2055 lines
50 KiB
C
2055 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* HMM stands for Heterogeneous Memory Management, it is a helper layer inside
|
|
* the linux kernel to help device drivers mirror a process address space in
|
|
* the device. This allows the device to use the same address space which
|
|
* makes communication and data exchange a lot easier.
|
|
*
|
|
* This framework's sole purpose is to exercise various code paths inside
|
|
* the kernel to make sure that HMM performs as expected and to flush out any
|
|
* bugs.
|
|
*/
|
|
|
|
#include "../kselftest_harness.h"
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <strings.h>
|
|
#include <time.h>
|
|
#include <pthread.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
|
|
/*
|
|
* This is a private UAPI to the kernel test module so it isn't exported
|
|
* in the usual include/uapi/... directory.
|
|
*/
|
|
#include <lib/test_hmm_uapi.h>
|
|
#include <mm/gup_test.h>
|
|
|
|
struct hmm_buffer {
|
|
void *ptr;
|
|
void *mirror;
|
|
unsigned long size;
|
|
int fd;
|
|
uint64_t cpages;
|
|
uint64_t faults;
|
|
};
|
|
|
|
enum {
|
|
HMM_PRIVATE_DEVICE_ONE,
|
|
HMM_PRIVATE_DEVICE_TWO,
|
|
HMM_COHERENCE_DEVICE_ONE,
|
|
HMM_COHERENCE_DEVICE_TWO,
|
|
};
|
|
|
|
#define TWOMEG (1 << 21)
|
|
#define HMM_BUFFER_SIZE (1024 << 12)
|
|
#define HMM_PATH_MAX 64
|
|
#define NTIMES 10
|
|
|
|
#define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
|
|
/* Just the flags we need, copied from mm.h: */
|
|
#define FOLL_WRITE 0x01 /* check pte is writable */
|
|
#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite */
|
|
|
|
FIXTURE(hmm)
|
|
{
|
|
int fd;
|
|
unsigned int page_size;
|
|
unsigned int page_shift;
|
|
};
|
|
|
|
FIXTURE_VARIANT(hmm)
|
|
{
|
|
int device_number;
|
|
};
|
|
|
|
FIXTURE_VARIANT_ADD(hmm, hmm_device_private)
|
|
{
|
|
.device_number = HMM_PRIVATE_DEVICE_ONE,
|
|
};
|
|
|
|
FIXTURE_VARIANT_ADD(hmm, hmm_device_coherent)
|
|
{
|
|
.device_number = HMM_COHERENCE_DEVICE_ONE,
|
|
};
|
|
|
|
FIXTURE(hmm2)
|
|
{
|
|
int fd0;
|
|
int fd1;
|
|
unsigned int page_size;
|
|
unsigned int page_shift;
|
|
};
|
|
|
|
FIXTURE_VARIANT(hmm2)
|
|
{
|
|
int device_number0;
|
|
int device_number1;
|
|
};
|
|
|
|
FIXTURE_VARIANT_ADD(hmm2, hmm2_device_private)
|
|
{
|
|
.device_number0 = HMM_PRIVATE_DEVICE_ONE,
|
|
.device_number1 = HMM_PRIVATE_DEVICE_TWO,
|
|
};
|
|
|
|
FIXTURE_VARIANT_ADD(hmm2, hmm2_device_coherent)
|
|
{
|
|
.device_number0 = HMM_COHERENCE_DEVICE_ONE,
|
|
.device_number1 = HMM_COHERENCE_DEVICE_TWO,
|
|
};
|
|
|
|
static int hmm_open(int unit)
|
|
{
|
|
char pathname[HMM_PATH_MAX];
|
|
int fd;
|
|
|
|
snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
|
|
fd = open(pathname, O_RDWR, 0);
|
|
if (fd < 0)
|
|
fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
|
|
pathname);
|
|
return fd;
|
|
}
|
|
|
|
static bool hmm_is_coherent_type(int dev_num)
|
|
{
|
|
return (dev_num >= HMM_COHERENCE_DEVICE_ONE);
|
|
}
|
|
|
|
FIXTURE_SETUP(hmm)
|
|
{
|
|
self->page_size = sysconf(_SC_PAGE_SIZE);
|
|
self->page_shift = ffs(self->page_size) - 1;
|
|
|
|
self->fd = hmm_open(variant->device_number);
|
|
if (self->fd < 0 && hmm_is_coherent_type(variant->device_number))
|
|
SKIP(exit(0), "DEVICE_COHERENT not available");
|
|
ASSERT_GE(self->fd, 0);
|
|
}
|
|
|
|
FIXTURE_SETUP(hmm2)
|
|
{
|
|
self->page_size = sysconf(_SC_PAGE_SIZE);
|
|
self->page_shift = ffs(self->page_size) - 1;
|
|
|
|
self->fd0 = hmm_open(variant->device_number0);
|
|
if (self->fd0 < 0 && hmm_is_coherent_type(variant->device_number0))
|
|
SKIP(exit(0), "DEVICE_COHERENT not available");
|
|
ASSERT_GE(self->fd0, 0);
|
|
self->fd1 = hmm_open(variant->device_number1);
|
|
ASSERT_GE(self->fd1, 0);
|
|
}
|
|
|
|
FIXTURE_TEARDOWN(hmm)
|
|
{
|
|
int ret = close(self->fd);
|
|
|
|
ASSERT_EQ(ret, 0);
|
|
self->fd = -1;
|
|
}
|
|
|
|
FIXTURE_TEARDOWN(hmm2)
|
|
{
|
|
int ret = close(self->fd0);
|
|
|
|
ASSERT_EQ(ret, 0);
|
|
self->fd0 = -1;
|
|
|
|
ret = close(self->fd1);
|
|
ASSERT_EQ(ret, 0);
|
|
self->fd1 = -1;
|
|
}
|
|
|
|
static int hmm_dmirror_cmd(int fd,
|
|
unsigned long request,
|
|
struct hmm_buffer *buffer,
|
|
unsigned long npages)
|
|
{
|
|
struct hmm_dmirror_cmd cmd;
|
|
int ret;
|
|
|
|
/* Simulate a device reading system memory. */
|
|
cmd.addr = (__u64)buffer->ptr;
|
|
cmd.ptr = (__u64)buffer->mirror;
|
|
cmd.npages = npages;
|
|
|
|
for (;;) {
|
|
ret = ioctl(fd, request, &cmd);
|
|
if (ret == 0)
|
|
break;
|
|
if (errno == EINTR)
|
|
continue;
|
|
return -errno;
|
|
}
|
|
buffer->cpages = cmd.cpages;
|
|
buffer->faults = cmd.faults;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hmm_buffer_free(struct hmm_buffer *buffer)
|
|
{
|
|
if (buffer == NULL)
|
|
return;
|
|
|
|
if (buffer->ptr)
|
|
munmap(buffer->ptr, buffer->size);
|
|
free(buffer->mirror);
|
|
free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Create a temporary file that will be deleted on close.
|
|
*/
|
|
static int hmm_create_file(unsigned long size)
|
|
{
|
|
char path[HMM_PATH_MAX];
|
|
int fd;
|
|
|
|
strcpy(path, "/tmp");
|
|
fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
|
|
if (fd >= 0) {
|
|
int r;
|
|
|
|
do {
|
|
r = ftruncate(fd, size);
|
|
} while (r == -1 && errno == EINTR);
|
|
if (!r)
|
|
return fd;
|
|
close(fd);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return a random unsigned number.
|
|
*/
|
|
static unsigned int hmm_random(void)
|
|
{
|
|
static int fd = -1;
|
|
unsigned int r;
|
|
|
|
if (fd < 0) {
|
|
fd = open("/dev/urandom", O_RDONLY);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
|
|
__FILE__, __LINE__);
|
|
return ~0U;
|
|
}
|
|
}
|
|
read(fd, &r, sizeof(r));
|
|
return r;
|
|
}
|
|
|
|
static void hmm_nanosleep(unsigned int n)
|
|
{
|
|
struct timespec t;
|
|
|
|
t.tv_sec = 0;
|
|
t.tv_nsec = n;
|
|
nanosleep(&t, NULL);
|
|
}
|
|
|
|
static int hmm_migrate_sys_to_dev(int fd,
|
|
struct hmm_buffer *buffer,
|
|
unsigned long npages)
|
|
{
|
|
return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_DEV, buffer, npages);
|
|
}
|
|
|
|
static int hmm_migrate_dev_to_sys(int fd,
|
|
struct hmm_buffer *buffer,
|
|
unsigned long npages)
|
|
{
|
|
return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_SYS, buffer, npages);
|
|
}
|
|
|
|
/*
|
|
* Simple NULL test of device open/close.
|
|
*/
|
|
TEST_F(hmm, open_close)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Read private anonymous memory.
|
|
*/
|
|
TEST_F(hmm, anon_read)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
int val;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/*
|
|
* Initialize buffer in system memory but leave the first two pages
|
|
* zero (pte_none and pfn_zero).
|
|
*/
|
|
i = 2 * self->page_size / sizeof(*ptr);
|
|
for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Set buffer permission to read-only. */
|
|
ret = mprotect(buffer->ptr, size, PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Populate the CPU page table with a special zero page. */
|
|
val = *(int *)(buffer->ptr + self->page_size);
|
|
ASSERT_EQ(val, 0);
|
|
|
|
/* Simulate a device reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
ptr = buffer->mirror;
|
|
for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], 0);
|
|
for (; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Read private anonymous memory which has been protected with
|
|
* mprotect() PROT_NONE.
|
|
*/
|
|
TEST_F(hmm, anon_read_prot)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Initialize mirror buffer so we can verify it isn't written. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = -i;
|
|
|
|
/* Protect buffer from reading. */
|
|
ret = mprotect(buffer->ptr, size, PROT_NONE);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Simulate a device reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, -EFAULT);
|
|
|
|
/* Allow CPU to read the buffer so we can check it. */
|
|
ret = mprotect(buffer->ptr, size, PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Write private anonymous memory.
|
|
*/
|
|
TEST_F(hmm, anon_write)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Write private anonymous memory which has been protected with
|
|
* mprotect() PROT_READ.
|
|
*/
|
|
TEST_F(hmm, anon_write_prot)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Simulate a device reading a zero page of memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, 1);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, -EPERM);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], 0);
|
|
|
|
/* Now allow writing and see that the zero page is replaced. */
|
|
ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Check that a device writing an anonymous private mapping
|
|
* will copy-on-write if a child process inherits the mapping.
|
|
*/
|
|
TEST_F(hmm, anon_write_child)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
pid_t pid;
|
|
int child_fd;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer->ptr so we can tell if it is written. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = -i;
|
|
|
|
pid = fork();
|
|
if (pid == -1)
|
|
ASSERT_EQ(pid, 0);
|
|
if (pid != 0) {
|
|
waitpid(pid, &ret, 0);
|
|
ASSERT_EQ(WIFEXITED(ret), 1);
|
|
|
|
/* Check that the parent's buffer did not change. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
return;
|
|
}
|
|
|
|
/* Check that we see the parent's values. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
|
|
/* The child process needs its own mirror to its own mm. */
|
|
child_fd = hmm_open(0);
|
|
ASSERT_GE(child_fd, 0);
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
|
|
close(child_fd);
|
|
exit(0);
|
|
}
|
|
|
|
/*
|
|
* Check that a device writing an anonymous shared mapping
|
|
* will not copy-on-write if a child process inherits the mapping.
|
|
*/
|
|
TEST_F(hmm, anon_write_child_shared)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
pid_t pid;
|
|
int child_fd;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer->ptr so we can tell if it is written. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = -i;
|
|
|
|
pid = fork();
|
|
if (pid == -1)
|
|
ASSERT_EQ(pid, 0);
|
|
if (pid != 0) {
|
|
waitpid(pid, &ret, 0);
|
|
ASSERT_EQ(WIFEXITED(ret), 1);
|
|
|
|
/* Check that the parent's buffer did change. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
return;
|
|
}
|
|
|
|
/* Check that we see the parent's values. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
|
|
/* The child process needs its own mirror to its own mm. */
|
|
child_fd = hmm_open(0);
|
|
ASSERT_GE(child_fd, 0);
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], -i);
|
|
|
|
close(child_fd);
|
|
exit(0);
|
|
}
|
|
|
|
/*
|
|
* Write private anonymous huge page.
|
|
*/
|
|
TEST_F(hmm, anon_write_huge)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
void *old_ptr;
|
|
void *map;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
size = 2 * TWOMEG;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
size = TWOMEG;
|
|
npages = size >> self->page_shift;
|
|
map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
|
|
ret = madvise(map, size, MADV_HUGEPAGE);
|
|
ASSERT_EQ(ret, 0);
|
|
old_ptr = buffer->ptr;
|
|
buffer->ptr = map;
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
buffer->ptr = old_ptr;
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Read numeric data from raw and tagged kernel status files. Used to read
|
|
* /proc and /sys data (without a tag) and from /proc/meminfo (with a tag).
|
|
*/
|
|
static long file_read_ulong(char *file, const char *tag)
|
|
{
|
|
int fd;
|
|
char buf[2048];
|
|
int len;
|
|
char *p, *q;
|
|
long val;
|
|
|
|
fd = open(file, O_RDONLY);
|
|
if (fd < 0) {
|
|
/* Error opening the file */
|
|
return -1;
|
|
}
|
|
|
|
len = read(fd, buf, sizeof(buf));
|
|
close(fd);
|
|
if (len < 0) {
|
|
/* Error in reading the file */
|
|
return -1;
|
|
}
|
|
if (len == sizeof(buf)) {
|
|
/* Error file is too large */
|
|
return -1;
|
|
}
|
|
buf[len] = '\0';
|
|
|
|
/* Search for a tag if provided */
|
|
if (tag) {
|
|
p = strstr(buf, tag);
|
|
if (!p)
|
|
return -1; /* looks like the line we want isn't there */
|
|
p += strlen(tag);
|
|
} else
|
|
p = buf;
|
|
|
|
val = strtol(p, &q, 0);
|
|
if (*q != ' ') {
|
|
/* Error parsing the file */
|
|
return -1;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write huge TLBFS page.
|
|
*/
|
|
TEST_F(hmm, anon_write_hugetlbfs)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long default_hsize;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
|
|
if (default_hsize < 0 || default_hsize*1024 < default_hsize)
|
|
SKIP(return, "Huge page size could not be determined");
|
|
default_hsize = default_hsize*1024; /* KB to B */
|
|
|
|
size = ALIGN(TWOMEG, default_hsize);
|
|
npages = size >> self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
|
|
-1, 0);
|
|
if (buffer->ptr == MAP_FAILED) {
|
|
free(buffer);
|
|
SKIP(return, "Huge page could not be allocated");
|
|
}
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
munmap(buffer->ptr, buffer->size);
|
|
buffer->ptr = NULL;
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Read mmap'ed file memory.
|
|
*/
|
|
TEST_F(hmm, file_read)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
int fd;
|
|
ssize_t len;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
fd = hmm_create_file(size);
|
|
ASSERT_GE(fd, 0);
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = fd;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Write initial contents of the file. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
len = pwrite(fd, buffer->mirror, size, 0);
|
|
ASSERT_EQ(len, size);
|
|
memset(buffer->mirror, 0, size);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ,
|
|
MAP_SHARED,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Simulate a device reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Write mmap'ed file memory.
|
|
*/
|
|
TEST_F(hmm, file_write)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
int fd;
|
|
ssize_t len;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
fd = hmm_create_file(size);
|
|
ASSERT_GE(fd, 0);
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = fd;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize data that the device will write to buffer->ptr. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device wrote. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Check that the device also wrote the file. */
|
|
len = pread(fd, buffer->mirror, size, 0);
|
|
ASSERT_EQ(len, size);
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Migrate anonymous memory to device private memory.
|
|
*/
|
|
TEST_F(hmm, migrate)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Migrate anonymous memory to device private memory and fault some of it back
|
|
* to system memory, then try migrating the resulting mix of system and device
|
|
* private memory to the device.
|
|
*/
|
|
TEST_F(hmm, migrate_fault)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Fault half the pages back to system memory and check them. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Migrate memory to the device again. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
TEST_F(hmm, migrate_release)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Release device memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_RELEASE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Fault pages back to system memory and check them. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Migrate anonymous shared memory to device private memory.
|
|
*/
|
|
TEST_F(hmm, migrate_shared)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, -ENOENT);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Try to migrate various memory types to device private memory.
|
|
*/
|
|
TEST_F(hmm2, migrate_mixed)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
int *ptr;
|
|
unsigned char *p;
|
|
int ret;
|
|
int val;
|
|
|
|
npages = 6;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Reserve a range of addresses. */
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
p = buffer->ptr;
|
|
|
|
/* Migrating a protected area should be an error. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
|
|
ASSERT_EQ(ret, -EINVAL);
|
|
|
|
/* Punch a hole after the first page address. */
|
|
ret = munmap(buffer->ptr + self->page_size, self->page_size);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* We expect an error if the vma doesn't cover the range. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 3);
|
|
ASSERT_EQ(ret, -EINVAL);
|
|
|
|
/* Page 2 will be a read-only zero page. */
|
|
ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
|
|
PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 2 * self->page_size);
|
|
val = *ptr + 3;
|
|
ASSERT_EQ(val, 3);
|
|
|
|
/* Page 3 will be read-only. */
|
|
ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
|
|
PROT_READ | PROT_WRITE);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 3 * self->page_size);
|
|
*ptr = val;
|
|
ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
|
|
PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Page 4-5 will be read-write. */
|
|
ret = mprotect(buffer->ptr + 4 * self->page_size, 2 * self->page_size,
|
|
PROT_READ | PROT_WRITE);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 4 * self->page_size);
|
|
*ptr = val;
|
|
ptr = (int *)(buffer->ptr + 5 * self->page_size);
|
|
*ptr = val;
|
|
|
|
/* Now try to migrate pages 2-5 to device 1. */
|
|
buffer->ptr = p + 2 * self->page_size;
|
|
ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 4);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, 4);
|
|
|
|
/* Page 5 won't be migrated to device 0 because it's on device 1. */
|
|
buffer->ptr = p + 5 * self->page_size;
|
|
ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
|
|
ASSERT_EQ(ret, -ENOENT);
|
|
buffer->ptr = p;
|
|
|
|
buffer->ptr = p;
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Migrate anonymous memory to device memory and back to system memory
|
|
* multiple times. In case of private zone configuration, this is done
|
|
* through fault pages accessed by CPU. In case of coherent zone configuration,
|
|
* the pages from the device should be explicitly migrated back to system memory.
|
|
* The reason is Coherent device zone has coherent access by CPU, therefore
|
|
* it will not generate any page fault.
|
|
*/
|
|
TEST_F(hmm, migrate_multiple)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
unsigned long c;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
for (c = 0; c < NTIMES; c++) {
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Migrate back to system memory and check them. */
|
|
if (hmm_is_coherent_type(variant->device_number)) {
|
|
ret = hmm_migrate_dev_to_sys(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
}
|
|
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read anonymous memory multiple times.
|
|
*/
|
|
TEST_F(hmm, anon_read_multiple)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
unsigned long c;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
for (c = 0; c < NTIMES; c++) {
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i + c;
|
|
|
|
/* Simulate a device reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
|
|
npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i + c);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
}
|
|
|
|
void *unmap_buffer(void *p)
|
|
{
|
|
struct hmm_buffer *buffer = p;
|
|
|
|
/* Delay for a bit and then unmap buffer while it is being read. */
|
|
hmm_nanosleep(hmm_random() % 32000);
|
|
munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
|
|
buffer->ptr = NULL;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Try reading anonymous memory while it is being unmapped.
|
|
*/
|
|
TEST_F(hmm, anon_teardown)
|
|
{
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long c;
|
|
void *ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
for (c = 0; c < NTIMES; ++c) {
|
|
pthread_t thread;
|
|
struct hmm_buffer *buffer;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int rc;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i + c;
|
|
|
|
rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
|
|
ASSERT_EQ(rc, 0);
|
|
|
|
/* Simulate a device reading system memory. */
|
|
rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
|
|
npages);
|
|
if (rc == 0) {
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror;
|
|
i < size / sizeof(*ptr);
|
|
++i)
|
|
ASSERT_EQ(ptr[i], i + c);
|
|
}
|
|
|
|
pthread_join(thread, &ret);
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test memory snapshot without faulting in pages accessed by the device.
|
|
*/
|
|
TEST_F(hmm, mixedmap)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned char *m;
|
|
int ret;
|
|
|
|
npages = 1;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(npages);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
|
|
/* Reserve a range of addresses. */
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE,
|
|
self->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Simulate a device snapshotting CPU pagetables. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device saw. */
|
|
m = buffer->mirror;
|
|
ASSERT_EQ(m[0], HMM_DMIRROR_PROT_READ);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Test memory snapshot without faulting in pages accessed by the device.
|
|
*/
|
|
TEST_F(hmm2, snapshot)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
int *ptr;
|
|
unsigned char *p;
|
|
unsigned char *m;
|
|
int ret;
|
|
int val;
|
|
|
|
npages = 7;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(npages);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Reserve a range of addresses. */
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
p = buffer->ptr;
|
|
|
|
/* Punch a hole after the first page address. */
|
|
ret = munmap(buffer->ptr + self->page_size, self->page_size);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Page 2 will be read-only zero page. */
|
|
ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
|
|
PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 2 * self->page_size);
|
|
val = *ptr + 3;
|
|
ASSERT_EQ(val, 3);
|
|
|
|
/* Page 3 will be read-only. */
|
|
ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
|
|
PROT_READ | PROT_WRITE);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 3 * self->page_size);
|
|
*ptr = val;
|
|
ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
|
|
PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Page 4-6 will be read-write. */
|
|
ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
|
|
PROT_READ | PROT_WRITE);
|
|
ASSERT_EQ(ret, 0);
|
|
ptr = (int *)(buffer->ptr + 4 * self->page_size);
|
|
*ptr = val;
|
|
|
|
/* Page 5 will be migrated to device 0. */
|
|
buffer->ptr = p + 5 * self->page_size;
|
|
ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, 1);
|
|
|
|
/* Page 6 will be migrated to device 1. */
|
|
buffer->ptr = p + 6 * self->page_size;
|
|
ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 1);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, 1);
|
|
|
|
/* Simulate a device snapshotting CPU pagetables. */
|
|
buffer->ptr = p;
|
|
ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device saw. */
|
|
m = buffer->mirror;
|
|
ASSERT_EQ(m[0], HMM_DMIRROR_PROT_ERROR);
|
|
ASSERT_EQ(m[1], HMM_DMIRROR_PROT_ERROR);
|
|
ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
|
|
ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
|
|
ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
|
|
if (!hmm_is_coherent_type(variant->device_number0)) {
|
|
ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
|
|
HMM_DMIRROR_PROT_WRITE);
|
|
ASSERT_EQ(m[6], HMM_DMIRROR_PROT_NONE);
|
|
} else {
|
|
ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL |
|
|
HMM_DMIRROR_PROT_WRITE);
|
|
ASSERT_EQ(m[6], HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE |
|
|
HMM_DMIRROR_PROT_WRITE);
|
|
}
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Test the hmm_range_fault() HMM_PFN_PMD flag for large pages that
|
|
* should be mapped by a large page table entry.
|
|
*/
|
|
TEST_F(hmm, compound)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long default_hsize;
|
|
int *ptr;
|
|
unsigned char *m;
|
|
int ret;
|
|
unsigned long i;
|
|
|
|
/* Skip test if we can't allocate a hugetlbfs page. */
|
|
|
|
default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
|
|
if (default_hsize < 0 || default_hsize*1024 < default_hsize)
|
|
SKIP(return, "Huge page size could not be determined");
|
|
default_hsize = default_hsize*1024; /* KB to B */
|
|
|
|
size = ALIGN(TWOMEG, default_hsize);
|
|
npages = size >> self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
|
|
-1, 0);
|
|
if (buffer->ptr == MAP_FAILED) {
|
|
free(buffer);
|
|
return;
|
|
}
|
|
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(npages);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Initialize the pages the device will snapshot in buffer->ptr. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Simulate a device snapshotting CPU pagetables. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device saw. */
|
|
m = buffer->mirror;
|
|
for (i = 0; i < npages; ++i)
|
|
ASSERT_EQ(m[i], HMM_DMIRROR_PROT_WRITE |
|
|
HMM_DMIRROR_PROT_PMD);
|
|
|
|
/* Make the region read-only. */
|
|
ret = mprotect(buffer->ptr, size, PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Simulate a device snapshotting CPU pagetables. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device saw. */
|
|
m = buffer->mirror;
|
|
for (i = 0; i < npages; ++i)
|
|
ASSERT_EQ(m[i], HMM_DMIRROR_PROT_READ |
|
|
HMM_DMIRROR_PROT_PMD);
|
|
|
|
munmap(buffer->ptr, buffer->size);
|
|
buffer->ptr = NULL;
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Test two devices reading the same memory (double mapped).
|
|
*/
|
|
TEST_F(hmm2, double_map)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = 6;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(npages);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
/* Reserve a range of addresses. */
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Make region read-only. */
|
|
ret = mprotect(buffer->ptr, size, PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Simulate device 0 reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Simulate device 1 reading system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Migrate pages to device 1 and try to read from device 0. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
ASSERT_EQ(buffer->faults, 1);
|
|
|
|
/* Check what device 0 read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Basic check of exclusive faulting.
|
|
*/
|
|
TEST_F(hmm, exclusive)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Map memory exclusively for device access. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
/* Fault pages back to system memory and check them. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i]++, i);
|
|
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i+1);
|
|
|
|
/* Check atomic access revoked */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_CHECK_EXCLUSIVE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
TEST_F(hmm, exclusive_mprotect)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Map memory exclusively for device access. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
ret = mprotect(buffer->ptr, size, PROT_READ);
|
|
ASSERT_EQ(ret, 0);
|
|
|
|
/* Simulate a device writing system memory. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
|
|
ASSERT_EQ(ret, -EPERM);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Check copy-on-write works.
|
|
*/
|
|
TEST_F(hmm, exclusive_cow)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
|
|
npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
|
|
ASSERT_NE(npages, 0);
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Map memory exclusively for device access. */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
fork();
|
|
|
|
/* Fault pages back to system memory and check them. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i]++, i);
|
|
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i+1);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
static int gup_test_exec(int gup_fd, unsigned long addr, int cmd,
|
|
int npages, int size, int flags)
|
|
{
|
|
struct gup_test gup = {
|
|
.nr_pages_per_call = npages,
|
|
.addr = addr,
|
|
.gup_flags = FOLL_WRITE | flags,
|
|
.size = size,
|
|
};
|
|
|
|
if (ioctl(gup_fd, cmd, &gup)) {
|
|
perror("ioctl on error\n");
|
|
return errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test get user device pages through gup_test. Setting PIN_LONGTERM flag.
|
|
* This should trigger a migration back to system memory for both, private
|
|
* and coherent type pages.
|
|
* This test makes use of gup_test module. Make sure GUP_TEST_CONFIG is added
|
|
* to your configuration before you run it.
|
|
*/
|
|
TEST_F(hmm, hmm_gup_test)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
int gup_fd;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
unsigned char *m;
|
|
|
|
gup_fd = open("/sys/kernel/debug/gup_test", O_RDWR);
|
|
if (gup_fd == -1)
|
|
SKIP(return, "Skipping test, could not find gup_test driver");
|
|
|
|
npages = 4;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
/* Check what the device read. */
|
|
for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
ASSERT_EQ(gup_test_exec(gup_fd,
|
|
(unsigned long)buffer->ptr,
|
|
GUP_BASIC_TEST, 1, self->page_size, 0), 0);
|
|
ASSERT_EQ(gup_test_exec(gup_fd,
|
|
(unsigned long)buffer->ptr + 1 * self->page_size,
|
|
GUP_FAST_BENCHMARK, 1, self->page_size, 0), 0);
|
|
ASSERT_EQ(gup_test_exec(gup_fd,
|
|
(unsigned long)buffer->ptr + 2 * self->page_size,
|
|
PIN_FAST_BENCHMARK, 1, self->page_size, FOLL_LONGTERM), 0);
|
|
ASSERT_EQ(gup_test_exec(gup_fd,
|
|
(unsigned long)buffer->ptr + 3 * self->page_size,
|
|
PIN_LONGTERM_BENCHMARK, 1, self->page_size, 0), 0);
|
|
|
|
/* Take snapshot to CPU pagetables */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
m = buffer->mirror;
|
|
if (hmm_is_coherent_type(variant->device_number)) {
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[0]);
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[1]);
|
|
} else {
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[0]);
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[1]);
|
|
}
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[2]);
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[3]);
|
|
/*
|
|
* Check again the content on the pages. Make sure there's no
|
|
* corrupted data.
|
|
*/
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ASSERT_EQ(ptr[i], i);
|
|
|
|
close(gup_fd);
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
|
|
/*
|
|
* Test copy-on-write in device pages.
|
|
* In case of writing to COW private page(s), a page fault will migrate pages
|
|
* back to system memory first. Then, these pages will be duplicated. In case
|
|
* of COW device coherent type, pages are duplicated directly from device
|
|
* memory.
|
|
*/
|
|
TEST_F(hmm, hmm_cow_in_device)
|
|
{
|
|
struct hmm_buffer *buffer;
|
|
unsigned long npages;
|
|
unsigned long size;
|
|
unsigned long i;
|
|
int *ptr;
|
|
int ret;
|
|
unsigned char *m;
|
|
pid_t pid;
|
|
int status;
|
|
|
|
npages = 4;
|
|
size = npages << self->page_shift;
|
|
|
|
buffer = malloc(sizeof(*buffer));
|
|
ASSERT_NE(buffer, NULL);
|
|
|
|
buffer->fd = -1;
|
|
buffer->size = size;
|
|
buffer->mirror = malloc(size);
|
|
ASSERT_NE(buffer->mirror, NULL);
|
|
|
|
buffer->ptr = mmap(NULL, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
buffer->fd, 0);
|
|
ASSERT_NE(buffer->ptr, MAP_FAILED);
|
|
|
|
/* Initialize buffer in system memory. */
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Migrate memory to device. */
|
|
|
|
ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
|
|
pid = fork();
|
|
if (pid == -1)
|
|
ASSERT_EQ(pid, 0);
|
|
if (!pid) {
|
|
/* Child process waitd for SIGTERM from the parent. */
|
|
while (1) {
|
|
}
|
|
perror("Should not reach this\n");
|
|
exit(0);
|
|
}
|
|
/* Parent process writes to COW pages(s) and gets a
|
|
* new copy in system. In case of device private pages,
|
|
* this write causes a migration to system mem first.
|
|
*/
|
|
for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
|
|
ptr[i] = i;
|
|
|
|
/* Terminate child and wait */
|
|
EXPECT_EQ(0, kill(pid, SIGTERM));
|
|
EXPECT_EQ(pid, waitpid(pid, &status, 0));
|
|
EXPECT_NE(0, WIFSIGNALED(status));
|
|
EXPECT_EQ(SIGTERM, WTERMSIG(status));
|
|
|
|
/* Take snapshot to CPU pagetables */
|
|
ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
|
|
ASSERT_EQ(ret, 0);
|
|
ASSERT_EQ(buffer->cpages, npages);
|
|
m = buffer->mirror;
|
|
for (i = 0; i < npages; i++)
|
|
ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[i]);
|
|
|
|
hmm_buffer_free(buffer);
|
|
}
|
|
TEST_HARNESS_MAIN
|