linuxdebug/drivers/gpu/drm/sun4i/sun4i_frontend.c

734 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Free Electrons
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <drm/drm_device.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_plane.h>
#include "sun4i_drv.h"
#include "sun4i_frontend.h"
static const u32 sun4i_frontend_vert_coef[32] = {
0x00004000, 0x000140ff, 0x00033ffe, 0x00043ffd,
0x00063efc, 0xff083dfc, 0x000a3bfb, 0xff0d39fb,
0xff0f37fb, 0xff1136fa, 0xfe1433fb, 0xfe1631fb,
0xfd192ffb, 0xfd1c2cfb, 0xfd1f29fb, 0xfc2127fc,
0xfc2424fc, 0xfc2721fc, 0xfb291ffd, 0xfb2c1cfd,
0xfb2f19fd, 0xfb3116fe, 0xfb3314fe, 0xfa3611ff,
0xfb370fff, 0xfb390dff, 0xfb3b0a00, 0xfc3d08ff,
0xfc3e0600, 0xfd3f0400, 0xfe3f0300, 0xff400100,
};
static const u32 sun4i_frontend_horz_coef[64] = {
0x40000000, 0x00000000, 0x40fe0000, 0x0000ff03,
0x3ffd0000, 0x0000ff05, 0x3ffc0000, 0x0000ff06,
0x3efb0000, 0x0000ff08, 0x3dfb0000, 0x0000ff09,
0x3bfa0000, 0x0000fe0d, 0x39fa0000, 0x0000fe0f,
0x38fa0000, 0x0000fe10, 0x36fa0000, 0x0000fe12,
0x33fa0000, 0x0000fd16, 0x31fa0000, 0x0000fd18,
0x2ffa0000, 0x0000fd1a, 0x2cfa0000, 0x0000fc1e,
0x29fa0000, 0x0000fc21, 0x27fb0000, 0x0000fb23,
0x24fb0000, 0x0000fb26, 0x21fb0000, 0x0000fb29,
0x1ffc0000, 0x0000fa2b, 0x1cfc0000, 0x0000fa2e,
0x19fd0000, 0x0000fa30, 0x16fd0000, 0x0000fa33,
0x14fd0000, 0x0000fa35, 0x11fe0000, 0x0000fa37,
0x0ffe0000, 0x0000fa39, 0x0dfe0000, 0x0000fa3b,
0x0afe0000, 0x0000fa3e, 0x08ff0000, 0x0000fb3e,
0x06ff0000, 0x0000fb40, 0x05ff0000, 0x0000fc40,
0x03ff0000, 0x0000fd41, 0x01ff0000, 0x0000fe42,
};
/*
* These coefficients are taken from the A33 BSP from Allwinner.
*
* The first three values of each row are coded as 13-bit signed fixed-point
* numbers, with 10 bits for the fractional part. The fourth value is a
* constant coded as a 14-bit signed fixed-point number with 4 bits for the
* fractional part.
*
* The values in table order give the following colorspace translation:
* G = 1.164 * Y - 0.391 * U - 0.813 * V + 135
* R = 1.164 * Y + 1.596 * V - 222
* B = 1.164 * Y + 2.018 * U + 276
*
* This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255],
* following the BT601 spec.
*/
const u32 sunxi_bt601_yuv2rgb_coef[12] = {
0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877,
0x000004a7, 0x00000000, 0x00000662, 0x00003211,
0x000004a7, 0x00000812, 0x00000000, 0x00002eb1,
};
EXPORT_SYMBOL(sunxi_bt601_yuv2rgb_coef);
static void sun4i_frontend_scaler_init(struct sun4i_frontend *frontend)
{
int i;
if (frontend->data->has_coef_access_ctrl)
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL,
SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL);
for (i = 0; i < 32; i++) {
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF0_REG(i),
sun4i_frontend_horz_coef[2 * i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF0_REG(i),
sun4i_frontend_horz_coef[2 * i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF1_REG(i),
sun4i_frontend_horz_coef[2 * i + 1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF1_REG(i),
sun4i_frontend_horz_coef[2 * i + 1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTCOEF_REG(i),
sun4i_frontend_vert_coef[i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTCOEF_REG(i),
sun4i_frontend_vert_coef[i]);
}
if (frontend->data->has_coef_rdy)
regmap_write_bits(frontend->regs,
SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_COEF_RDY,
SUN4I_FRONTEND_FRM_CTRL_COEF_RDY);
}
int sun4i_frontend_init(struct sun4i_frontend *frontend)
{
return pm_runtime_get_sync(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_init);
void sun4i_frontend_exit(struct sun4i_frontend *frontend)
{
pm_runtime_put(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_exit);
static bool sun4i_frontend_format_chroma_requires_swap(uint32_t fmt)
{
switch (fmt) {
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YVU444:
return true;
default:
return false;
}
}
static bool sun4i_frontend_format_supports_tiling(uint32_t fmt)
{
switch (fmt) {
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV61:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YVU411:
return true;
default:
return false;
}
}
void sun4i_frontend_update_buffer(struct sun4i_frontend *frontend,
struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
unsigned int strides[3] = {};
dma_addr_t dma_addr;
bool swap;
if (fb->modifier == DRM_FORMAT_MOD_ALLWINNER_TILED) {
unsigned int width = state->src_w >> 16;
unsigned int offset;
strides[0] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[0]);
/*
* The X1 offset is the offset to the bottom-right point in the
* end tile, which is the final pixel (at offset width - 1)
* within the end tile (with a 32-byte mask).
*/
offset = (width - 1) & (32 - 1);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF0_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
if (fb->format->num_planes > 1) {
strides[1] =
SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF1_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
}
if (fb->format->num_planes > 2) {
strides[2] =
SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[2]);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF2_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
}
} else {
strides[0] = fb->pitches[0];
if (fb->format->num_planes > 1)
strides[1] = fb->pitches[1];
if (fb->format->num_planes > 2)
strides[2] = fb->pitches[2];
}
/* Set the line width */
DRM_DEBUG_DRIVER("Frontend stride: %d bytes\n", fb->pitches[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD0_REG,
strides[0]);
if (fb->format->num_planes > 1)
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD1_REG,
strides[1]);
if (fb->format->num_planes > 2)
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD2_REG,
strides[2]);
/* Some planar formats require chroma channel swapping by hand. */
swap = sun4i_frontend_format_chroma_requires_swap(fb->format->format);
/* Set the physical address of the buffer in memory */
dma_addr = drm_fb_dma_get_gem_addr(fb, state, 0);
DRM_DEBUG_DRIVER("Setting buffer #0 address to %pad\n", &dma_addr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR0_REG, dma_addr);
if (fb->format->num_planes > 1) {
dma_addr = drm_fb_dma_get_gem_addr(fb, state, swap ? 2 : 1);
DRM_DEBUG_DRIVER("Setting buffer #1 address to %pad\n",
&dma_addr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR1_REG,
dma_addr);
}
if (fb->format->num_planes > 2) {
dma_addr = drm_fb_dma_get_gem_addr(fb, state, swap ? 1 : 2);
DRM_DEBUG_DRIVER("Setting buffer #2 address to %pad\n",
&dma_addr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR2_REG,
dma_addr);
}
}
EXPORT_SYMBOL(sun4i_frontend_update_buffer);
static int
sun4i_frontend_drm_format_to_input_fmt(const struct drm_format_info *format,
u32 *val)
{
if (!format->is_yuv)
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_RGB;
else if (drm_format_info_is_yuv_sampling_411(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV411;
else if (drm_format_info_is_yuv_sampling_420(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV420;
else if (drm_format_info_is_yuv_sampling_422(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV422;
else if (drm_format_info_is_yuv_sampling_444(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV444;
else
return -EINVAL;
return 0;
}
static int
sun4i_frontend_drm_format_to_input_mode(const struct drm_format_info *format,
uint64_t modifier, u32 *val)
{
bool tiled = (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED);
switch (format->num_planes) {
case 1:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PACKED;
return 0;
case 2:
*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_SEMIPLANAR
: SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_SEMIPLANAR;
return 0;
case 3:
*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_PLANAR
: SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PLANAR;
return 0;
default:
return -EINVAL;
}
}
static int
sun4i_frontend_drm_format_to_input_sequence(const struct drm_format_info *format,
u32 *val)
{
/* Planar formats have an explicit input sequence. */
if (drm_format_info_is_yuv_planar(format)) {
*val = 0;
return 0;
}
switch (format->format) {
case DRM_FORMAT_BGRX8888:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_BGRX;
return 0;
case DRM_FORMAT_NV12:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
return 0;
case DRM_FORMAT_NV16:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
return 0;
case DRM_FORMAT_NV21:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
return 0;
case DRM_FORMAT_NV61:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
return 0;
case DRM_FORMAT_UYVY:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UYVY;
return 0;
case DRM_FORMAT_VYUY:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VYUY;
return 0;
case DRM_FORMAT_XRGB8888:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_XRGB;
return 0;
case DRM_FORMAT_YUYV:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YUYV;
return 0;
case DRM_FORMAT_YVYU:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YVYU;
return 0;
default:
return -EINVAL;
}
}
static int sun4i_frontend_drm_format_to_output_fmt(uint32_t fmt, u32 *val)
{
switch (fmt) {
case DRM_FORMAT_BGRX8888:
*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_BGRX8888;
return 0;
case DRM_FORMAT_XRGB8888:
*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_XRGB8888;
return 0;
default:
return -EINVAL;
}
}
static const uint32_t sun4i_frontend_formats[] = {
DRM_FORMAT_BGRX8888,
DRM_FORMAT_NV12,
DRM_FORMAT_NV16,
DRM_FORMAT_NV21,
DRM_FORMAT_NV61,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_YUV411,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
DRM_FORMAT_YUV444,
DRM_FORMAT_YUYV,
DRM_FORMAT_YVU411,
DRM_FORMAT_YVU420,
DRM_FORMAT_YVU422,
DRM_FORMAT_YVU444,
DRM_FORMAT_YVYU,
};
bool sun4i_frontend_format_is_supported(uint32_t fmt, uint64_t modifier)
{
unsigned int i;
if (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED)
return sun4i_frontend_format_supports_tiling(fmt);
else if (modifier != DRM_FORMAT_MOD_LINEAR)
return false;
for (i = 0; i < ARRAY_SIZE(sun4i_frontend_formats); i++)
if (sun4i_frontend_formats[i] == fmt)
return true;
return false;
}
EXPORT_SYMBOL(sun4i_frontend_format_is_supported);
int sun4i_frontend_update_formats(struct sun4i_frontend *frontend,
struct drm_plane *plane, uint32_t out_fmt)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
const struct drm_format_info *format = fb->format;
uint64_t modifier = fb->modifier;
unsigned int ch1_phase_idx;
u32 out_fmt_val;
u32 in_fmt_val, in_mod_val, in_ps_val;
unsigned int i;
u32 bypass;
int ret;
ret = sun4i_frontend_drm_format_to_input_fmt(format, &in_fmt_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid input format\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_input_mode(format, modifier,
&in_mod_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid input mode\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_input_sequence(format, &in_ps_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid pixel sequence\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_output_fmt(out_fmt, &out_fmt_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid output format\n");
return ret;
}
/*
* I have no idea what this does exactly, but it seems to be
* related to the scaler FIR filter phase parameters.
*/
ch1_phase_idx = (format->num_planes > 1) ? 1 : 0;
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZPHASE_REG,
frontend->data->ch_phase[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZPHASE_REG,
frontend->data->ch_phase[ch1_phase_idx]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE0_REG,
frontend->data->ch_phase[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE0_REG,
frontend->data->ch_phase[ch1_phase_idx]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE1_REG,
frontend->data->ch_phase[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE1_REG,
frontend->data->ch_phase[ch1_phase_idx]);
/*
* Checking the input format is sufficient since we currently only
* support RGB output formats to the backend. If YUV output formats
* ever get supported, an YUV input and output would require bypassing
* the CSC engine too.
*/
if (format->is_yuv) {
/* Setup the CSC engine for YUV to RGB conversion. */
bypass = 0;
for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++)
regmap_write(frontend->regs,
SUN4I_FRONTEND_CSC_COEF_REG(i),
sunxi_bt601_yuv2rgb_coef[i]);
} else {
bypass = SUN4I_FRONTEND_BYPASS_CSC_EN;
}
regmap_update_bits(frontend->regs, SUN4I_FRONTEND_BYPASS_REG,
SUN4I_FRONTEND_BYPASS_CSC_EN, bypass);
regmap_write(frontend->regs, SUN4I_FRONTEND_INPUT_FMT_REG,
in_mod_val | in_fmt_val | in_ps_val);
/*
* TODO: It look like the A31 and A80 at least will need the
* bit 7 (ALPHA_EN) enabled when using a format with alpha (so
* ARGB8888).
*/
regmap_write(frontend->regs, SUN4I_FRONTEND_OUTPUT_FMT_REG,
out_fmt_val);
return 0;
}
EXPORT_SYMBOL(sun4i_frontend_update_formats);
void sun4i_frontend_update_coord(struct sun4i_frontend *frontend,
struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
uint32_t luma_width, luma_height;
uint32_t chroma_width, chroma_height;
/* Set height and width */
DRM_DEBUG_DRIVER("Frontend size W: %u H: %u\n",
state->crtc_w, state->crtc_h);
luma_width = state->src_w >> 16;
luma_height = state->src_h >> 16;
chroma_width = DIV_ROUND_UP(luma_width, fb->format->hsub);
chroma_height = DIV_ROUND_UP(luma_height, fb->format->vsub);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_INSIZE_REG,
SUN4I_FRONTEND_INSIZE(luma_height, luma_width));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_INSIZE_REG,
SUN4I_FRONTEND_INSIZE(chroma_height, chroma_width));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_OUTSIZE_REG,
SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_OUTSIZE_REG,
SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZFACT_REG,
(luma_width << 16) / state->crtc_w);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZFACT_REG,
(chroma_width << 16) / state->crtc_w);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTFACT_REG,
(luma_height << 16) / state->crtc_h);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTFACT_REG,
(chroma_height << 16) / state->crtc_h);
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_REG_RDY,
SUN4I_FRONTEND_FRM_CTRL_REG_RDY);
}
EXPORT_SYMBOL(sun4i_frontend_update_coord);
int sun4i_frontend_enable(struct sun4i_frontend *frontend)
{
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_FRM_START,
SUN4I_FRONTEND_FRM_CTRL_FRM_START);
return 0;
}
EXPORT_SYMBOL(sun4i_frontend_enable);
static const struct regmap_config sun4i_frontend_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x0a14,
};
static int sun4i_frontend_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct sun4i_frontend *frontend;
struct drm_device *drm = data;
struct sun4i_drv *drv = drm->dev_private;
void __iomem *regs;
frontend = devm_kzalloc(dev, sizeof(*frontend), GFP_KERNEL);
if (!frontend)
return -ENOMEM;
dev_set_drvdata(dev, frontend);
frontend->dev = dev;
frontend->node = dev->of_node;
frontend->data = of_device_get_match_data(dev);
if (!frontend->data)
return -ENODEV;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
frontend->regs = devm_regmap_init_mmio(dev, regs,
&sun4i_frontend_regmap_config);
if (IS_ERR(frontend->regs)) {
dev_err(dev, "Couldn't create the frontend regmap\n");
return PTR_ERR(frontend->regs);
}
frontend->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(frontend->reset)) {
dev_err(dev, "Couldn't get our reset line\n");
return PTR_ERR(frontend->reset);
}
frontend->bus_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(frontend->bus_clk)) {
dev_err(dev, "Couldn't get our bus clock\n");
return PTR_ERR(frontend->bus_clk);
}
frontend->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(frontend->mod_clk)) {
dev_err(dev, "Couldn't get our mod clock\n");
return PTR_ERR(frontend->mod_clk);
}
frontend->ram_clk = devm_clk_get(dev, "ram");
if (IS_ERR(frontend->ram_clk)) {
dev_err(dev, "Couldn't get our ram clock\n");
return PTR_ERR(frontend->ram_clk);
}
list_add_tail(&frontend->list, &drv->frontend_list);
pm_runtime_enable(dev);
return 0;
}
static void sun4i_frontend_unbind(struct device *dev, struct device *master,
void *data)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
list_del(&frontend->list);
pm_runtime_force_suspend(dev);
}
static const struct component_ops sun4i_frontend_ops = {
.bind = sun4i_frontend_bind,
.unbind = sun4i_frontend_unbind,
};
static int sun4i_frontend_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &sun4i_frontend_ops);
}
static int sun4i_frontend_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &sun4i_frontend_ops);
return 0;
}
static int sun4i_frontend_runtime_resume(struct device *dev)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
int ret;
clk_set_rate(frontend->mod_clk, 300000000);
clk_prepare_enable(frontend->bus_clk);
clk_prepare_enable(frontend->mod_clk);
clk_prepare_enable(frontend->ram_clk);
ret = reset_control_reset(frontend->reset);
if (ret) {
dev_err(dev, "Couldn't reset our device\n");
return ret;
}
regmap_update_bits(frontend->regs, SUN4I_FRONTEND_EN_REG,
SUN4I_FRONTEND_EN_EN,
SUN4I_FRONTEND_EN_EN);
sun4i_frontend_scaler_init(frontend);
return 0;
}
static int sun4i_frontend_runtime_suspend(struct device *dev)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
clk_disable_unprepare(frontend->ram_clk);
clk_disable_unprepare(frontend->mod_clk);
clk_disable_unprepare(frontend->bus_clk);
reset_control_assert(frontend->reset);
return 0;
}
static const struct dev_pm_ops sun4i_frontend_pm_ops = {
.runtime_resume = sun4i_frontend_runtime_resume,
.runtime_suspend = sun4i_frontend_runtime_suspend,
};
static const struct sun4i_frontend_data sun4i_a10_frontend = {
.ch_phase = { 0x000, 0xfc000 },
.has_coef_rdy = true,
};
static const struct sun4i_frontend_data sun8i_a33_frontend = {
.ch_phase = { 0x400, 0xfc400 },
.has_coef_access_ctrl = true,
};
const struct of_device_id sun4i_frontend_of_table[] = {
{
.compatible = "allwinner,sun4i-a10-display-frontend",
.data = &sun4i_a10_frontend
},
{
.compatible = "allwinner,sun7i-a20-display-frontend",
.data = &sun4i_a10_frontend
},
{
.compatible = "allwinner,sun8i-a23-display-frontend",
.data = &sun8i_a33_frontend
},
{
.compatible = "allwinner,sun8i-a33-display-frontend",
.data = &sun8i_a33_frontend
},
{ }
};
EXPORT_SYMBOL(sun4i_frontend_of_table);
MODULE_DEVICE_TABLE(of, sun4i_frontend_of_table);
static struct platform_driver sun4i_frontend_driver = {
.probe = sun4i_frontend_probe,
.remove = sun4i_frontend_remove,
.driver = {
.name = "sun4i-frontend",
.of_match_table = sun4i_frontend_of_table,
.pm = &sun4i_frontend_pm_ops,
},
};
module_platform_driver(sun4i_frontend_driver);
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 Display Engine Frontend Driver");
MODULE_LICENSE("GPL");