|
*
|
|
* The fast commit space at the end of above operations would look like this:
|
|
* [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
|
|
* |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
|
|
*
|
|
* Replay code should thus check for all the valid tails in the FC area.
|
|
*
|
|
* Fast Commit Replay Idempotence
|
|
* ------------------------------
|
|
*
|
|
* Fast commits tags are idempotent in nature provided the recovery code follows
|
|
* certain rules. The guiding principle that the commit path follows while
|
|
* committing is that it stores the result of a particular operation instead of
|
|
* storing the procedure.
|
|
*
|
|
* Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
|
|
* was associated with inode 10. During fast commit, instead of storing this
|
|
* operation as a procedure "rename a to b", we store the resulting file system
|
|
* state as a "series" of outcomes:
|
|
*
|
|
* - Link dirent b to inode 10
|
|
* - Unlink dirent a
|
|
* - Inode <10> with valid refcount
|
|
*
|
|
* Now when recovery code runs, it needs "enforce" this state on the file
|
|
* system. This is what guarantees idempotence of fast commit replay.
|
|
*
|
|
* Let's take an example of a procedure that is not idempotent and see how fast
|
|
* commits make it idempotent. Consider following sequence of operations:
|
|
*
|
|
* rm A; mv B A; read A
|
|
* (x) (y) (z)
|
|
*
|
|
* (x), (y) and (z) are the points at which we can crash. If we store this
|
|
* sequence of operations as is then the replay is not idempotent. Let's say
|
|
* while in replay, we crash at (z). During the second replay, file A (which was
|
|
* actually created as a result of "mv B A" operation) would get deleted. Thus,
|
|
* file named A would be absent when we try to read A. So, this sequence of
|
|
* operations is not idempotent. However, as mentioned above, instead of storing
|
|
* the procedure fast commits store the outcome of each procedure. Thus the fast
|
|
* commit log for above procedure would be as follows:
|
|
*
|
|
* (Let's assume dirent A was linked to inode 10 and dirent B was linked to
|
|
* inode 11 before the replay)
|
|
*
|
|
* [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
|
|
* (w) (x) (y) (z)
|
|
*
|
|
* If we crash at (z), we will have file A linked to inode 11. During the second
|
|
* replay, we will remove file A (inode 11). But we will create it back and make
|
|
* it point to inode 11. We won't find B, so we'll just skip that step. At this
|
|
* point, the refcount for inode 11 is not reliable, but that gets fixed by the
|
|
* replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
|
|
* similarly. Thus, by converting a non-idempotent procedure into a series of
|
|
* idempotent outcomes, fast commits ensured idempotence during the replay.
|
|
*
|
|
* TODOs
|
|
* -----
|
|
*
|
|
* 0) Fast commit replay path hardening: Fast commit replay code should use
|
|
* journal handles to make sure all the updates it does during the replay
|
|
* path are atomic. With that if we crash during fast commit replay, after
|
|
* trying to do recovery again, we will find a file system where fast commit
|
|
* area is invalid (because new full commit would be found). In order to deal
|
|
* with that, fast commit replay code should ensure that the "FC_REPLAY"
|
|
* superblock state is persisted before starting the replay, so that after
|
|
* the crash, fast commit recovery code can look at that flag and perform
|
|
* fast commit recovery even if that area is invalidated by later full
|
|
* commits.
|
|
*
|
|
* 1) Fast commit's commit path locks the entire file system during fast
|
|
* commit. This has significant performance penalty. Instead of that, we
|
|
* should use ext4_fc_start/stop_update functions to start inode level
|
|
* updates from ext4_journal_start/stop. Once we do that we can drop file
|
|
* system locking during commit path.
|
|
*
|
|
* 2) Handle more ineligible cases.
|
|
*/
|
|
|
|
#include <trace/events/ext4.h>
|
|
static struct kmem_cache *ext4_fc_dentry_cachep;
|
|
|
|
static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
BUFFER_TRACE(bh, "");
|
|
if (uptodate) {
|
|
ext4_debug("%s: Block %lld up-to-date",
|
|
__func__, bh->b_blocknr);
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
ext4_debug("%s: Block %lld not up-to-date",
|
|
__func__, bh->b_blocknr);
|
|
clear_buffer_uptodate(bh);
|
|
}
|
|
|
|
unlock_buffer(bh);
|
|
}
|
|
|
|
static inline void ext4_fc_reset_inode(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
ei->i_fc_lblk_start = 0;
|
|
ei->i_fc_lblk_len = 0;
|
|
}
|
|
|
|
void ext4_fc_init_inode(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
ext4_fc_reset_inode(inode);
|
|
ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
|
|
INIT_LIST_HEAD(&ei->i_fc_list);
|
|
INIT_LIST_HEAD(&ei->i_fc_dilist);
|
|
init_waitqueue_head(&ei->i_fc_wait);
|
|
atomic_set(&ei->i_fc_updates, 0);
|
|
}
|
|
|
|
/* This function must be called with sbi->s_fc_lock held. */
|
|
static void ext4_fc_wait_committing_inode(struct inode *inode)
|
|
__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
|
|
{
|
|
wait_queue_head_t *wq;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
#if (BITS_PER_LONG < 64)
|
|
DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
|
|
EXT4_STATE_FC_COMMITTING);
|
|
wq = bit_waitqueue(&ei->i_state_flags,
|
|
EXT4_STATE_FC_COMMITTING);
|
|
#else
|
|
DEFINE_WAIT_BIT(wait, &ei->i_flags,
|
|
EXT4_STATE_FC_COMMITTING);
|
|
wq = bit_waitqueue(&ei->i_flags,
|
|
EXT4_STATE_FC_COMMITTING);
|
|
#endif
|
|
lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
schedule();
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
static bool ext4_fc_disabled(struct super_block *sb)
|
|
{
|
|
return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
|
|
(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
|
|
}
|
|
|
|
/*
|
|
* Inform Ext4's fast about start of an inode update
|
|
*
|
|
* This function is called by the high level call VFS callbacks before
|
|
* performing any inode update. This function blocks if there's an ongoing
|
|
* fast commit on the inode in question.
|
|
*/
|
|
void ext4_fc_start_update(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
restart:
|
|
spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
if (list_empty(&ei->i_fc_list))
|
|
goto out;
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
|
|
ext4_fc_wait_committing_inode(inode);
|
|
goto restart;
|
|
}
|
|
out:
|
|
atomic_inc(&ei->i_fc_updates);
|
|
spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
}
|
|
|
|
/*
|
|
* Stop inode update and wake up waiting fast commits if any.
|
|
*/
|
|
void ext4_fc_stop_update(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (atomic_dec_and_test(&ei->i_fc_updates))
|
|
wake_up_all(&ei->i_fc_wait);
|
|
}
|
|
|
|
/*
|
|
* Remove inode from fast commit list. If the inode is being committed
|
|
* we wait until inode commit is done.
|
|
*/
|
|
void ext4_fc_del(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_fc_dentry_update *fc_dentry;
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
restart:
|
|
spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
|
|
spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
|
|
return;
|
|
}
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
|
|
ext4_fc_wait_committing_inode(inode);
|
|
goto restart;
|
|
}
|
|
|
|
if (!list_empty(&ei->i_fc_list))
|
|
list_del_init(&ei->i_fc_list);
|
|
|
|
/*
|
|
* Since this inode is getting removed, let's also remove all FC
|
|
* dentry create references, since it is not needed to log it anyways.
|
|
*/
|
|
if (list_empty(&ei->i_fc_dilist)) {
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
return;
|
|
}
|
|
|
|
fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
|
|
WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
|
|
list_del_init(&fc_dentry->fcd_list);
|
|
list_del_init(&fc_dentry->fcd_dilist);
|
|
|
|
WARN_ON(!list_empty(&ei->i_fc_dilist));
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
if (fc_dentry->fcd_name.name &&
|
|
fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
|
|
kfree(fc_dentry->fcd_name.name);
|
|
kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Mark file system as fast commit ineligible, and record latest
|
|
* ineligible transaction tid. This means until the recorded
|
|
* transaction, commit operation would result in a full jbd2 commit.
|
|
*/
|
|
void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
tid_t tid;
|
|
|
|
if (ext4_fc_disabled(sb))
|
|
return;
|
|
|
|
ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
|
|
if (handle && !IS_ERR(handle))
|
|
tid = handle->h_transaction->t_tid;
|
|
else {
|
|
read_lock(&sbi->s_journal->j_state_lock);
|
|
tid = sbi->s_journal->j_running_transaction ?
|
|
sbi->s_journal->j_running_transaction->t_tid : 0;
|
|
read_unlock(&sbi->s_journal->j_state_lock);
|
|
}
|
|
spin_lock(&sbi->s_fc_lock);
|
|
if (sbi->s_fc_ineligible_tid < tid)
|
|
sbi->s_fc_ineligible_tid = tid;
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
WARN_ON(reason >= EXT4_FC_REASON_MAX);
|
|
sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
|
|
}
|
|
|
|
/*
|
|
* Generic fast commit tracking function. If this is the first time this we are
|
|
* called after a full commit, we initialize fast commit fields and then call
|
|
* __fc_track_fn() with update = 0. If we have already been called after a full
|
|
* commit, we pass update = 1. Based on that, the track function can determine
|
|
* if it needs to track a field for the first time or if it needs to just
|
|
* update the previously tracked value.
|
|
*
|
|
* If enqueue is set, this function enqueues the inode in fast commit list.
|
|
*/
|
|
static int ext4_fc_track_template(
|
|
handle_t *handle, struct inode *inode,
|
|
int (*__fc_track_fn)(struct inode *, void *, bool),
|
|
void *args, int enqueue)
|
|
{
|
|
bool update = false;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
tid_t tid = 0;
|
|
int ret;
|
|
|
|
tid = handle->h_transaction->t_tid;
|
|
mutex_lock(&ei->i_fc_lock);
|
|
if (tid == ei->i_sync_tid) {
|
|
update = true;
|
|
} else {
|
|
ext4_fc_reset_inode(inode);
|
|
ei->i_sync_tid = tid;
|
|
}
|
|
ret = __fc_track_fn(inode, args, update);
|
|
mutex_unlock(&ei->i_fc_lock);
|
|
|
|
if (!enqueue)
|
|
return ret;
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
if (list_empty(&EXT4_I(inode)->i_fc_list))
|
|
list_add_tail(&EXT4_I(inode)->i_fc_list,
|
|
(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
|
|
sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
|
|
&sbi->s_fc_q[FC_Q_STAGING] :
|
|
&sbi->s_fc_q[FC_Q_MAIN]);
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct __track_dentry_update_args {
|
|
struct dentry *dentry;
|
|
int op;
|
|
};
|
|
|
|
/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
|
|
static int __track_dentry_update(struct inode *inode, void *arg, bool update)
|
|
{
|
|
struct ext4_fc_dentry_update *node;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct __track_dentry_update_args *dentry_update =
|
|
(struct __track_dentry_update_args *)arg;
|
|
struct dentry *dentry = dentry_update->dentry;
|
|
struct inode *dir = dentry->d_parent->d_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
|
mutex_unlock(&ei->i_fc_lock);
|
|
|
|
if (IS_ENCRYPTED(dir)) {
|
|
ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
|
|
NULL);
|
|
mutex_lock(&ei->i_fc_lock);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
|
|
if (!node) {
|
|
ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
|
|
mutex_lock(&ei->i_fc_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
node->fcd_op = dentry_update->op;
|
|
node->fcd_parent = dir->i_ino;
|
|
node->fcd_ino = inode->i_ino;
|
|
if (dentry->d_name.len > DNAME_INLINE_LEN) {
|
|
node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
|
|
if (!node->fcd_name.name) {
|
|
kmem_cache_free(ext4_fc_dentry_cachep, node);
|
|
ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
|
|
mutex_lock(&ei->i_fc_lock);
|
|
return -ENOMEM;
|
|
}
|
|
memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
} else {
|
|
memcpy(node->fcd_iname, dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
node->fcd_name.name = node->fcd_iname;
|
|
}
|
|
node->fcd_name.len = dentry->d_name.len;
|
|
INIT_LIST_HEAD(&node->fcd_dilist);
|
|
spin_lock(&sbi->s_fc_lock);
|
|
if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
|
|
sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
|
|
list_add_tail(&node->fcd_list,
|
|
&sbi->s_fc_dentry_q[FC_Q_STAGING]);
|
|
else
|
|
list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
|
|
|
|
/*
|
|
* This helps us keep a track of all fc_dentry updates which is part of
|
|
* this ext4 inode. So in case the inode is getting unlinked, before
|
|
* even we get a chance to fsync, we could remove all fc_dentry
|
|
* references while evicting the inode in ext4_fc_del().
|
|
* Also with this, we don't need to loop over all the inodes in
|
|
* sbi->s_fc_q to get the corresponding inode in
|
|
* ext4_fc_commit_dentry_updates().
|
|
*/
|
|
if (dentry_update->op == EXT4_FC_TAG_CREAT) {
|
|
WARN_ON(!list_empty(&ei->i_fc_dilist));
|
|
list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
|
|
}
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
mutex_lock(&ei->i_fc_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __ext4_fc_track_unlink(handle_t *handle,
|
|
struct inode *inode, struct dentry *dentry)
|
|
{
|
|
struct __track_dentry_update_args args;
|
|
int ret;
|
|
|
|
args.dentry = dentry;
|
|
args.op = EXT4_FC_TAG_UNLINK;
|
|
|
|
ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
|
|
(void *)&args, 0);
|
|
trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
|
|
}
|
|
|
|
void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
|
|
return;
|
|
|
|
__ext4_fc_track_unlink(handle, inode, dentry);
|
|
}
|
|
|
|
void __ext4_fc_track_link(handle_t *handle,
|
|
struct inode *inode, struct dentry *dentry)
|
|
{
|
|
struct __track_dentry_update_args args;
|
|
int ret;
|
|
|
|
args.dentry = dentry;
|
|
args.op = EXT4_FC_TAG_LINK;
|
|
|
|
ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
|
|
(void *)&args, 0);
|
|
trace_ext4_fc_track_link(handle, inode, dentry, ret);
|
|
}
|
|
|
|
void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
|
|
return;
|
|
|
|
__ext4_fc_track_link(handle, inode, dentry);
|
|
}
|
|
|
|
void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
|
|
struct dentry *dentry)
|
|
{
|
|
struct __track_dentry_update_args args;
|
|
int ret;
|
|
|
|
args.dentry = dentry;
|
|
args.op = EXT4_FC_TAG_CREAT;
|
|
|
|
ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
|
|
(void *)&args, 0);
|
|
trace_ext4_fc_track_create(handle, inode, dentry, ret);
|
|
}
|
|
|
|
void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
|
|
return;
|
|
|
|
__ext4_fc_track_create(handle, inode, dentry);
|
|
}
|
|
|
|
/* __track_fn for inode tracking */
|
|
static int __track_inode(struct inode *inode, void *arg, bool update)
|
|
{
|
|
if (update)
|
|
return -EEXIST;
|
|
|
|
EXT4_I(inode)->i_fc_lblk_len = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
return;
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (ext4_should_journal_data(inode)) {
|
|
ext4_fc_mark_ineligible(inode->i_sb,
|
|
EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
|
|
return;
|
|
}
|
|
|
|
if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
|
|
return;
|
|
|
|
ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
|
|
trace_ext4_fc_track_inode(handle, inode, ret);
|
|
}
|
|
|
|
struct __track_range_args {
|
|
ext4_lblk_t start, end;
|
|
};
|
|
|
|
/* __track_fn for tracking data updates */
|
|
static int __track_range(struct inode *inode, void *arg, bool update)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
ext4_lblk_t oldstart;
|
|
struct __track_range_args *__arg =
|
|
(struct __track_range_args *)arg;
|
|
|
|
if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
|
|
ext4_debug("Special inode %ld being modified\n", inode->i_ino);
|
|
return -ECANCELED;
|
|
}
|
|
|
|
oldstart = ei->i_fc_lblk_start;
|
|
|
|
if (update && ei->i_fc_lblk_len > 0) {
|
|
ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
|
|
ei->i_fc_lblk_len =
|
|
max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
|
|
ei->i_fc_lblk_start + 1;
|
|
} else {
|
|
ei->i_fc_lblk_start = __arg->start;
|
|
ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
|
|
ext4_lblk_t end)
|
|
{
|
|
struct __track_range_args args;
|
|
int ret;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
return;
|
|
|
|
if (ext4_fc_disabled(inode->i_sb))
|
|
return;
|
|
|
|
if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
|
|
return;
|
|
|
|
args.start = start;
|
|
args.end = end;
|
|
|
|
ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
|
|
|
|
trace_ext4_fc_track_range(handle, inode, start, end, ret);
|
|
}
|
|
|
|
static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
|
|
{
|
|
blk_opf_t write_flags = REQ_SYNC;
|
|
struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
|
|
|
|
/* Add REQ_FUA | REQ_PREFLUSH only its tail */
|
|
if (test_opt(sb, BARRIER) && is_tail)
|
|
write_flags |= REQ_FUA | REQ_PREFLUSH;
|
|
lock_buffer(bh);
|
|
set_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
bh->b_end_io = ext4_end_buffer_io_sync;
|
|
submit_bh(REQ_OP_WRITE | write_flags, bh);
|
|
EXT4_SB(sb)->s_fc_bh = NULL;
|
|
}
|
|
|
|
/* Ext4 commit path routines */
|
|
|
|
/* memcpy to fc reserved space and update CRC */
|
|
static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
|
|
int len, u32 *crc)
|
|
{
|
|
if (crc)
|
|
*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
|
|
return memcpy(dst, src, len);
|
|
}
|
|
|
|
/* memzero and update CRC */
|
|
static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
|
|
u32 *crc)
|
|
{
|
|
void *ret;
|
|
|
|
ret = memset(dst, 0, len);
|
|
if (crc)
|
|
*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocate len bytes on a fast commit buffer.
|
|
*
|
|
* During the commit time this function is used to manage fast commit
|
|
* block space. We don't split a fast commit log onto different
|
|
* blocks. So this function makes sure that if there's not enough space
|
|
* on the current block, the remaining space in the current block is
|
|
* marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
|
|
* new block is from jbd2 and CRC is updated to reflect the padding
|
|
* we added.
|
|
*/
|
|
static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
|
|
{
|
|
struct ext4_fc_tl tl;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct buffer_head *bh;
|
|
int bsize = sbi->s_journal->j_blocksize;
|
|
int ret, off = sbi->s_fc_bytes % bsize;
|
|
int remaining;
|
|
u8 *dst;
|
|
|
|
/*
|
|
* If 'len' is too long to fit in any block alongside a PAD tlv, then we
|
|
* cannot fulfill the request.
|
|
*/
|
|
if (len > bsize - EXT4_FC_TAG_BASE_LEN)
|
|
return NULL;
|
|
|
|
if (!sbi->s_fc_bh) {
|
|
ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
|
|
if (ret)
|
|
return NULL;
|
|
sbi->s_fc_bh = bh;
|
|
}
|
|
dst = sbi->s_fc_bh->b_data + off;
|
|
|
|
/*
|
|
* Allocate the bytes in the current block if we can do so while still
|
|
* leaving enough space for a PAD tlv.
|
|
*/
|
|
remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
|
|
if (len <= remaining) {
|
|
sbi->s_fc_bytes += len;
|
|
return dst;
|
|
}
|
|
|
|
/*
|
|
* Else, terminate the current block with a PAD tlv, then allocate a new
|
|
* block and allocate the bytes at the start of that new block.
|
|
*/
|
|
|
|
tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
|
|
tl.fc_len = cpu_to_le16(remaining);
|
|
ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
|
|
ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc);
|
|
|
|
ext4_fc_submit_bh(sb, false);
|
|
|
|
ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
|
|
if (ret)
|
|
return NULL;
|
|
sbi->s_fc_bh = bh;
|
|
sbi->s_fc_bytes += bsize - off + len;
|
|
return sbi->s_fc_bh->b_data;
|
|
}
|
|
|
|
/*
|
|
* Complete a fast commit by writing tail tag.
|
|
*
|
|
* Writing tail tag marks the end of a fast commit. In order to guarantee
|
|
* atomicity, after writing tail tag, even if there's space remaining
|
|
* in the block, next commit shouldn't use it. That's why tail tag
|
|
* has the length as that of the remaining space on the block.
|
|
*/
|
|
static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_fc_tl tl;
|
|
struct ext4_fc_tail tail;
|
|
int off, bsize = sbi->s_journal->j_blocksize;
|
|
u8 *dst;
|
|
|
|
/*
|
|
* ext4_fc_reserve_space takes care of allocating an extra block if
|
|
* there's no enough space on this block for accommodating this tail.
|
|
*/
|
|
dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
|
|
if (!dst)
|
|
return -ENOSPC;
|
|
|
|
off = sbi->s_fc_bytes % bsize;
|
|
|
|
tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
|
|
tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
|
|
sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
|
|
|
|
ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
|
|
dst += EXT4_FC_TAG_BASE_LEN;
|
|
tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
|
|
ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
|
|
dst += sizeof(tail.fc_tid);
|
|
tail.fc_crc = cpu_to_le32(crc);
|
|
ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
|
|
dst += sizeof(tail.fc_crc);
|
|
memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
|
|
|
|
ext4_fc_submit_bh(sb, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Adds tag, length, value and updates CRC. Returns true if tlv was added.
|
|
* Returns false if there's not enough space.
|
|
*/
|
|
static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
|
|
u32 *crc)
|
|
{
|
|
struct ext4_fc_tl tl;
|
|
u8 *dst;
|
|
|
|
dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
|
|
if (!dst)
|
|
return false;
|
|
|
|
tl.fc_tag = cpu_to_le16(tag);
|
|
tl.fc_len = cpu_to_le16(len);
|
|
|
|
ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
|
|
ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Same as above, but adds dentry tlv. */
|
|
static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
|
|
struct ext4_fc_dentry_update *fc_dentry)
|
|
{
|
|
struct ext4_fc_dentry_info fcd;
|
|
struct ext4_fc_tl tl;
|
|
int dlen = fc_dentry->fcd_name.len;
|
|
u8 *dst = ext4_fc_reserve_space(sb,
|
|
EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
|
|
|
|
if (!dst)
|
|
return false;
|
|
|
|
fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
|
|
fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
|
|
tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
|
|
tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
|
|
ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
|
|
dst += EXT4_FC_TAG_BASE_LEN;
|
|
ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
|
|
dst += sizeof(fcd);
|
|
ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Writes inode in the fast commit space under TLV with tag @tag.
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
|
|
int ret;
|
|
struct ext4_iloc iloc;
|
|
struct ext4_fc_inode fc_inode;
|
|
struct ext4_fc_tl tl;
|
|
u8 *dst;
|
|
|
|
ret = ext4_get_inode_loc(inode, &iloc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
|
|
inode_len = EXT4_INODE_SIZE(inode->i_sb);
|
|
else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
|
|
inode_len += ei->i_extra_isize;
|
|
|
|
fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
|
|
tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
|
|
tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
|
|
|
|
ret = -ECANCELED;
|
|
dst = ext4_fc_reserve_space(inode->i_sb,
|
|
EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
|
|
if (!dst)
|
|
goto err;
|
|
|
|
if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
|
|
goto err;
|
|
dst += EXT4_FC_TAG_BASE_LEN;
|
|
if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
|
|
goto err;
|
|
dst += sizeof(fc_inode);
|
|
if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
|
|
inode_len, crc))
|
|
goto err;
|
|
ret = 0;
|
|
err:
|
|
brelse(iloc.bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Writes updated data ranges for the inode in question. Updates CRC.
|
|
* Returns 0 on success, error otherwise.
|
|
*/
|
|
static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
|
|
{
|
|
ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_map_blocks map;
|
|
struct ext4_fc_add_range fc_ext;
|
|
struct ext4_fc_del_range lrange;
|
|
struct ext4_extent *ex;
|
|
int ret;
|
|
|
|
mutex_lock(&ei->i_fc_lock);
|
|
if (ei->i_fc_lblk_len == 0) {
|
|
mutex_unlock(&ei->i_fc_lock);
|
|
return 0;
|
|
}
|
|
old_blk_size = ei->i_fc_lblk_start;
|
|
new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
|
|
ei->i_fc_lblk_len = 0;
|
|
mutex_unlock(&ei->i_fc_lock);
|
|
|
|
cur_lblk_off = old_blk_size;
|
|
ext4_debug("will try writing %d to %d for inode %ld\n",
|
|
cur_lblk_off, new_blk_size, inode->i_ino);
|
|
|
|
while (cur_lblk_off <= new_blk_size) {
|
|
map.m_lblk = cur_lblk_off;
|
|
map.m_len = new_blk_size - cur_lblk_off + 1;
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
if (ret < 0)
|
|
return -ECANCELED;
|
|
|
|
if (map.m_len == 0) {
|
|
cur_lblk_off++;
|
|
continue;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
lrange.fc_ino = cpu_to_le32(inode->i_ino);
|
|
lrange.fc_lblk = cpu_to_le32(map.m_lblk);
|
|
lrange.fc_len = cpu_to_le32(map.m_len);
|
|
if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
|
|
sizeof(lrange), (u8 *)&lrange, crc))
|
|
return -ENOSPC;
|
|
} else {
|
|
unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
|
|
EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
|
|
|
|
/* Limit the number of blocks in one extent */
|
|
map.m_len = min(max, map.m_len);
|
|
|
|
fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
|
|
ex = (struct ext4_extent *)&fc_ext.fc_ex;
|
|
ex->ee_block = cpu_to_le32(map.m_lblk);
|
|
ex->ee_len = cpu_to_le16(map.m_len);
|
|
ext4_ext_store_pblock(ex, map.m_pblk);
|
|
if (map.m_flags & EXT4_MAP_UNWRITTEN)
|
|
ext4_ext_mark_unwritten(ex);
|
|
else
|
|
ext4_ext_mark_initialized(ex);
|
|
if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
|
|
sizeof(fc_ext), (u8 *)&fc_ext, crc))
|
|
return -ENOSPC;
|
|
}
|
|
|
|
cur_lblk_off += map.m_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Submit data for all the fast commit inodes */
|
|
static int ext4_fc_submit_inode_data_all(journal_t *journal)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_inode_info *ei;
|
|
int ret = 0;
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
|
|
ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
|
|
while (atomic_read(&ei->i_fc_updates)) {
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&ei->i_fc_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&ei->i_fc_updates)) {
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
schedule();
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
finish_wait(&ei->i_fc_wait, &wait);
|
|
}
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
ret = jbd2_submit_inode_data(ei->jinode);
|
|
if (ret)
|
|
return ret;
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Wait for completion of data for all the fast commit inodes */
|
|
static int ext4_fc_wait_inode_data_all(journal_t *journal)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_inode_info *pos, *n;
|
|
int ret = 0;
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
|
|
if (!ext4_test_inode_state(&pos->vfs_inode,
|
|
EXT4_STATE_FC_COMMITTING))
|
|
continue;
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
ret = jbd2_wait_inode_data(journal, pos->jinode);
|
|
if (ret)
|
|
return ret;
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Commit all the directory entry updates */
|
|
static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
|
|
__acquires(&sbi->s_fc_lock)
|
|
__releases(&sbi->s_fc_lock)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
|
|
struct inode *inode;
|
|
struct ext4_inode_info *ei;
|
|
int ret;
|
|
|
|
if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
|
|
return 0;
|
|
list_for_each_entry_safe(fc_dentry, fc_dentry_n,
|
|
&sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
|
|
if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
|
|
ret = -ENOSPC;
|
|
goto lock_and_exit;
|
|
}
|
|
spin_lock(&sbi->s_fc_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* With fcd_dilist we need not loop in sbi->s_fc_q to get the
|
|
* corresponding inode pointer
|
|
*/
|
|
WARN_ON(list_empty(&fc_dentry->fcd_dilist));
|
|
ei = list_first_entry(&fc_dentry->fcd_dilist,
|
|
struct ext4_inode_info, i_fc_dilist);
|
|
inode = &ei->vfs_inode;
|
|
WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
|
|
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
/*
|
|
* We first write the inode and then the create dirent. This
|
|
* allows the recovery code to create an unnamed inode first
|
|
* and then link it to a directory entry. This allows us
|
|
* to use namei.c routines almost as is and simplifies
|
|
* the recovery code.
|
|
*/
|
|
ret = ext4_fc_write_inode(inode, crc);
|
|
if (ret)
|
|
goto lock_and_exit;
|
|
|
|
ret = ext4_fc_write_inode_data(inode, crc);
|
|
if (ret)
|
|
goto lock_and_exit;
|
|
|
|
if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
|
|
ret = -ENOSPC;
|
|
goto lock_and_exit;
|
|
}
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
return 0;
|
|
lock_and_exit:
|
|
spin_lock(&sbi->s_fc_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ext4_fc_perform_commit(journal_t *journal)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_inode_info *iter;
|
|
struct ext4_fc_head head;
|
|
struct inode *inode;
|
|
struct blk_plug plug;
|
|
int ret = 0;
|
|
u32 crc = 0;
|
|
|
|
ret = ext4_fc_submit_inode_data_all(journal);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ext4_fc_wait_inode_data_all(journal);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If file system device is different from journal device, issue a cache
|
|
* flush before we start writing fast commit blocks.
|
|
*/
|
|
if (journal->j_fs_dev != journal->j_dev)
|
|
blkdev_issue_flush(journal->j_fs_dev);
|
|
|
|
blk_start_plug(&plug);
|
|
if (sbi->s_fc_bytes == 0) {
|
|
/*
|
|
* Add a head tag only if this is the first fast commit
|
|
* in this TID.
|
|
*/
|
|
head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
|
|
head.fc_tid = cpu_to_le32(
|
|
sbi->s_journal->j_running_transaction->t_tid);
|
|
if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
|
|
(u8 *)&head, &crc)) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
ret = ext4_fc_commit_dentry_updates(journal, &crc);
|
|
if (ret) {
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
|
|
inode = &iter->vfs_inode;
|
|
if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
|
|
continue;
|
|
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
ret = ext4_fc_write_inode_data(inode, &crc);
|
|
if (ret)
|
|
goto out;
|
|
ret = ext4_fc_write_inode(inode, &crc);
|
|
if (ret)
|
|
goto out;
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
ret = ext4_fc_write_tail(sb, crc);
|
|
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return ret;
|
|
}
|
|
|
|
static void ext4_fc_update_stats(struct super_block *sb, int status,
|
|
u64 commit_time, int nblks, tid_t commit_tid)
|
|
{
|
|
struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
|
|
|
|
ext4_debug("Fast commit ended with status = %d for tid %u",
|
|
status, commit_tid);
|
|
if (status == EXT4_FC_STATUS_OK) {
|
|
stats->fc_num_commits++;
|
|
stats->fc_numblks += nblks;
|
|
if (likely(stats->s_fc_avg_commit_time))
|
|
stats->s_fc_avg_commit_time =
|
|
(commit_time +
|
|
stats->s_fc_avg_commit_time * 3) / 4;
|
|
else
|
|
stats->s_fc_avg_commit_time = commit_time;
|
|
} else if (status == EXT4_FC_STATUS_FAILED ||
|
|
status == EXT4_FC_STATUS_INELIGIBLE) {
|
|
if (status == EXT4_FC_STATUS_FAILED)
|
|
stats->fc_failed_commits++;
|
|
stats->fc_ineligible_commits++;
|
|
} else {
|
|
stats->fc_skipped_commits++;
|
|
}
|
|
trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
|
|
}
|
|
|
|
/*
|
|
* The main commit entry point. Performs a fast commit for transaction
|
|
* commit_tid if needed. If it's not possible to perform a fast commit
|
|
* due to various reasons, we fall back to full commit. Returns 0
|
|
* on success, error otherwise.
|
|
*/
|
|
int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
int nblks = 0, ret, bsize = journal->j_blocksize;
|
|
int subtid = atomic_read(&sbi->s_fc_subtid);
|
|
int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
|
|
ktime_t start_time, commit_time;
|
|
|
|
if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
|
|
return jbd2_complete_transaction(journal, commit_tid);
|
|
|
|
trace_ext4_fc_commit_start(sb, commit_tid);
|
|
|
|
start_time = ktime_get();
|
|
|
|
restart_fc:
|
|
ret = jbd2_fc_begin_commit(journal, commit_tid);
|
|
if (ret == -EALREADY) {
|
|
/* There was an ongoing commit, check if we need to restart */
|
|
if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
|
|
commit_tid > journal->j_commit_sequence)
|
|
goto restart_fc;
|
|
ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
|
|
commit_tid);
|
|
return 0;
|
|
} else if (ret) {
|
|
/*
|
|
* Commit couldn't start. Just update stats and perform a
|
|
* full commit.
|
|
*/
|
|
ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
|
|
commit_tid);
|
|
return jbd2_complete_transaction(journal, commit_tid);
|
|
}
|
|
|
|
/*
|
|
* After establishing journal barrier via jbd2_fc_begin_commit(), check
|
|
* if we are fast commit ineligible.
|
|
*/
|
|
if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
|
|
status = EXT4_FC_STATUS_INELIGIBLE;
|
|
goto fallback;
|
|
}
|
|
|
|
fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
|
|
ret = ext4_fc_perform_commit(journal);
|
|
if (ret < 0) {
|
|
status = EXT4_FC_STATUS_FAILED;
|
|
goto fallback;
|
|
}
|
|
nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
|
|
ret = jbd2_fc_wait_bufs(journal, nblks);
|
|
if (ret < 0) {
|
|
status = EXT4_FC_STATUS_FAILED;
|
|
goto fallback;
|
|
}
|
|
atomic_inc(&sbi->s_fc_subtid);
|
|
ret = jbd2_fc_end_commit(journal);
|
|
/*
|
|
* weight the commit time higher than the average time so we
|
|
* don't react too strongly to vast changes in the commit time
|
|
*/
|
|
commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
|
|
ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
|
|
return ret;
|
|
|
|
fallback:
|
|
ret = jbd2_fc_end_commit_fallback(journal);
|
|
ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Fast commit cleanup routine. This is called after every fast commit and
|
|
* full commit. full is true if we are called after a full commit.
|
|
*/
|
|
static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_inode_info *iter, *iter_n;
|
|
struct ext4_fc_dentry_update *fc_dentry;
|
|
|
|
if (full && sbi->s_fc_bh)
|
|
sbi->s_fc_bh = NULL;
|
|
|
|
trace_ext4_fc_cleanup(journal, full, tid);
|
|
jbd2_fc_release_bufs(journal);
|
|
|
|
spin_lock(&sbi->s_fc_lock);
|
|
list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
|
|
i_fc_list) {
|
|
list_del_init(&iter->i_fc_list);
|
|
ext4_clear_inode_state(&iter->vfs_inode,
|
|
EXT4_STATE_FC_COMMITTING);
|
|
if (iter->i_sync_tid <= tid)
|
|
ext4_fc_reset_inode(&iter->vfs_inode);
|
|
/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
|
|
smp_mb();
|
|
#if (BITS_PER_LONG < 64)
|
|
wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
|
|
#else
|
|
wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
|
|
#endif
|
|
}
|
|
|
|
while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
|
|
fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
|
|
struct ext4_fc_dentry_update,
|
|
fcd_list);
|
|
list_del_init(&fc_dentry->fcd_list);
|
|
list_del_init(&fc_dentry->fcd_dilist);
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
|
|
if (fc_dentry->fcd_name.name &&
|
|
fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
|
|
kfree(fc_dentry->fcd_name.name);
|
|
kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
|
|
spin_lock(&sbi->s_fc_lock);
|
|
}
|
|
|
|
list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
|
|
&sbi->s_fc_dentry_q[FC_Q_MAIN]);
|
|
list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
|
|
&sbi->s_fc_q[FC_Q_MAIN]);
|
|
|
|
if (tid >= sbi->s_fc_ineligible_tid) {
|
|
sbi->s_fc_ineligible_tid = 0;
|
|
ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
|
|
}
|
|
|
|
if (full)
|
|
sbi->s_fc_bytes = 0;
|
|
spin_unlock(&sbi->s_fc_lock);
|
|
trace_ext4_fc_stats(sb);
|
|
}
|
|
|
|
/* Ext4 Replay Path Routines */
|
|
|
|
/* Helper struct for dentry replay routines */
|
|
struct dentry_info_args {
|
|
int parent_ino, dname_len, ino, inode_len;
|
|
char *dname;
|
|
};
|
|
|
|
/* Same as struct ext4_fc_tl, but uses native endianness fields */
|
|
struct ext4_fc_tl_mem {
|
|
u16 fc_tag;
|
|
u16 fc_len;
|
|
};
|
|
|
|
static inline void tl_to_darg(struct dentry_info_args *darg,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct ext4_fc_dentry_info fcd;
|
|
|
|
memcpy(&fcd, val, sizeof(fcd));
|
|
|
|
darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
|
|
darg->ino = le32_to_cpu(fcd.fc_ino);
|
|
darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
|
|
darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
|
|
}
|
|
|
|
static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct ext4_fc_tl tl_disk;
|
|
|
|
memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
|
|
tl->fc_len = le16_to_cpu(tl_disk.fc_len);
|
|
tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
|
|
}
|
|
|
|
/* Unlink replay function */
|
|
static int ext4_fc_replay_unlink(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct inode *inode, *old_parent;
|
|
struct qstr entry;
|
|
struct dentry_info_args darg;
|
|
int ret = 0;
|
|
|
|
tl_to_darg(&darg, tl, val);
|
|
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
|
|
darg.parent_ino, darg.dname_len);
|
|
|
|
entry.name = darg.dname;
|
|
entry.len = darg.dname_len;
|
|
inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
|
|
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode %d not found", darg.ino);
|
|
return 0;
|
|
}
|
|
|
|
old_parent = ext4_iget(sb, darg.parent_ino,
|
|
EXT4_IGET_NORMAL);
|
|
if (IS_ERR(old_parent)) {
|
|
ext4_debug("Dir with inode %d not found", darg.parent_ino);
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
ret = __ext4_unlink(old_parent, &entry, inode, NULL);
|
|
/* -ENOENT ok coz it might not exist anymore. */
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
iput(old_parent);
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static int ext4_fc_replay_link_internal(struct super_block *sb,
|
|
struct dentry_info_args *darg,
|
|
struct inode *inode)
|
|
{
|
|
struct inode *dir = NULL;
|
|
struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
|
|
struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
|
|
int ret = 0;
|
|
|
|
dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(dir)) {
|
|
ext4_debug("Dir with inode %d not found.", darg->parent_ino);
|
|
dir = NULL;
|
|
goto out;
|
|
}
|
|
|
|
dentry_dir = d_obtain_alias(dir);
|
|
if (IS_ERR(dentry_dir)) {
|
|
ext4_debug("Failed to obtain dentry");
|
|
dentry_dir = NULL;
|
|
goto out;
|
|
}
|
|
|
|
dentry_inode = d_alloc(dentry_dir, &qstr_dname);
|
|
if (!dentry_inode) {
|
|
ext4_debug("Inode dentry not created.");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = __ext4_link(dir, inode, dentry_inode);
|
|
/*
|
|
* It's possible that link already existed since data blocks
|
|
* for the dir in question got persisted before we crashed OR
|
|
* we replayed this tag and crashed before the entire replay
|
|
* could complete.
|
|
*/
|
|
if (ret && ret != -EEXIST) {
|
|
ext4_debug("Failed to link\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
if (dentry_dir) {
|
|
d_drop(dentry_dir);
|
|
dput(dentry_dir);
|
|
} else if (dir) {
|
|
iput(dir);
|
|
}
|
|
if (dentry_inode) {
|
|
d_drop(dentry_inode);
|
|
dput(dentry_inode);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Link replay function */
|
|
static int ext4_fc_replay_link(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct inode *inode;
|
|
struct dentry_info_args darg;
|
|
int ret = 0;
|
|
|
|
tl_to_darg(&darg, tl, val);
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
|
|
darg.parent_ino, darg.dname_len);
|
|
|
|
inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode not found.");
|
|
return 0;
|
|
}
|
|
|
|
ret = ext4_fc_replay_link_internal(sb, &darg, inode);
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Record all the modified inodes during replay. We use this later to setup
|
|
* block bitmaps correctly.
|
|
*/
|
|
static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
|
|
{
|
|
struct ext4_fc_replay_state *state;
|
|
int i;
|
|
|
|
state = &EXT4_SB(sb)->s_fc_replay_state;
|
|
for (i = 0; i < state->fc_modified_inodes_used; i++)
|
|
if (state->fc_modified_inodes[i] == ino)
|
|
return 0;
|
|
if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
|
|
int *fc_modified_inodes;
|
|
|
|
fc_modified_inodes = krealloc(state->fc_modified_inodes,
|
|
sizeof(int) * (state->fc_modified_inodes_size +
|
|
EXT4_FC_REPLAY_REALLOC_INCREMENT),
|
|
GFP_KERNEL);
|
|
if (!fc_modified_inodes)
|
|
return -ENOMEM;
|
|
state->fc_modified_inodes = fc_modified_inodes;
|
|
state->fc_modified_inodes_size +=
|
|
EXT4_FC_REPLAY_REALLOC_INCREMENT;
|
|
}
|
|
state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Inode replay function
|
|
*/
|
|
static int ext4_fc_replay_inode(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct ext4_fc_inode fc_inode;
|
|
struct ext4_inode *raw_inode;
|
|
struct ext4_inode *raw_fc_inode;
|
|
struct inode *inode = NULL;
|
|
struct ext4_iloc iloc;
|
|
int inode_len, ino, ret, tag = tl->fc_tag;
|
|
struct ext4_extent_header *eh;
|
|
size_t off_gen = offsetof(struct ext4_inode, i_generation);
|
|
|
|
memcpy(&fc_inode, val, sizeof(fc_inode));
|
|
|
|
ino = le32_to_cpu(fc_inode.fc_ino);
|
|
trace_ext4_fc_replay(sb, tag, ino, 0, 0);
|
|
|
|
inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
|
|
if (!IS_ERR(inode)) {
|
|
ext4_ext_clear_bb(inode);
|
|
iput(inode);
|
|
}
|
|
inode = NULL;
|
|
|
|
ret = ext4_fc_record_modified_inode(sb, ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
raw_fc_inode = (struct ext4_inode *)
|
|
(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
|
|
ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
|
|
raw_inode = ext4_raw_inode(&iloc);
|
|
|
|
memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
|
|
memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
|
|
inode_len - off_gen);
|
|
if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
|
|
eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
|
|
if (eh->eh_magic != EXT4_EXT_MAGIC) {
|
|
memset(eh, 0, sizeof(*eh));
|
|
eh->eh_magic = EXT4_EXT_MAGIC;
|
|
eh->eh_max = cpu_to_le16(
|
|
(sizeof(raw_inode->i_block) -
|
|
sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent));
|
|
}
|
|
} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
|
|
memcpy(raw_inode->i_block, raw_fc_inode->i_block,
|
|
sizeof(raw_inode->i_block));
|
|
}
|
|
|
|
/* Immediately update the inode on disk. */
|
|
ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
|
|
if (ret)
|
|
goto out;
|
|
ret = sync_dirty_buffer(iloc.bh);
|
|
if (ret)
|
|
goto out;
|
|
ret = ext4_mark_inode_used(sb, ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Given that we just wrote the inode on disk, this SHOULD succeed. */
|
|
inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode not found.");
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Our allocator could have made different decisions than before
|
|
* crashing. This should be fixed but until then, we calculate
|
|
* the number of blocks the inode.
|
|
*/
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
|
|
ext4_ext_replay_set_iblocks(inode);
|
|
|
|
inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
|
|
ext4_reset_inode_seed(inode);
|
|
|
|
ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
|
|
ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
|
|
sync_dirty_buffer(iloc.bh);
|
|
brelse(iloc.bh);
|
|
out:
|
|
iput(inode);
|
|
if (!ret)
|
|
blkdev_issue_flush(sb->s_bdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dentry create replay function.
|
|
*
|
|
* EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
|
|
* inode for which we are trying to create a dentry here, should already have
|
|
* been replayed before we start here.
|
|
*/
|
|
static int ext4_fc_replay_create(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
int ret = 0;
|
|
struct inode *inode = NULL;
|
|
struct inode *dir = NULL;
|
|
struct dentry_info_args darg;
|
|
|
|
tl_to_darg(&darg, tl, val);
|
|
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
|
|
darg.parent_ino, darg.dname_len);
|
|
|
|
/* This takes care of update group descriptor and other metadata */
|
|
ret = ext4_mark_inode_used(sb, darg.ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("inode %d not found.", darg.ino);
|
|
inode = NULL;
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
/*
|
|
* If we are creating a directory, we need to make sure that the
|
|
* dot and dot dot dirents are setup properly.
|
|
*/
|
|
dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(dir)) {
|
|
ext4_debug("Dir %d not found.", darg.ino);
|
|
goto out;
|
|
}
|
|
ret = ext4_init_new_dir(NULL, dir, inode);
|
|
iput(dir);
|
|
if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
ret = ext4_fc_replay_link_internal(sb, &darg, inode);
|
|
if (ret)
|
|
goto out;
|
|
set_nlink(inode, 1);
|
|
ext4_mark_inode_dirty(NULL, inode);
|
|
out:
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Record physical disk regions which are in use as per fast commit area,
|
|
* and used by inodes during replay phase. Our simple replay phase
|
|
* allocator excludes these regions from allocation.
|
|
*/
|
|
int ext4_fc_record_regions(struct super_block *sb, int ino,
|
|
ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
|
|
{
|
|
struct ext4_fc_replay_state *state;
|
|
struct ext4_fc_alloc_region *region;
|
|
|
|
state = &EXT4_SB(sb)->s_fc_replay_state;
|
|
/*
|
|
* during replay phase, the fc_regions_valid may not same as
|
|
* fc_regions_used, update it when do new additions.
|
|
*/
|
|
if (replay && state->fc_regions_used != state->fc_regions_valid)
|
|
state->fc_regions_used = state->fc_regions_valid;
|
|
if (state->fc_regions_used == state->fc_regions_size) {
|
|
struct ext4_fc_alloc_region *fc_regions;
|
|
|
|
fc_regions = krealloc(state->fc_regions,
|
|
sizeof(struct ext4_fc_alloc_region) *
|
|
(state->fc_regions_size +
|
|
EXT4_FC_REPLAY_REALLOC_INCREMENT),
|
|
GFP_KERNEL);
|
|
if (!fc_regions)
|
|
return -ENOMEM;
|
|
state->fc_regions_size +=
|
|
EXT4_FC_REPLAY_REALLOC_INCREMENT;
|
|
state->fc_regions = fc_regions;
|
|
}
|
|
region = &state->fc_regions[state->fc_regions_used++];
|
|
region->ino = ino;
|
|
region->lblk = lblk;
|
|
region->pblk = pblk;
|
|
region->len = len;
|
|
|
|
if (replay)
|
|
state->fc_regions_valid++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Replay add range tag */
|
|
static int ext4_fc_replay_add_range(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct ext4_fc_add_range fc_add_ex;
|
|
struct ext4_extent newex, *ex;
|
|
struct inode *inode;
|
|
ext4_lblk_t start, cur;
|
|
int remaining, len;
|
|
ext4_fsblk_t start_pblk;
|
|
struct ext4_map_blocks map;
|
|
struct ext4_ext_path *path = NULL;
|
|
int ret;
|
|
|
|
memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
|
|
ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
|
|
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
|
|
le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex));
|
|
|
|
inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode not found.");
|
|
return 0;
|
|
}
|
|
|
|
ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
start = le32_to_cpu(ex->ee_block);
|
|
start_pblk = ext4_ext_pblock(ex);
|
|
len = ext4_ext_get_actual_len(ex);
|
|
|
|
cur = start;
|
|
remaining = len;
|
|
ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
|
|
start, start_pblk, len, ext4_ext_is_unwritten(ex),
|
|
inode->i_ino);
|
|
|
|
while (remaining > 0) {
|
|
map.m_lblk = cur;
|
|
map.m_len = remaining;
|
|
map.m_pblk = 0;
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret == 0) {
|
|
/* Range is not mapped */
|
|
path = ext4_find_extent(inode, cur, NULL, 0);
|
|
if (IS_ERR(path))
|
|
goto out;
|
|
memset(&newex, 0, sizeof(newex));
|
|
newex.ee_block = cpu_to_le32(cur);
|
|
ext4_ext_store_pblock(
|
|
&newex, start_pblk + cur - start);
|
|
newex.ee_len = cpu_to_le16(map.m_len);
|
|
if (ext4_ext_is_unwritten(ex))
|
|
ext4_ext_mark_unwritten(&newex);
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ret = ext4_ext_insert_extent(
|
|
NULL, inode, &path, &newex, 0);
|
|
up_write((&EXT4_I(inode)->i_data_sem));
|
|
ext4_free_ext_path(path);
|
|
if (ret)
|
|
goto out;
|
|
goto next;
|
|
}
|
|
|
|
if (start_pblk + cur - start != map.m_pblk) {
|
|
/*
|
|
* Logical to physical mapping changed. This can happen
|
|
* if this range was removed and then reallocated to
|
|
* map to new physical blocks during a fast commit.
|
|
*/
|
|
ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
|
|
ext4_ext_is_unwritten(ex),
|
|
start_pblk + cur - start);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* Mark the old blocks as free since they aren't used
|
|
* anymore. We maintain an array of all the modified
|
|
* inodes. In case these blocks are still used at either
|
|
* a different logical range in the same inode or in
|
|
* some different inode, we will mark them as allocated
|
|
* at the end of the FC replay using our array of
|
|
* modified inodes.
|
|
*/
|
|
ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
|
|
goto next;
|
|
}
|
|
|
|
/* Range is mapped and needs a state change */
|
|
ext4_debug("Converting from %ld to %d %lld",
|
|
map.m_flags & EXT4_MAP_UNWRITTEN,
|
|
ext4_ext_is_unwritten(ex), map.m_pblk);
|
|
ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
|
|
ext4_ext_is_unwritten(ex), map.m_pblk);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* We may have split the extent tree while toggling the state.
|
|
* Try to shrink the extent tree now.
|
|
*/
|
|
ext4_ext_replay_shrink_inode(inode, start + len);
|
|
next:
|
|
cur += map.m_len;
|
|
remaining -= map.m_len;
|
|
}
|
|
ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
|
|
sb->s_blocksize_bits);
|
|
out:
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
/* Replay DEL_RANGE tag */
|
|
static int
|
|
ext4_fc_replay_del_range(struct super_block *sb,
|
|
struct ext4_fc_tl_mem *tl, u8 *val)
|
|
{
|
|
struct inode *inode;
|
|
struct ext4_fc_del_range lrange;
|
|
struct ext4_map_blocks map;
|
|
ext4_lblk_t cur, remaining;
|
|
int ret;
|
|
|
|
memcpy(&lrange, val, sizeof(lrange));
|
|
cur = le32_to_cpu(lrange.fc_lblk);
|
|
remaining = le32_to_cpu(lrange.fc_len);
|
|
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
|
|
le32_to_cpu(lrange.fc_ino), cur, remaining);
|
|
|
|
inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
|
|
return 0;
|
|
}
|
|
|
|
ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
|
|
inode->i_ino, le32_to_cpu(lrange.fc_lblk),
|
|
le32_to_cpu(lrange.fc_len));
|
|
while (remaining > 0) {
|
|
map.m_lblk = cur;
|
|
map.m_len = remaining;
|
|
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
remaining -= ret;
|
|
cur += ret;
|
|
ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
|
|
} else {
|
|
remaining -= map.m_len;
|
|
cur += map.m_len;
|
|
}
|
|
}
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
|
|
le32_to_cpu(lrange.fc_lblk) +
|
|
le32_to_cpu(lrange.fc_len) - 1);
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
if (ret)
|
|
goto out;
|
|
ext4_ext_replay_shrink_inode(inode,
|
|
i_size_read(inode) >> sb->s_blocksize_bits);
|
|
ext4_mark_inode_dirty(NULL, inode);
|
|
out:
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
|
|
{
|
|
struct ext4_fc_replay_state *state;
|
|
struct inode *inode;
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_map_blocks map;
|
|
int i, ret, j;
|
|
ext4_lblk_t cur, end;
|
|
|
|
state = &EXT4_SB(sb)->s_fc_replay_state;
|
|
for (i = 0; i < state->fc_modified_inodes_used; i++) {
|
|
inode = ext4_iget(sb, state->fc_modified_inodes[i],
|
|
EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
ext4_debug("Inode %d not found.",
|
|
state->fc_modified_inodes[i]);
|
|
continue;
|
|
}
|
|
cur = 0;
|
|
end = EXT_MAX_BLOCKS;
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
|
|
iput(inode);
|
|
continue;
|
|
}
|
|
while (cur < end) {
|
|
map.m_lblk = cur;
|
|
map.m_len = end - cur;
|
|
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (ret > 0) {
|
|
path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
|
|
if (!IS_ERR(path)) {
|
|
for (j = 0; j < path->p_depth; j++)
|
|
ext4_mb_mark_bb(inode->i_sb,
|
|
path[j].p_block, 1, 1);
|
|
ext4_free_ext_path(path);
|
|
}
|
|
cur += ret;
|
|
ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
|
|
map.m_len, 1);
|
|
} else {
|
|
cur = cur + (map.m_len ? map.m_len : 1);
|
|
}
|
|
}
|
|
iput(inode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if block is in excluded regions for block allocation. The simple
|
|
* allocator that runs during replay phase is calls this function to see
|
|
* if it is okay to use a block.
|
|
*/
|
|
bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
|
|
{
|
|
int i;
|
|
struct ext4_fc_replay_state *state;
|
|
|
|
state = &EXT4_SB(sb)->s_fc_replay_state;
|
|
for (i = 0; i < state->fc_regions_valid; i++) {
|
|
if (state->fc_regions[i].ino == 0 ||
|
|
state->fc_regions[i].len == 0)
|
|
continue;
|
|
if (in_range(blk, state->fc_regions[i].pblk,
|
|
state->fc_regions[i].len))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Cleanup function called after replay */
|
|
void ext4_fc_replay_cleanup(struct super_block *sb)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
|
sbi->s_mount_state &= ~EXT4_FC_REPLAY;
|
|
kfree(sbi->s_fc_replay_state.fc_regions);
|
|
kfree(sbi->s_fc_replay_state.fc_modified_inodes);
|
|
}
|
|
|
|
static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
|
|
int tag, int len)
|
|
{
|
|
switch (tag) {
|
|
case EXT4_FC_TAG_ADD_RANGE:
|
|
return len == sizeof(struct ext4_fc_add_range);
|
|
case EXT4_FC_TAG_DEL_RANGE:
|
|
return len == sizeof(struct ext4_fc_del_range);
|
|
case EXT4_FC_TAG_CREAT:
|
|
case EXT4_FC_TAG_LINK:
|
|
case EXT4_FC_TAG_UNLINK:
|
|
len -= sizeof(struct ext4_fc_dentry_info);
|
|
return len >= 1 && len <= EXT4_NAME_LEN;
|
|
case EXT4_FC_TAG_INODE:
|
|
len -= sizeof(struct ext4_fc_inode);
|
|
return len >= EXT4_GOOD_OLD_INODE_SIZE &&
|
|
len <= sbi->s_inode_size;
|
|
case EXT4_FC_TAG_PAD:
|
|
return true; /* padding can have any length */
|
|
case EXT4_FC_TAG_TAIL:
|
|
return len >= sizeof(struct ext4_fc_tail);
|
|
case EXT4_FC_TAG_HEAD:
|
|
return len == sizeof(struct ext4_fc_head);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Recovery Scan phase handler
|
|
*
|
|
* This function is called during the scan phase and is responsible
|
|
* for doing following things:
|
|
* - Make sure the fast commit area has valid tags for replay
|
|
* - Count number of tags that need to be replayed by the replay handler
|
|
* - Verify CRC
|
|
* - Create a list of excluded blocks for allocation during replay phase
|
|
*
|
|
* This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
|
|
* incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
|
|
* to indicate that scan has finished and JBD2 can now start replay phase.
|
|
* It returns a negative error to indicate that there was an error. At the end
|
|
* of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
|
|
* to indicate the number of tags that need to replayed during the replay phase.
|
|
*/
|
|
static int ext4_fc_replay_scan(journal_t *journal,
|
|
struct buffer_head *bh, int off,
|
|
tid_t expected_tid)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_fc_replay_state *state;
|
|
int ret = JBD2_FC_REPLAY_CONTINUE;
|
|
struct ext4_fc_add_range ext;
|
|
struct ext4_fc_tl_mem tl;
|
|
struct ext4_fc_tail tail;
|
|
__u8 *start, *end, *cur, *val;
|
|
struct ext4_fc_head head;
|
|
struct ext4_extent *ex;
|
|
|
|
state = &sbi->s_fc_replay_state;
|
|
|
|
start = (u8 *)bh->b_data;
|
|
end = start + journal->j_blocksize;
|
|
|
|
if (state->fc_replay_expected_off == 0) {
|
|
state->fc_cur_tag = 0;
|
|
state->fc_replay_num_tags = 0;
|
|
state->fc_crc = 0;
|
|
state->fc_regions = NULL;
|
|
state->fc_regions_valid = state->fc_regions_used =
|
|
state->fc_regions_size = 0;
|
|
/* Check if we can stop early */
|
|
if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
|
|
!= EXT4_FC_TAG_HEAD)
|
|
return 0;
|
|
}
|
|
|
|
if (off != state->fc_replay_expected_off) {
|
|
ret = -EFSCORRUPTED;
|
|
goto out_err;
|
|
}
|
|
|
|
state->fc_replay_expected_off++;
|
|
for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
|
|
cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
|
|
ext4_fc_get_tl(&tl, cur);
|
|
val = cur + EXT4_FC_TAG_BASE_LEN;
|
|
if (tl.fc_len > end - val ||
|
|
!ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
|
|
ret = state->fc_replay_num_tags ?
|
|
JBD2_FC_REPLAY_STOP : -ECANCELED;
|
|
goto out_err;
|
|
}
|
|
ext4_debug("Scan phase, tag:%s, blk %lld\n",
|
|
tag2str(tl.fc_tag), bh->b_blocknr);
|
|
switch (tl.fc_tag) {
|
|
case EXT4_FC_TAG_ADD_RANGE:
|
|
memcpy(&ext, val, sizeof(ext));
|
|
ex = (struct ext4_extent *)&ext.fc_ex;
|
|
ret = ext4_fc_record_regions(sb,
|
|
le32_to_cpu(ext.fc_ino),
|
|
le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
|
|
ext4_ext_get_actual_len(ex), 0);
|
|
if (ret < 0)
|
|
break;
|
|
ret = JBD2_FC_REPLAY_CONTINUE;
|
|
fallthrough;
|
|
case EXT4_FC_TAG_DEL_RANGE:
|
|
case EXT4_FC_TAG_LINK:
|
|
case EXT4_FC_TAG_UNLINK:
|
|
case EXT4_FC_TAG_CREAT:
|
|
case EXT4_FC_TAG_INODE:
|
|
case EXT4_FC_TAG_PAD:
|
|
state->fc_cur_tag++;
|
|
state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
|
|
EXT4_FC_TAG_BASE_LEN + tl.fc_len);
|
|
break;
|
|
case EXT4_FC_TAG_TAIL:
|
|
state->fc_cur_tag++;
|
|
memcpy(&tail, val, sizeof(tail));
|
|
state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
|
|
EXT4_FC_TAG_BASE_LEN +
|
|
offsetof(struct ext4_fc_tail,
|
|
fc_crc));
|
|
if (le32_to_cpu(tail.fc_tid) == expected_tid &&
|
|
le32_to_cpu(tail.fc_crc) == state->fc_crc) {
|
|
state->fc_replay_num_tags = state->fc_cur_tag;
|
|
state->fc_regions_valid =
|
|
state->fc_regions_used;
|
|
} else {
|
|
ret = state->fc_replay_num_tags ?
|
|
JBD2_FC_REPLAY_STOP : -EFSBADCRC;
|
|
}
|
|
state->fc_crc = 0;
|
|
break;
|
|
case EXT4_FC_TAG_HEAD:
|
|
memcpy(&head, val, sizeof(head));
|
|
if (le32_to_cpu(head.fc_features) &
|
|
~EXT4_FC_SUPPORTED_FEATURES) {
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
if (le32_to_cpu(head.fc_tid) != expected_tid) {
|
|
ret = JBD2_FC_REPLAY_STOP;
|
|
break;
|
|
}
|
|
state->fc_cur_tag++;
|
|
state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
|
|
EXT4_FC_TAG_BASE_LEN + tl.fc_len);
|
|
break;
|
|
default:
|
|
ret = state->fc_replay_num_tags ?
|
|
JBD2_FC_REPLAY_STOP : -ECANCELED;
|
|
}
|
|
if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
|
|
break;
|
|
}
|
|
|
|
out_err:
|
|
trace_ext4_fc_replay_scan(sb, ret, off);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Main recovery path entry point.
|
|
* The meaning of return codes is similar as above.
|
|
*/
|
|
static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
|
|
enum passtype pass, int off, tid_t expected_tid)
|
|
{
|
|
struct super_block *sb = journal->j_private;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_fc_tl_mem tl;
|
|
__u8 *start, *end, *cur, *val;
|
|
int ret = JBD2_FC_REPLAY_CONTINUE;
|
|
struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
|
|
struct ext4_fc_tail tail;
|
|
|
|
if (pass == PASS_SCAN) {
|
|
state->fc_current_pass = PASS_SCAN;
|
|
return ext4_fc_replay_scan(journal, bh, off, expected_tid);
|
|
}
|
|
|
|
if (state->fc_current_pass != pass) {
|
|
state->fc_current_pass = pass;
|
|
sbi->s_mount_state |= EXT4_FC_REPLAY;
|
|
}
|
|
if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
|
|
ext4_debug("Replay stops\n");
|
|
ext4_fc_set_bitmaps_and_counters(sb);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_EXT4_DEBUG
|
|
if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
|
|
pr_warn("Dropping fc block %d because max_replay set\n", off);
|
|
return JBD2_FC_REPLAY_STOP;
|
|
}
|
|
#endif
|
|
|
|
start = (u8 *)bh->b_data;
|
|
end = start + journal->j_blocksize;
|
|
|
|
for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
|
|
cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
|
|
ext4_fc_get_tl(&tl, cur);
|
|
val = cur + EXT4_FC_TAG_BASE_LEN;
|
|
|
|
if (state->fc_replay_num_tags == 0) {
|
|
ret = JBD2_FC_REPLAY_STOP;
|
|
ext4_fc_set_bitmaps_and_counters(sb);
|
|
break;
|
|
}
|
|
|
|
ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
|
|
state->fc_replay_num_tags--;
|
|
switch (tl.fc_tag) {
|
|
case EXT4_FC_TAG_LINK:
|
|
ret = ext4_fc_replay_link(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_UNLINK:
|
|
ret = ext4_fc_replay_unlink(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_ADD_RANGE:
|
|
ret = ext4_fc_replay_add_range(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_CREAT:
|
|
ret = ext4_fc_replay_create(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_DEL_RANGE:
|
|
ret = ext4_fc_replay_del_range(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_INODE:
|
|
ret = ext4_fc_replay_inode(sb, &tl, val);
|
|
break;
|
|
case EXT4_FC_TAG_PAD:
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
|
|
tl.fc_len, 0);
|
|
break;
|
|
case EXT4_FC_TAG_TAIL:
|
|
trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
|
|
0, tl.fc_len, 0);
|
|
memcpy(&tail, val, sizeof(tail));
|
|
WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
|
|
break;
|
|
case EXT4_FC_TAG_HEAD:
|
|
break;
|
|
default:
|
|
trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
|
|
ret = -ECANCELED;
|
|
break;
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
ret = JBD2_FC_REPLAY_CONTINUE;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ext4_fc_init(struct super_block *sb, journal_t *journal)
|
|
{
|
|
/*
|
|
* We set replay callback even if fast commit disabled because we may
|
|
* could still have fast commit blocks that need to be replayed even if
|
|
* fast commit has now been turned off.
|
|
*/
|
|
journal->j_fc_replay_callback = ext4_fc_replay;
|
|
if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
|
|
return;
|
|
journal->j_fc_cleanup_callback = ext4_fc_cleanup;
|
|
}
|
|
|
|
static const char * const fc_ineligible_reasons[] = {
|
|
[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
|
|
[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
|
|
[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
|
|
[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
|
|
[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
|
|
[EXT4_FC_REASON_RESIZE] = "Resize",
|
|
[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
|
|
[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
|
|
[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
|
|
[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
|
|
};
|
|
|
|
int ext4_fc_info_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
|
|
struct ext4_fc_stats *stats = &sbi->s_fc_stats;
|
|
int i;
|
|
|
|
if (v != SEQ_START_TOKEN)
|
|
return 0;
|
|
|
|
seq_printf(seq,
|
|
"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
|
|
stats->fc_num_commits, stats->fc_ineligible_commits,
|
|
stats->fc_numblks,
|
|
div_u64(stats->s_fc_avg_commit_time, 1000));
|
|
seq_puts(seq, "Ineligible reasons:\n");
|
|
for (i = 0; i < EXT4_FC_REASON_MAX; i++)
|
|
seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
|
|
stats->fc_ineligible_reason_count[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init ext4_fc_init_dentry_cache(void)
|
|
{
|
|
ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
|
|
if (ext4_fc_dentry_cachep == NULL)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ext4_fc_destroy_dentry_cache(void)
|
|
{
|
|
kmem_cache_destroy(ext4_fc_dentry_cachep);
|
|
}
|