1060 lines
29 KiB
C
1060 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
|
|
*
|
|
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/simd.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/ctr.h>
|
|
#include <crypto/sha2.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <crypto/xts.h>
|
|
|
|
#include "aes-ce-setkey.h"
|
|
|
|
#ifdef USE_V8_CRYPTO_EXTENSIONS
|
|
#define MODE "ce"
|
|
#define PRIO 300
|
|
#define aes_expandkey ce_aes_expandkey
|
|
#define aes_ecb_encrypt ce_aes_ecb_encrypt
|
|
#define aes_ecb_decrypt ce_aes_ecb_decrypt
|
|
#define aes_cbc_encrypt ce_aes_cbc_encrypt
|
|
#define aes_cbc_decrypt ce_aes_cbc_decrypt
|
|
#define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
|
|
#define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
|
|
#define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
|
|
#define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
|
|
#define aes_ctr_encrypt ce_aes_ctr_encrypt
|
|
#define aes_xctr_encrypt ce_aes_xctr_encrypt
|
|
#define aes_xts_encrypt ce_aes_xts_encrypt
|
|
#define aes_xts_decrypt ce_aes_xts_decrypt
|
|
#define aes_mac_update ce_aes_mac_update
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 Crypto Extensions");
|
|
#else
|
|
#define MODE "neon"
|
|
#define PRIO 200
|
|
#define aes_ecb_encrypt neon_aes_ecb_encrypt
|
|
#define aes_ecb_decrypt neon_aes_ecb_decrypt
|
|
#define aes_cbc_encrypt neon_aes_cbc_encrypt
|
|
#define aes_cbc_decrypt neon_aes_cbc_decrypt
|
|
#define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
|
|
#define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
|
|
#define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
|
|
#define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
|
|
#define aes_ctr_encrypt neon_aes_ctr_encrypt
|
|
#define aes_xctr_encrypt neon_aes_xctr_encrypt
|
|
#define aes_xts_encrypt neon_aes_xts_encrypt
|
|
#define aes_xts_decrypt neon_aes_xts_decrypt
|
|
#define aes_mac_update neon_aes_mac_update
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 NEON");
|
|
#endif
|
|
#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
|
|
MODULE_ALIAS_CRYPTO("ecb(aes)");
|
|
MODULE_ALIAS_CRYPTO("cbc(aes)");
|
|
MODULE_ALIAS_CRYPTO("ctr(aes)");
|
|
MODULE_ALIAS_CRYPTO("xts(aes)");
|
|
MODULE_ALIAS_CRYPTO("xctr(aes)");
|
|
#endif
|
|
MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
|
|
MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
|
|
MODULE_ALIAS_CRYPTO("cmac(aes)");
|
|
MODULE_ALIAS_CRYPTO("xcbc(aes)");
|
|
MODULE_ALIAS_CRYPTO("cbcmac(aes)");
|
|
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
/* defined in aes-modes.S */
|
|
asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
|
|
asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
|
|
asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
|
|
asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 ctr[]);
|
|
|
|
asmlinkage void aes_xctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 ctr[], int byte_ctr);
|
|
|
|
asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u32 const rk2[], u8 iv[],
|
|
int first);
|
|
asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u32 const rk2[], u8 iv[],
|
|
int first);
|
|
|
|
asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int blocks, u8 iv[],
|
|
u32 const rk2[]);
|
|
asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int blocks, u8 iv[],
|
|
u32 const rk2[]);
|
|
|
|
asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
|
|
int blocks, u8 dg[], int enc_before,
|
|
int enc_after);
|
|
|
|
struct crypto_aes_xts_ctx {
|
|
struct crypto_aes_ctx key1;
|
|
struct crypto_aes_ctx __aligned(8) key2;
|
|
};
|
|
|
|
struct crypto_aes_essiv_cbc_ctx {
|
|
struct crypto_aes_ctx key1;
|
|
struct crypto_aes_ctx __aligned(8) key2;
|
|
struct crypto_shash *hash;
|
|
};
|
|
|
|
struct mac_tfm_ctx {
|
|
struct crypto_aes_ctx key;
|
|
u8 __aligned(8) consts[];
|
|
};
|
|
|
|
struct mac_desc_ctx {
|
|
unsigned int len;
|
|
u8 dg[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
return aes_expandkey(ctx, in_key, key_len);
|
|
}
|
|
|
|
static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
|
|
const u8 *in_key, unsigned int key_len)
|
|
{
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, in_key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
|
|
if (!ret)
|
|
ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
|
|
key_len / 2);
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
|
|
const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
u8 digest[SHA256_DIGEST_SIZE];
|
|
int ret;
|
|
|
|
ret = aes_expandkey(&ctx->key1, in_key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
|
|
|
|
return aes_expandkey(&ctx->key2, digest, sizeof(digest));
|
|
}
|
|
|
|
static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, rounds, blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, rounds, blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int cbc_encrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err = 0, rounds = 6 + ctx->key_length / 4;
|
|
unsigned int blocks;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_enc, rounds, blocks, walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_encrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cbc_decrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err = 0, rounds = 6 + ctx->key_length / 4;
|
|
unsigned int blocks;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_dec, rounds, blocks, walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_decrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cts_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_encrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, rounds, walk.nbytes, walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int cts_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_decrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, rounds, walk.nbytes, walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
ctx->hash = crypto_alloc_shash("sha256", 0, 0);
|
|
|
|
return PTR_ERR_OR_ZERO(ctx->hash);
|
|
}
|
|
|
|
static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->hash);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key1.key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
if (blocks) {
|
|
kernel_neon_begin();
|
|
aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, blocks,
|
|
req->iv, ctx->key2.key_enc);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err ?: cbc_encrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key1.key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
if (blocks) {
|
|
kernel_neon_begin();
|
|
aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, blocks,
|
|
req->iv, ctx->key2.key_enc);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err ?: cbc_decrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int byte_ctr = 0;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes > 0) {
|
|
const u8 *src = walk.src.virt.addr;
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
|
|
/*
|
|
* If given less than 16 bytes, we must copy the partial block
|
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
|
* reads and writes. Furthermore, this code is somewhat unusual
|
|
* in that it expects the end of the data to be at the end of
|
|
* the temporary buffer, rather than the start of the data at
|
|
* the start of the temporary buffer.
|
|
*/
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
else if (nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
|
|
walk.iv, byte_ctr);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
byte_ctr += nbytes;
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes > 0) {
|
|
const u8 *src = walk.src.virt.addr;
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
|
|
/*
|
|
* If given less than 16 bytes, we must copy the partial block
|
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
|
* reads and writes. Furthermore, this code is somewhat unusual
|
|
* in that it expects the end of the data to be at the end of
|
|
* the temporary buffer, rather than the start of the data at
|
|
* the start of the temporary buffer.
|
|
*/
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
else if (nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
|
|
walk.iv);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused xts_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = 6 + ctx->key1.key_length / 4;
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, walk.nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int __maybe_unused xts_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = 6 + ctx->key1.key_length / 4;
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, walk.nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static struct skcipher_alg aes_algs[] = { {
|
|
#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
|
|
.base = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = ecb_encrypt,
|
|
.decrypt = ecb_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = cbc_encrypt,
|
|
.decrypt = cbc_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "ctr(aes)",
|
|
.cra_driver_name = "ctr-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = ctr_encrypt,
|
|
.decrypt = ctr_encrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "xctr(aes)",
|
|
.cra_driver_name = "xctr-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = xctr_encrypt,
|
|
.decrypt = xctr_encrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "xts(aes)",
|
|
.cra_driver_name = "xts-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = xts_set_key,
|
|
.encrypt = xts_encrypt,
|
|
.decrypt = xts_decrypt,
|
|
}, {
|
|
#endif
|
|
.base = {
|
|
.cra_name = "cts(cbc(aes))",
|
|
.cra_driver_name = "cts-cbc-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = cts_cbc_encrypt,
|
|
.decrypt = cts_cbc_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "essiv(cbc(aes),sha256)",
|
|
.cra_driver_name = "essiv-cbc-aes-sha256-" MODE,
|
|
.cra_priority = PRIO + 1,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = essiv_cbc_set_key,
|
|
.encrypt = essiv_cbc_encrypt,
|
|
.decrypt = essiv_cbc_decrypt,
|
|
.init = essiv_cbc_init_tfm,
|
|
.exit = essiv_cbc_exit_tfm,
|
|
} };
|
|
|
|
static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
|
|
return aes_expandkey(&ctx->key, in_key, key_len);
|
|
}
|
|
|
|
static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
|
|
{
|
|
u64 a = be64_to_cpu(x->a);
|
|
u64 b = be64_to_cpu(x->b);
|
|
|
|
y->a = cpu_to_be64((a << 1) | (b >> 63));
|
|
y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
|
|
}
|
|
|
|
static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
be128 *consts = (be128 *)ctx->consts;
|
|
int rounds = 6 + key_len / 4;
|
|
int err;
|
|
|
|
err = cbcmac_setkey(tfm, in_key, key_len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* encrypt the zero vector */
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
|
|
rounds, 1);
|
|
kernel_neon_end();
|
|
|
|
cmac_gf128_mul_by_x(consts, consts);
|
|
cmac_gf128_mul_by_x(consts + 1, consts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
static u8 const ks[3][AES_BLOCK_SIZE] = {
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
|
|
};
|
|
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
int rounds = 6 + key_len / 4;
|
|
u8 key[AES_BLOCK_SIZE];
|
|
int err;
|
|
|
|
err = cbcmac_setkey(tfm, in_key, key_len);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
|
|
aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
|
|
kernel_neon_end();
|
|
|
|
return cbcmac_setkey(tfm, key, sizeof(key));
|
|
}
|
|
|
|
static int mac_init(struct shash_desc *desc)
|
|
{
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
memset(ctx->dg, 0, AES_BLOCK_SIZE);
|
|
ctx->len = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
|
|
u8 dg[], int enc_before, int enc_after)
|
|
{
|
|
int rounds = 6 + ctx->key_length / 4;
|
|
|
|
if (crypto_simd_usable()) {
|
|
int rem;
|
|
|
|
do {
|
|
kernel_neon_begin();
|
|
rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
|
|
dg, enc_before, enc_after);
|
|
kernel_neon_end();
|
|
in += (blocks - rem) * AES_BLOCK_SIZE;
|
|
blocks = rem;
|
|
enc_before = 0;
|
|
} while (blocks);
|
|
} else {
|
|
if (enc_before)
|
|
aes_encrypt(ctx, dg, dg);
|
|
|
|
while (blocks--) {
|
|
crypto_xor(dg, in, AES_BLOCK_SIZE);
|
|
in += AES_BLOCK_SIZE;
|
|
|
|
if (blocks || enc_after)
|
|
aes_encrypt(ctx, dg, dg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
while (len > 0) {
|
|
unsigned int l;
|
|
|
|
if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
|
|
(ctx->len + len) > AES_BLOCK_SIZE) {
|
|
|
|
int blocks = len / AES_BLOCK_SIZE;
|
|
|
|
len %= AES_BLOCK_SIZE;
|
|
|
|
mac_do_update(&tctx->key, p, blocks, ctx->dg,
|
|
(ctx->len != 0), (len != 0));
|
|
|
|
p += blocks * AES_BLOCK_SIZE;
|
|
|
|
if (!len) {
|
|
ctx->len = AES_BLOCK_SIZE;
|
|
break;
|
|
}
|
|
ctx->len = 0;
|
|
}
|
|
|
|
l = min(len, AES_BLOCK_SIZE - ctx->len);
|
|
|
|
if (l <= AES_BLOCK_SIZE) {
|
|
crypto_xor(ctx->dg + ctx->len, p, l);
|
|
ctx->len += l;
|
|
len -= l;
|
|
p += l;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cbcmac_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
|
|
|
|
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cmac_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
u8 *consts = tctx->consts;
|
|
|
|
if (ctx->len != AES_BLOCK_SIZE) {
|
|
ctx->dg[ctx->len] ^= 0x80;
|
|
consts += AES_BLOCK_SIZE;
|
|
}
|
|
|
|
mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
|
|
|
|
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg mac_algs[] = { {
|
|
.base.cra_name = "cmac(aes)",
|
|
.base.cra_driver_name = "cmac-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
|
|
2 * AES_BLOCK_SIZE,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cmac_final,
|
|
.setkey = cmac_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
}, {
|
|
.base.cra_name = "xcbc(aes)",
|
|
.base.cra_driver_name = "xcbc-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
|
|
2 * AES_BLOCK_SIZE,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cmac_final,
|
|
.setkey = xcbc_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
}, {
|
|
.base.cra_name = "cbcmac(aes)",
|
|
.base.cra_driver_name = "cbcmac-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cbcmac_final,
|
|
.setkey = cbcmac_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
} };
|
|
|
|
static void aes_exit(void)
|
|
{
|
|
crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
|
|
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
}
|
|
|
|
static int __init aes_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
if (err)
|
|
return err;
|
|
|
|
err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
|
|
if (err)
|
|
goto unregister_ciphers;
|
|
|
|
return 0;
|
|
|
|
unregister_ciphers:
|
|
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
return err;
|
|
}
|
|
|
|
#ifdef USE_V8_CRYPTO_EXTENSIONS
|
|
module_cpu_feature_match(AES, aes_init);
|
|
#else
|
|
module_init(aes_init);
|
|
EXPORT_SYMBOL(neon_aes_ecb_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_cbc_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_ctr_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_xts_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_xts_decrypt);
|
|
#endif
|
|
module_exit(aes_exit);
|