linuxdebug/drivers/crypto/allwinner/sun8i-ss/sun8i-ss-core.c

910 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ss-core.c - hardware cryptographic offloader for
* Allwinner A80/A83T SoC
*
* Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
*
* Core file which registers crypto algorithms supported by the SecuritySystem
*
* You could find a link for the datasheet in Documentation/arm/sunxi.rst
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/internal/rng.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ss.h"
static const struct ss_variant ss_a80_variant = {
.alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES,
},
.alg_hash = { SS_ID_NOTSUPP, SS_ID_NOTSUPP, SS_ID_NOTSUPP, SS_ID_NOTSUPP,
},
.op_mode = { SS_OP_ECB, SS_OP_CBC,
},
.ss_clks = {
{ "bus", 0, 300 * 1000 * 1000 },
{ "mod", 0, 300 * 1000 * 1000 },
}
};
static const struct ss_variant ss_a83t_variant = {
.alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES,
},
.alg_hash = { SS_ALG_MD5, SS_ALG_SHA1, SS_ALG_SHA224, SS_ALG_SHA256,
},
.op_mode = { SS_OP_ECB, SS_OP_CBC,
},
.ss_clks = {
{ "bus", 0, 300 * 1000 * 1000 },
{ "mod", 0, 300 * 1000 * 1000 },
}
};
/*
* sun8i_ss_get_engine_number() get the next channel slot
* This is a simple round-robin way of getting the next channel
*/
int sun8i_ss_get_engine_number(struct sun8i_ss_dev *ss)
{
return atomic_inc_return(&ss->flow) % MAXFLOW;
}
int sun8i_ss_run_task(struct sun8i_ss_dev *ss, struct sun8i_cipher_req_ctx *rctx,
const char *name)
{
int flow = rctx->flow;
unsigned int ivlen = rctx->ivlen;
u32 v = SS_START;
int i;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
ss->flows[flow].stat_req++;
#endif
/* choose between stream0/stream1 */
if (flow)
v |= SS_FLOW1;
else
v |= SS_FLOW0;
v |= rctx->op_mode;
v |= rctx->method;
if (rctx->op_dir)
v |= SS_DECRYPTION;
switch (rctx->keylen) {
case 128 / 8:
v |= SS_AES_128BITS << 7;
break;
case 192 / 8:
v |= SS_AES_192BITS << 7;
break;
case 256 / 8:
v |= SS_AES_256BITS << 7;
break;
}
for (i = 0; i < MAX_SG; i++) {
if (!rctx->t_dst[i].addr)
break;
mutex_lock(&ss->mlock);
writel(rctx->p_key, ss->base + SS_KEY_ADR_REG);
if (ivlen) {
if (rctx->op_dir == SS_ENCRYPTION) {
if (i == 0)
writel(rctx->p_iv[0], ss->base + SS_IV_ADR_REG);
else
writel(rctx->t_dst[i - 1].addr + rctx->t_dst[i - 1].len * 4 - ivlen, ss->base + SS_IV_ADR_REG);
} else {
writel(rctx->p_iv[i], ss->base + SS_IV_ADR_REG);
}
}
dev_dbg(ss->dev,
"Processing SG %d on flow %d %s ctl=%x %d to %d method=%x opmode=%x opdir=%x srclen=%d\n",
i, flow, name, v,
rctx->t_src[i].len, rctx->t_dst[i].len,
rctx->method, rctx->op_mode,
rctx->op_dir, rctx->t_src[i].len);
writel(rctx->t_src[i].addr, ss->base + SS_SRC_ADR_REG);
writel(rctx->t_dst[i].addr, ss->base + SS_DST_ADR_REG);
writel(rctx->t_src[i].len, ss->base + SS_LEN_ADR_REG);
reinit_completion(&ss->flows[flow].complete);
ss->flows[flow].status = 0;
wmb();
writel(v, ss->base + SS_CTL_REG);
mutex_unlock(&ss->mlock);
wait_for_completion_interruptible_timeout(&ss->flows[flow].complete,
msecs_to_jiffies(2000));
if (ss->flows[flow].status == 0) {
dev_err(ss->dev, "DMA timeout for %s\n", name);
return -EFAULT;
}
}
return 0;
}
static irqreturn_t ss_irq_handler(int irq, void *data)
{
struct sun8i_ss_dev *ss = (struct sun8i_ss_dev *)data;
int flow = 0;
u32 p;
p = readl(ss->base + SS_INT_STA_REG);
for (flow = 0; flow < MAXFLOW; flow++) {
if (p & (BIT(flow))) {
writel(BIT(flow), ss->base + SS_INT_STA_REG);
ss->flows[flow].status = 1;
complete(&ss->flows[flow].complete);
}
}
return IRQ_HANDLED;
}
static struct sun8i_ss_alg_template ss_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_AES,
.ss_blockmode = SS_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun8i_ss_aes_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_AES,
.ss_blockmode = SS_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sun8i_ss_aes_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_DES3,
.ss_blockmode = SS_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun8i_ss_des3_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_DES3,
.ss_blockmode = SS_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = sun8i_ss_des3_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_PRNG
{
.type = CRYPTO_ALG_TYPE_RNG,
.alg.rng = {
.base = {
.cra_name = "stdrng",
.cra_driver_name = "sun8i-ss-prng",
.cra_priority = 300,
.cra_ctxsize = sizeof(struct sun8i_ss_rng_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_prng_init,
.cra_exit = sun8i_ss_prng_exit,
},
.generate = sun8i_ss_prng_generate,
.seed = sun8i_ss_prng_seed,
.seedsize = PRNG_SEED_SIZE,
}
},
#endif
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_HASH
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ss_algo_id = SS_ID_HASH_MD5,
.alg.hash = {
.init = sun8i_ss_hash_init,
.update = sun8i_ss_hash_update,
.final = sun8i_ss_hash_final,
.finup = sun8i_ss_hash_finup,
.digest = sun8i_ss_hash_digest,
.export = sun8i_ss_hash_export,
.import = sun8i_ss_hash_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "md5-sun8i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_hash_crainit,
.cra_exit = sun8i_ss_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ss_algo_id = SS_ID_HASH_SHA1,
.alg.hash = {
.init = sun8i_ss_hash_init,
.update = sun8i_ss_hash_update,
.final = sun8i_ss_hash_final,
.finup = sun8i_ss_hash_finup,
.digest = sun8i_ss_hash_digest,
.export = sun8i_ss_hash_export,
.import = sun8i_ss_hash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-sun8i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_hash_crainit,
.cra_exit = sun8i_ss_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ss_algo_id = SS_ID_HASH_SHA224,
.alg.hash = {
.init = sun8i_ss_hash_init,
.update = sun8i_ss_hash_update,
.final = sun8i_ss_hash_final,
.finup = sun8i_ss_hash_finup,
.digest = sun8i_ss_hash_digest,
.export = sun8i_ss_hash_export,
.import = sun8i_ss_hash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-sun8i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_hash_crainit,
.cra_exit = sun8i_ss_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ss_algo_id = SS_ID_HASH_SHA256,
.alg.hash = {
.init = sun8i_ss_hash_init,
.update = sun8i_ss_hash_update,
.final = sun8i_ss_hash_final,
.finup = sun8i_ss_hash_finup,
.digest = sun8i_ss_hash_digest,
.export = sun8i_ss_hash_export,
.import = sun8i_ss_hash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-sun8i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_hash_crainit,
.cra_exit = sun8i_ss_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ss_algo_id = SS_ID_HASH_SHA1,
.alg.hash = {
.init = sun8i_ss_hash_init,
.update = sun8i_ss_hash_update,
.final = sun8i_ss_hash_final,
.finup = sun8i_ss_hash_finup,
.digest = sun8i_ss_hash_digest,
.export = sun8i_ss_hash_export,
.import = sun8i_ss_hash_import,
.setkey = sun8i_ss_hmac_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-sun8i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ss_hash_crainit,
.cra_exit = sun8i_ss_hash_craexit,
}
}
}
},
#endif
};
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
static int sun8i_ss_debugfs_show(struct seq_file *seq, void *v)
{
struct sun8i_ss_dev *ss = seq->private;
unsigned int i;
for (i = 0; i < MAXFLOW; i++)
seq_printf(seq, "Channel %d: nreq %lu\n", i, ss->flows[i].stat_req);
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
if (!ss_algs[i].ss)
continue;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
ss_algs[i].alg.skcipher.base.cra_driver_name,
ss_algs[i].alg.skcipher.base.cra_name,
ss_algs[i].stat_req, ss_algs[i].stat_fb);
seq_printf(seq, "\tLast fallback is: %s\n",
ss_algs[i].fbname);
seq_printf(seq, "\tFallback due to length: %lu\n",
ss_algs[i].stat_fb_len);
seq_printf(seq, "\tFallback due to SG length: %lu\n",
ss_algs[i].stat_fb_sglen);
seq_printf(seq, "\tFallback due to alignment: %lu\n",
ss_algs[i].stat_fb_align);
seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
ss_algs[i].stat_fb_sgnum);
break;
case CRYPTO_ALG_TYPE_RNG:
seq_printf(seq, "%s %s reqs=%lu tsize=%lu\n",
ss_algs[i].alg.rng.base.cra_driver_name,
ss_algs[i].alg.rng.base.cra_name,
ss_algs[i].stat_req, ss_algs[i].stat_bytes);
break;
case CRYPTO_ALG_TYPE_AHASH:
seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
ss_algs[i].alg.hash.halg.base.cra_driver_name,
ss_algs[i].alg.hash.halg.base.cra_name,
ss_algs[i].stat_req, ss_algs[i].stat_fb);
seq_printf(seq, "\tLast fallback is: %s\n",
ss_algs[i].fbname);
seq_printf(seq, "\tFallback due to length: %lu\n",
ss_algs[i].stat_fb_len);
seq_printf(seq, "\tFallback due to SG length: %lu\n",
ss_algs[i].stat_fb_sglen);
seq_printf(seq, "\tFallback due to alignment: %lu\n",
ss_algs[i].stat_fb_align);
seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
ss_algs[i].stat_fb_sgnum);
break;
}
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sun8i_ss_debugfs);
#endif
static void sun8i_ss_free_flows(struct sun8i_ss_dev *ss, int i)
{
while (i >= 0) {
crypto_engine_exit(ss->flows[i].engine);
i--;
}
}
/*
* Allocate the flow list structure
*/
static int allocate_flows(struct sun8i_ss_dev *ss)
{
int i, j, err;
ss->flows = devm_kcalloc(ss->dev, MAXFLOW, sizeof(struct sun8i_ss_flow),
GFP_KERNEL);
if (!ss->flows)
return -ENOMEM;
for (i = 0; i < MAXFLOW; i++) {
init_completion(&ss->flows[i].complete);
ss->flows[i].biv = devm_kmalloc(ss->dev, AES_BLOCK_SIZE,
GFP_KERNEL | GFP_DMA);
if (!ss->flows[i].biv) {
err = -ENOMEM;
goto error_engine;
}
for (j = 0; j < MAX_SG; j++) {
ss->flows[i].iv[j] = devm_kmalloc(ss->dev, AES_BLOCK_SIZE,
GFP_KERNEL | GFP_DMA);
if (!ss->flows[i].iv[j]) {
err = -ENOMEM;
goto error_engine;
}
}
/* the padding could be up to two block. */
ss->flows[i].pad = devm_kmalloc(ss->dev, MAX_PAD_SIZE,
GFP_KERNEL | GFP_DMA);
if (!ss->flows[i].pad) {
err = -ENOMEM;
goto error_engine;
}
ss->flows[i].result = devm_kmalloc(ss->dev, SHA256_DIGEST_SIZE,
GFP_KERNEL | GFP_DMA);
if (!ss->flows[i].result) {
err = -ENOMEM;
goto error_engine;
}
ss->flows[i].engine = crypto_engine_alloc_init(ss->dev, true);
if (!ss->flows[i].engine) {
dev_err(ss->dev, "Cannot allocate engine\n");
i--;
err = -ENOMEM;
goto error_engine;
}
err = crypto_engine_start(ss->flows[i].engine);
if (err) {
dev_err(ss->dev, "Cannot start engine\n");
goto error_engine;
}
}
return 0;
error_engine:
sun8i_ss_free_flows(ss, i);
return err;
}
/*
* Power management strategy: The device is suspended unless a TFM exists for
* one of the algorithms proposed by this driver.
*/
static int sun8i_ss_pm_suspend(struct device *dev)
{
struct sun8i_ss_dev *ss = dev_get_drvdata(dev);
int i;
reset_control_assert(ss->reset);
for (i = 0; i < SS_MAX_CLOCKS; i++)
clk_disable_unprepare(ss->ssclks[i]);
return 0;
}
static int sun8i_ss_pm_resume(struct device *dev)
{
struct sun8i_ss_dev *ss = dev_get_drvdata(dev);
int err, i;
for (i = 0; i < SS_MAX_CLOCKS; i++) {
if (!ss->variant->ss_clks[i].name)
continue;
err = clk_prepare_enable(ss->ssclks[i]);
if (err) {
dev_err(ss->dev, "Cannot prepare_enable %s\n",
ss->variant->ss_clks[i].name);
goto error;
}
}
err = reset_control_deassert(ss->reset);
if (err) {
dev_err(ss->dev, "Cannot deassert reset control\n");
goto error;
}
/* enable interrupts for all flows */
writel(BIT(0) | BIT(1), ss->base + SS_INT_CTL_REG);
return 0;
error:
sun8i_ss_pm_suspend(dev);
return err;
}
static const struct dev_pm_ops sun8i_ss_pm_ops = {
SET_RUNTIME_PM_OPS(sun8i_ss_pm_suspend, sun8i_ss_pm_resume, NULL)
};
static int sun8i_ss_pm_init(struct sun8i_ss_dev *ss)
{
int err;
pm_runtime_use_autosuspend(ss->dev);
pm_runtime_set_autosuspend_delay(ss->dev, 2000);
err = pm_runtime_set_suspended(ss->dev);
if (err)
return err;
pm_runtime_enable(ss->dev);
return err;
}
static void sun8i_ss_pm_exit(struct sun8i_ss_dev *ss)
{
pm_runtime_disable(ss->dev);
}
static int sun8i_ss_register_algs(struct sun8i_ss_dev *ss)
{
int ss_method, err, id;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
ss_algs[i].ss = ss;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
id = ss_algs[i].ss_algo_id;
ss_method = ss->variant->alg_cipher[id];
if (ss_method == SS_ID_NOTSUPP) {
dev_info(ss->dev,
"DEBUG: Algo of %s not supported\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
break;
}
id = ss_algs[i].ss_blockmode;
ss_method = ss->variant->op_mode[id];
if (ss_method == SS_ID_NOTSUPP) {
dev_info(ss->dev, "DEBUG: Blockmode of %s not supported\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
break;
}
dev_info(ss->dev, "DEBUG: Register %s\n",
ss_algs[i].alg.skcipher.base.cra_name);
err = crypto_register_skcipher(&ss_algs[i].alg.skcipher);
if (err) {
dev_err(ss->dev, "Fail to register %s\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
return err;
}
break;
case CRYPTO_ALG_TYPE_RNG:
err = crypto_register_rng(&ss_algs[i].alg.rng);
if (err) {
dev_err(ss->dev, "Fail to register %s\n",
ss_algs[i].alg.rng.base.cra_name);
ss_algs[i].ss = NULL;
}
break;
case CRYPTO_ALG_TYPE_AHASH:
id = ss_algs[i].ss_algo_id;
ss_method = ss->variant->alg_hash[id];
if (ss_method == SS_ID_NOTSUPP) {
dev_info(ss->dev,
"DEBUG: Algo of %s not supported\n",
ss_algs[i].alg.hash.halg.base.cra_name);
ss_algs[i].ss = NULL;
break;
}
dev_info(ss->dev, "Register %s\n",
ss_algs[i].alg.hash.halg.base.cra_name);
err = crypto_register_ahash(&ss_algs[i].alg.hash);
if (err) {
dev_err(ss->dev, "ERROR: Fail to register %s\n",
ss_algs[i].alg.hash.halg.base.cra_name);
ss_algs[i].ss = NULL;
return err;
}
break;
default:
ss_algs[i].ss = NULL;
dev_err(ss->dev, "ERROR: tried to register an unknown algo\n");
}
}
return 0;
}
static void sun8i_ss_unregister_algs(struct sun8i_ss_dev *ss)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
if (!ss_algs[i].ss)
continue;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
dev_info(ss->dev, "Unregister %d %s\n", i,
ss_algs[i].alg.skcipher.base.cra_name);
crypto_unregister_skcipher(&ss_algs[i].alg.skcipher);
break;
case CRYPTO_ALG_TYPE_RNG:
dev_info(ss->dev, "Unregister %d %s\n", i,
ss_algs[i].alg.rng.base.cra_name);
crypto_unregister_rng(&ss_algs[i].alg.rng);
break;
case CRYPTO_ALG_TYPE_AHASH:
dev_info(ss->dev, "Unregister %d %s\n", i,
ss_algs[i].alg.hash.halg.base.cra_name);
crypto_unregister_ahash(&ss_algs[i].alg.hash);
break;
}
}
}
static int sun8i_ss_get_clks(struct sun8i_ss_dev *ss)
{
unsigned long cr;
int err, i;
for (i = 0; i < SS_MAX_CLOCKS; i++) {
if (!ss->variant->ss_clks[i].name)
continue;
ss->ssclks[i] = devm_clk_get(ss->dev, ss->variant->ss_clks[i].name);
if (IS_ERR(ss->ssclks[i])) {
err = PTR_ERR(ss->ssclks[i]);
dev_err(ss->dev, "Cannot get %s SS clock err=%d\n",
ss->variant->ss_clks[i].name, err);
return err;
}
cr = clk_get_rate(ss->ssclks[i]);
if (!cr)
return -EINVAL;
if (ss->variant->ss_clks[i].freq > 0 &&
cr != ss->variant->ss_clks[i].freq) {
dev_info(ss->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
ss->variant->ss_clks[i].name,
ss->variant->ss_clks[i].freq,
ss->variant->ss_clks[i].freq / 1000000,
cr, cr / 1000000);
err = clk_set_rate(ss->ssclks[i], ss->variant->ss_clks[i].freq);
if (err)
dev_err(ss->dev, "Fail to set %s clk speed to %lu hz\n",
ss->variant->ss_clks[i].name,
ss->variant->ss_clks[i].freq);
}
if (ss->variant->ss_clks[i].max_freq > 0 &&
cr > ss->variant->ss_clks[i].max_freq)
dev_warn(ss->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommendation (%lu hz)",
ss->variant->ss_clks[i].name, cr,
ss->variant->ss_clks[i].max_freq);
}
return 0;
}
static int sun8i_ss_probe(struct platform_device *pdev)
{
struct sun8i_ss_dev *ss;
int err, irq;
u32 v;
ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL);
if (!ss)
return -ENOMEM;
ss->dev = &pdev->dev;
platform_set_drvdata(pdev, ss);
ss->variant = of_device_get_match_data(&pdev->dev);
if (!ss->variant) {
dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
return -EINVAL;
}
ss->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ss->base))
return PTR_ERR(ss->base);
err = sun8i_ss_get_clks(ss);
if (err)
return err;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ss->reset = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(ss->reset))
return dev_err_probe(&pdev->dev, PTR_ERR(ss->reset),
"No reset control found\n");
mutex_init(&ss->mlock);
err = allocate_flows(ss);
if (err)
return err;
err = sun8i_ss_pm_init(ss);
if (err)
goto error_pm;
err = devm_request_irq(&pdev->dev, irq, ss_irq_handler, 0, "sun8i-ss", ss);
if (err) {
dev_err(ss->dev, "Cannot request SecuritySystem IRQ (err=%d)\n", err);
goto error_irq;
}
err = sun8i_ss_register_algs(ss);
if (err)
goto error_alg;
err = pm_runtime_resume_and_get(ss->dev);
if (err < 0)
goto error_alg;
v = readl(ss->base + SS_CTL_REG);
v >>= SS_DIE_ID_SHIFT;
v &= SS_DIE_ID_MASK;
dev_info(&pdev->dev, "Security System Die ID %x\n", v);
pm_runtime_put_sync(ss->dev);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
/* Ignore error of debugfs */
ss->dbgfs_dir = debugfs_create_dir("sun8i-ss", NULL);
ss->dbgfs_stats = debugfs_create_file("stats", 0444,
ss->dbgfs_dir, ss,
&sun8i_ss_debugfs_fops);
#endif
return 0;
error_alg:
sun8i_ss_unregister_algs(ss);
error_irq:
sun8i_ss_pm_exit(ss);
error_pm:
sun8i_ss_free_flows(ss, MAXFLOW - 1);
return err;
}
static int sun8i_ss_remove(struct platform_device *pdev)
{
struct sun8i_ss_dev *ss = platform_get_drvdata(pdev);
sun8i_ss_unregister_algs(ss);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
debugfs_remove_recursive(ss->dbgfs_dir);
#endif
sun8i_ss_free_flows(ss, MAXFLOW - 1);
sun8i_ss_pm_exit(ss);
return 0;
}
static const struct of_device_id sun8i_ss_crypto_of_match_table[] = {
{ .compatible = "allwinner,sun8i-a83t-crypto",
.data = &ss_a83t_variant },
{ .compatible = "allwinner,sun9i-a80-crypto",
.data = &ss_a80_variant },
{}
};
MODULE_DEVICE_TABLE(of, sun8i_ss_crypto_of_match_table);
static struct platform_driver sun8i_ss_driver = {
.probe = sun8i_ss_probe,
.remove = sun8i_ss_remove,
.driver = {
.name = "sun8i-ss",
.pm = &sun8i_ss_pm_ops,
.of_match_table = sun8i_ss_crypto_of_match_table,
},
};
module_platform_driver(sun8i_ss_driver);
MODULE_DESCRIPTION("Allwinner SecuritySystem cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");