linuxdebug/sound/soc/codecs/wm9081.c

1382 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* wm9081.c -- WM9081 ALSA SoC Audio driver
*
* Author: Mark Brown
*
* Copyright 2009-12 Wolfson Microelectronics plc
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/wm9081.h>
#include "wm9081.h"
static const struct reg_default wm9081_reg[] = {
{ 2, 0x00B9 }, /* R2 - Analogue Lineout */
{ 3, 0x00B9 }, /* R3 - Analogue Speaker PGA */
{ 4, 0x0001 }, /* R4 - VMID Control */
{ 5, 0x0068 }, /* R5 - Bias Control 1 */
{ 7, 0x0000 }, /* R7 - Analogue Mixer */
{ 8, 0x0000 }, /* R8 - Anti Pop Control */
{ 9, 0x01DB }, /* R9 - Analogue Speaker 1 */
{ 10, 0x0018 }, /* R10 - Analogue Speaker 2 */
{ 11, 0x0180 }, /* R11 - Power Management */
{ 12, 0x0000 }, /* R12 - Clock Control 1 */
{ 13, 0x0038 }, /* R13 - Clock Control 2 */
{ 14, 0x4000 }, /* R14 - Clock Control 3 */
{ 16, 0x0000 }, /* R16 - FLL Control 1 */
{ 17, 0x0200 }, /* R17 - FLL Control 2 */
{ 18, 0x0000 }, /* R18 - FLL Control 3 */
{ 19, 0x0204 }, /* R19 - FLL Control 4 */
{ 20, 0x0000 }, /* R20 - FLL Control 5 */
{ 22, 0x0000 }, /* R22 - Audio Interface 1 */
{ 23, 0x0002 }, /* R23 - Audio Interface 2 */
{ 24, 0x0008 }, /* R24 - Audio Interface 3 */
{ 25, 0x0022 }, /* R25 - Audio Interface 4 */
{ 27, 0x0006 }, /* R27 - Interrupt Status Mask */
{ 28, 0x0000 }, /* R28 - Interrupt Polarity */
{ 29, 0x0000 }, /* R29 - Interrupt Control */
{ 30, 0x00C0 }, /* R30 - DAC Digital 1 */
{ 31, 0x0008 }, /* R31 - DAC Digital 2 */
{ 32, 0x09AF }, /* R32 - DRC 1 */
{ 33, 0x4201 }, /* R33 - DRC 2 */
{ 34, 0x0000 }, /* R34 - DRC 3 */
{ 35, 0x0000 }, /* R35 - DRC 4 */
{ 38, 0x0000 }, /* R38 - Write Sequencer 1 */
{ 39, 0x0000 }, /* R39 - Write Sequencer 2 */
{ 40, 0x0002 }, /* R40 - MW Slave 1 */
{ 42, 0x0000 }, /* R42 - EQ 1 */
{ 43, 0x0000 }, /* R43 - EQ 2 */
{ 44, 0x0FCA }, /* R44 - EQ 3 */
{ 45, 0x0400 }, /* R45 - EQ 4 */
{ 46, 0x00B8 }, /* R46 - EQ 5 */
{ 47, 0x1EB5 }, /* R47 - EQ 6 */
{ 48, 0xF145 }, /* R48 - EQ 7 */
{ 49, 0x0B75 }, /* R49 - EQ 8 */
{ 50, 0x01C5 }, /* R50 - EQ 9 */
{ 51, 0x169E }, /* R51 - EQ 10 */
{ 52, 0xF829 }, /* R52 - EQ 11 */
{ 53, 0x07AD }, /* R53 - EQ 12 */
{ 54, 0x1103 }, /* R54 - EQ 13 */
{ 55, 0x1C58 }, /* R55 - EQ 14 */
{ 56, 0xF373 }, /* R56 - EQ 15 */
{ 57, 0x0A54 }, /* R57 - EQ 16 */
{ 58, 0x0558 }, /* R58 - EQ 17 */
{ 59, 0x0564 }, /* R59 - EQ 18 */
{ 60, 0x0559 }, /* R60 - EQ 19 */
{ 61, 0x4000 }, /* R61 - EQ 20 */
};
static struct {
int ratio;
int clk_sys_rate;
} clk_sys_rates[] = {
{ 64, 0 },
{ 128, 1 },
{ 192, 2 },
{ 256, 3 },
{ 384, 4 },
{ 512, 5 },
{ 768, 6 },
{ 1024, 7 },
{ 1408, 8 },
{ 1536, 9 },
};
static struct {
int rate;
int sample_rate;
} sample_rates[] = {
{ 8000, 0 },
{ 11025, 1 },
{ 12000, 2 },
{ 16000, 3 },
{ 22050, 4 },
{ 24000, 5 },
{ 32000, 6 },
{ 44100, 7 },
{ 48000, 8 },
{ 88200, 9 },
{ 96000, 10 },
};
static struct {
int div; /* *10 due to .5s */
int bclk_div;
} bclk_divs[] = {
{ 10, 0 },
{ 15, 1 },
{ 20, 2 },
{ 30, 3 },
{ 40, 4 },
{ 50, 5 },
{ 55, 6 },
{ 60, 7 },
{ 80, 8 },
{ 100, 9 },
{ 110, 10 },
{ 120, 11 },
{ 160, 12 },
{ 200, 13 },
{ 220, 14 },
{ 240, 15 },
{ 250, 16 },
{ 300, 17 },
{ 320, 18 },
{ 440, 19 },
{ 480, 20 },
};
struct wm9081_priv {
struct regmap *regmap;
int sysclk_source;
int mclk_rate;
int sysclk_rate;
int fs;
int bclk;
int master;
int fll_fref;
int fll_fout;
int tdm_width;
struct wm9081_pdata pdata;
};
static bool wm9081_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case WM9081_SOFTWARE_RESET:
case WM9081_INTERRUPT_STATUS:
return true;
default:
return false;
}
}
static bool wm9081_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case WM9081_SOFTWARE_RESET:
case WM9081_ANALOGUE_LINEOUT:
case WM9081_ANALOGUE_SPEAKER_PGA:
case WM9081_VMID_CONTROL:
case WM9081_BIAS_CONTROL_1:
case WM9081_ANALOGUE_MIXER:
case WM9081_ANTI_POP_CONTROL:
case WM9081_ANALOGUE_SPEAKER_1:
case WM9081_ANALOGUE_SPEAKER_2:
case WM9081_POWER_MANAGEMENT:
case WM9081_CLOCK_CONTROL_1:
case WM9081_CLOCK_CONTROL_2:
case WM9081_CLOCK_CONTROL_3:
case WM9081_FLL_CONTROL_1:
case WM9081_FLL_CONTROL_2:
case WM9081_FLL_CONTROL_3:
case WM9081_FLL_CONTROL_4:
case WM9081_FLL_CONTROL_5:
case WM9081_AUDIO_INTERFACE_1:
case WM9081_AUDIO_INTERFACE_2:
case WM9081_AUDIO_INTERFACE_3:
case WM9081_AUDIO_INTERFACE_4:
case WM9081_INTERRUPT_STATUS:
case WM9081_INTERRUPT_STATUS_MASK:
case WM9081_INTERRUPT_POLARITY:
case WM9081_INTERRUPT_CONTROL:
case WM9081_DAC_DIGITAL_1:
case WM9081_DAC_DIGITAL_2:
case WM9081_DRC_1:
case WM9081_DRC_2:
case WM9081_DRC_3:
case WM9081_DRC_4:
case WM9081_WRITE_SEQUENCER_1:
case WM9081_WRITE_SEQUENCER_2:
case WM9081_MW_SLAVE_1:
case WM9081_EQ_1:
case WM9081_EQ_2:
case WM9081_EQ_3:
case WM9081_EQ_4:
case WM9081_EQ_5:
case WM9081_EQ_6:
case WM9081_EQ_7:
case WM9081_EQ_8:
case WM9081_EQ_9:
case WM9081_EQ_10:
case WM9081_EQ_11:
case WM9081_EQ_12:
case WM9081_EQ_13:
case WM9081_EQ_14:
case WM9081_EQ_15:
case WM9081_EQ_16:
case WM9081_EQ_17:
case WM9081_EQ_18:
case WM9081_EQ_19:
case WM9081_EQ_20:
return true;
default:
return false;
}
}
static int wm9081_reset(struct regmap *map)
{
return regmap_write(map, WM9081_SOFTWARE_RESET, 0x9081);
}
static const DECLARE_TLV_DB_SCALE(drc_in_tlv, -4500, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_out_tlv, -2250, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_min_tlv, -1800, 600, 0);
static const DECLARE_TLV_DB_RANGE(drc_max_tlv,
0, 0, TLV_DB_SCALE_ITEM(1200, 0, 0),
1, 1, TLV_DB_SCALE_ITEM(1800, 0, 0),
2, 2, TLV_DB_SCALE_ITEM(2400, 0, 0),
3, 3, TLV_DB_SCALE_ITEM(3600, 0, 0)
);
static const DECLARE_TLV_DB_SCALE(drc_qr_tlv, 1200, 600, 0);
static const DECLARE_TLV_DB_SCALE(drc_startup_tlv, -300, 50, 0);
static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0);
static const DECLARE_TLV_DB_SCALE(in_tlv, -600, 600, 0);
static const DECLARE_TLV_DB_SCALE(dac_tlv, -7200, 75, 1);
static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0);
static const char *drc_high_text[] = {
"1",
"1/2",
"1/4",
"1/8",
"1/16",
"0",
};
static SOC_ENUM_SINGLE_DECL(drc_high, WM9081_DRC_3, 3, drc_high_text);
static const char *drc_low_text[] = {
"1",
"1/2",
"1/4",
"1/8",
"0",
};
static SOC_ENUM_SINGLE_DECL(drc_low, WM9081_DRC_3, 0, drc_low_text);
static const char *drc_atk_text[] = {
"181us",
"181us",
"363us",
"726us",
"1.45ms",
"2.9ms",
"5.8ms",
"11.6ms",
"23.2ms",
"46.4ms",
"92.8ms",
"185.6ms",
};
static SOC_ENUM_SINGLE_DECL(drc_atk, WM9081_DRC_2, 12, drc_atk_text);
static const char *drc_dcy_text[] = {
"186ms",
"372ms",
"743ms",
"1.49s",
"2.97s",
"5.94s",
"11.89s",
"23.78s",
"47.56s",
};
static SOC_ENUM_SINGLE_DECL(drc_dcy, WM9081_DRC_2, 8, drc_dcy_text);
static const char *drc_qr_dcy_text[] = {
"0.725ms",
"1.45ms",
"5.8ms",
};
static SOC_ENUM_SINGLE_DECL(drc_qr_dcy, WM9081_DRC_2, 4, drc_qr_dcy_text);
static const char *dac_deemph_text[] = {
"None",
"32kHz",
"44.1kHz",
"48kHz",
};
static SOC_ENUM_SINGLE_DECL(dac_deemph, WM9081_DAC_DIGITAL_2, 1,
dac_deemph_text);
static const char *speaker_mode_text[] = {
"Class D",
"Class AB",
};
static SOC_ENUM_SINGLE_DECL(speaker_mode, WM9081_ANALOGUE_SPEAKER_2, 6,
speaker_mode_text);
static int speaker_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
unsigned int reg;
reg = snd_soc_component_read(component, WM9081_ANALOGUE_SPEAKER_2);
if (reg & WM9081_SPK_MODE)
ucontrol->value.enumerated.item[0] = 1;
else
ucontrol->value.enumerated.item[0] = 0;
return 0;
}
/*
* Stop any attempts to change speaker mode while the speaker is enabled.
*
* We also have some special anti-pop controls dependent on speaker
* mode which must be changed along with the mode.
*/
static int speaker_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
unsigned int reg_pwr = snd_soc_component_read(component, WM9081_POWER_MANAGEMENT);
unsigned int reg2 = snd_soc_component_read(component, WM9081_ANALOGUE_SPEAKER_2);
/* Are we changing anything? */
if (ucontrol->value.enumerated.item[0] ==
((reg2 & WM9081_SPK_MODE) != 0))
return 0;
/* Don't try to change modes while enabled */
if (reg_pwr & WM9081_SPK_ENA)
return -EINVAL;
if (ucontrol->value.enumerated.item[0]) {
/* Class AB */
reg2 &= ~(WM9081_SPK_INV_MUTE | WM9081_OUT_SPK_CTRL);
reg2 |= WM9081_SPK_MODE;
} else {
/* Class D */
reg2 |= WM9081_SPK_INV_MUTE | WM9081_OUT_SPK_CTRL;
reg2 &= ~WM9081_SPK_MODE;
}
snd_soc_component_write(component, WM9081_ANALOGUE_SPEAKER_2, reg2);
return 0;
}
static const struct snd_kcontrol_new wm9081_snd_controls[] = {
SOC_SINGLE_TLV("IN1 Volume", WM9081_ANALOGUE_MIXER, 1, 1, 1, in_tlv),
SOC_SINGLE_TLV("IN2 Volume", WM9081_ANALOGUE_MIXER, 3, 1, 1, in_tlv),
SOC_SINGLE_TLV("Playback Volume", WM9081_DAC_DIGITAL_1, 1, 96, 0, dac_tlv),
SOC_SINGLE("LINEOUT Switch", WM9081_ANALOGUE_LINEOUT, 7, 1, 1),
SOC_SINGLE("LINEOUT ZC Switch", WM9081_ANALOGUE_LINEOUT, 6, 1, 0),
SOC_SINGLE_TLV("LINEOUT Volume", WM9081_ANALOGUE_LINEOUT, 0, 63, 0, out_tlv),
SOC_SINGLE("DRC Switch", WM9081_DRC_1, 15, 1, 0),
SOC_ENUM("DRC High Slope", drc_high),
SOC_ENUM("DRC Low Slope", drc_low),
SOC_SINGLE_TLV("DRC Input Volume", WM9081_DRC_4, 5, 60, 1, drc_in_tlv),
SOC_SINGLE_TLV("DRC Output Volume", WM9081_DRC_4, 0, 30, 1, drc_out_tlv),
SOC_SINGLE_TLV("DRC Minimum Volume", WM9081_DRC_2, 2, 3, 1, drc_min_tlv),
SOC_SINGLE_TLV("DRC Maximum Volume", WM9081_DRC_2, 0, 3, 0, drc_max_tlv),
SOC_ENUM("DRC Attack", drc_atk),
SOC_ENUM("DRC Decay", drc_dcy),
SOC_SINGLE("DRC Quick Release Switch", WM9081_DRC_1, 2, 1, 0),
SOC_SINGLE_TLV("DRC Quick Release Volume", WM9081_DRC_2, 6, 3, 0, drc_qr_tlv),
SOC_ENUM("DRC Quick Release Decay", drc_qr_dcy),
SOC_SINGLE_TLV("DRC Startup Volume", WM9081_DRC_1, 6, 18, 0, drc_startup_tlv),
SOC_SINGLE("EQ Switch", WM9081_EQ_1, 0, 1, 0),
SOC_SINGLE("Speaker DC Volume", WM9081_ANALOGUE_SPEAKER_1, 3, 5, 0),
SOC_SINGLE("Speaker AC Volume", WM9081_ANALOGUE_SPEAKER_1, 0, 5, 0),
SOC_SINGLE("Speaker Switch", WM9081_ANALOGUE_SPEAKER_PGA, 7, 1, 1),
SOC_SINGLE("Speaker ZC Switch", WM9081_ANALOGUE_SPEAKER_PGA, 6, 1, 0),
SOC_SINGLE_TLV("Speaker Volume", WM9081_ANALOGUE_SPEAKER_PGA, 0, 63, 0,
out_tlv),
SOC_ENUM("DAC Deemphasis", dac_deemph),
SOC_ENUM_EXT("Speaker Mode", speaker_mode, speaker_mode_get, speaker_mode_put),
};
static const struct snd_kcontrol_new wm9081_eq_controls[] = {
SOC_SINGLE_TLV("EQ1 Volume", WM9081_EQ_1, 11, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ2 Volume", WM9081_EQ_1, 6, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ3 Volume", WM9081_EQ_1, 1, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ4 Volume", WM9081_EQ_2, 11, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ5 Volume", WM9081_EQ_2, 6, 24, 0, eq_tlv),
};
static const struct snd_kcontrol_new mixer[] = {
SOC_DAPM_SINGLE("IN1 Switch", WM9081_ANALOGUE_MIXER, 0, 1, 0),
SOC_DAPM_SINGLE("IN2 Switch", WM9081_ANALOGUE_MIXER, 2, 1, 0),
SOC_DAPM_SINGLE("Playback Switch", WM9081_ANALOGUE_MIXER, 4, 1, 0),
};
struct _fll_div {
u16 fll_fratio;
u16 fll_outdiv;
u16 fll_clk_ref_div;
u16 n;
u16 k;
};
/* The size in bits of the FLL divide multiplied by 10
* to allow rounding later */
#define FIXED_FLL_SIZE ((1 << 16) * 10)
static struct {
unsigned int min;
unsigned int max;
u16 fll_fratio;
int ratio;
} fll_fratios[] = {
{ 0, 64000, 4, 16 },
{ 64000, 128000, 3, 8 },
{ 128000, 256000, 2, 4 },
{ 256000, 1000000, 1, 2 },
{ 1000000, 13500000, 0, 1 },
};
static int fll_factors(struct _fll_div *fll_div, unsigned int Fref,
unsigned int Fout)
{
u64 Kpart;
unsigned int K, Ndiv, Nmod, target;
unsigned int div;
int i;
/* Fref must be <=13.5MHz */
div = 1;
while ((Fref / div) > 13500000) {
div *= 2;
if (div > 8) {
pr_err("Can't scale %dMHz input down to <=13.5MHz\n",
Fref);
return -EINVAL;
}
}
fll_div->fll_clk_ref_div = div / 2;
pr_debug("Fref=%u Fout=%u\n", Fref, Fout);
/* Apply the division for our remaining calculations */
Fref /= div;
/* Fvco should be 90-100MHz; don't check the upper bound */
div = 0;
target = Fout * 2;
while (target < 90000000) {
div++;
target *= 2;
if (div > 7) {
pr_err("Unable to find FLL_OUTDIV for Fout=%uHz\n",
Fout);
return -EINVAL;
}
}
fll_div->fll_outdiv = div;
pr_debug("Fvco=%dHz\n", target);
/* Find an appropriate FLL_FRATIO and factor it out of the target */
for (i = 0; i < ARRAY_SIZE(fll_fratios); i++) {
if (fll_fratios[i].min <= Fref && Fref <= fll_fratios[i].max) {
fll_div->fll_fratio = fll_fratios[i].fll_fratio;
target /= fll_fratios[i].ratio;
break;
}
}
if (i == ARRAY_SIZE(fll_fratios)) {
pr_err("Unable to find FLL_FRATIO for Fref=%uHz\n", Fref);
return -EINVAL;
}
/* Now, calculate N.K */
Ndiv = target / Fref;
fll_div->n = Ndiv;
Nmod = target % Fref;
pr_debug("Nmod=%d\n", Nmod);
/* Calculate fractional part - scale up so we can round. */
Kpart = FIXED_FLL_SIZE * (long long)Nmod;
do_div(Kpart, Fref);
K = Kpart & 0xFFFFFFFF;
if ((K % 10) >= 5)
K += 5;
/* Move down to proper range now rounding is done */
fll_div->k = K / 10;
pr_debug("N=%x K=%x FLL_FRATIO=%x FLL_OUTDIV=%x FLL_CLK_REF_DIV=%x\n",
fll_div->n, fll_div->k,
fll_div->fll_fratio, fll_div->fll_outdiv,
fll_div->fll_clk_ref_div);
return 0;
}
static int wm9081_set_fll(struct snd_soc_component *component, int fll_id,
unsigned int Fref, unsigned int Fout)
{
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
u16 reg1, reg4, reg5;
struct _fll_div fll_div;
int ret;
int clk_sys_reg;
/* Any change? */
if (Fref == wm9081->fll_fref && Fout == wm9081->fll_fout)
return 0;
/* Disable the FLL */
if (Fout == 0) {
dev_dbg(component->dev, "FLL disabled\n");
wm9081->fll_fref = 0;
wm9081->fll_fout = 0;
return 0;
}
ret = fll_factors(&fll_div, Fref, Fout);
if (ret != 0)
return ret;
reg5 = snd_soc_component_read(component, WM9081_FLL_CONTROL_5);
reg5 &= ~WM9081_FLL_CLK_SRC_MASK;
switch (fll_id) {
case WM9081_SYSCLK_FLL_MCLK:
reg5 |= 0x1;
break;
default:
dev_err(component->dev, "Unknown FLL ID %d\n", fll_id);
return -EINVAL;
}
/* Disable CLK_SYS while we reconfigure */
clk_sys_reg = snd_soc_component_read(component, WM9081_CLOCK_CONTROL_3);
if (clk_sys_reg & WM9081_CLK_SYS_ENA)
snd_soc_component_write(component, WM9081_CLOCK_CONTROL_3,
clk_sys_reg & ~WM9081_CLK_SYS_ENA);
/* Any FLL configuration change requires that the FLL be
* disabled first. */
reg1 = snd_soc_component_read(component, WM9081_FLL_CONTROL_1);
reg1 &= ~WM9081_FLL_ENA;
snd_soc_component_write(component, WM9081_FLL_CONTROL_1, reg1);
/* Apply the configuration */
if (fll_div.k)
reg1 |= WM9081_FLL_FRAC_MASK;
else
reg1 &= ~WM9081_FLL_FRAC_MASK;
snd_soc_component_write(component, WM9081_FLL_CONTROL_1, reg1);
snd_soc_component_write(component, WM9081_FLL_CONTROL_2,
(fll_div.fll_outdiv << WM9081_FLL_OUTDIV_SHIFT) |
(fll_div.fll_fratio << WM9081_FLL_FRATIO_SHIFT));
snd_soc_component_write(component, WM9081_FLL_CONTROL_3, fll_div.k);
reg4 = snd_soc_component_read(component, WM9081_FLL_CONTROL_4);
reg4 &= ~WM9081_FLL_N_MASK;
reg4 |= fll_div.n << WM9081_FLL_N_SHIFT;
snd_soc_component_write(component, WM9081_FLL_CONTROL_4, reg4);
reg5 &= ~WM9081_FLL_CLK_REF_DIV_MASK;
reg5 |= fll_div.fll_clk_ref_div << WM9081_FLL_CLK_REF_DIV_SHIFT;
snd_soc_component_write(component, WM9081_FLL_CONTROL_5, reg5);
/* Set gain to the recommended value */
snd_soc_component_update_bits(component, WM9081_FLL_CONTROL_4,
WM9081_FLL_GAIN_MASK, 0);
/* Enable the FLL */
snd_soc_component_write(component, WM9081_FLL_CONTROL_1, reg1 | WM9081_FLL_ENA);
/* Then bring CLK_SYS up again if it was disabled */
if (clk_sys_reg & WM9081_CLK_SYS_ENA)
snd_soc_component_write(component, WM9081_CLOCK_CONTROL_3, clk_sys_reg);
dev_dbg(component->dev, "FLL enabled at %dHz->%dHz\n", Fref, Fout);
wm9081->fll_fref = Fref;
wm9081->fll_fout = Fout;
return 0;
}
static int configure_clock(struct snd_soc_component *component)
{
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
int new_sysclk, i, target;
unsigned int reg;
int ret = 0;
int mclkdiv = 0;
int fll = 0;
switch (wm9081->sysclk_source) {
case WM9081_SYSCLK_MCLK:
if (wm9081->mclk_rate > 12225000) {
mclkdiv = 1;
wm9081->sysclk_rate = wm9081->mclk_rate / 2;
} else {
wm9081->sysclk_rate = wm9081->mclk_rate;
}
wm9081_set_fll(component, WM9081_SYSCLK_FLL_MCLK, 0, 0);
break;
case WM9081_SYSCLK_FLL_MCLK:
/* If we have a sample rate calculate a CLK_SYS that
* gives us a suitable DAC configuration, plus BCLK.
* Ideally we would check to see if we can clock
* directly from MCLK and only use the FLL if this is
* not the case, though care must be taken with free
* running mode.
*/
if (wm9081->master && wm9081->bclk) {
/* Make sure we can generate CLK_SYS and BCLK
* and that we've got 3MHz for optimal
* performance. */
for (i = 0; i < ARRAY_SIZE(clk_sys_rates); i++) {
target = wm9081->fs * clk_sys_rates[i].ratio;
new_sysclk = target;
if (target >= wm9081->bclk &&
target > 3000000)
break;
}
if (i == ARRAY_SIZE(clk_sys_rates))
return -EINVAL;
} else if (wm9081->fs) {
for (i = 0; i < ARRAY_SIZE(clk_sys_rates); i++) {
new_sysclk = clk_sys_rates[i].ratio
* wm9081->fs;
if (new_sysclk > 3000000)
break;
}
if (i == ARRAY_SIZE(clk_sys_rates))
return -EINVAL;
} else {
new_sysclk = 12288000;
}
ret = wm9081_set_fll(component, WM9081_SYSCLK_FLL_MCLK,
wm9081->mclk_rate, new_sysclk);
if (ret == 0) {
wm9081->sysclk_rate = new_sysclk;
/* Switch SYSCLK over to FLL */
fll = 1;
} else {
wm9081->sysclk_rate = wm9081->mclk_rate;
}
break;
default:
return -EINVAL;
}
reg = snd_soc_component_read(component, WM9081_CLOCK_CONTROL_1);
if (mclkdiv)
reg |= WM9081_MCLKDIV2;
else
reg &= ~WM9081_MCLKDIV2;
snd_soc_component_write(component, WM9081_CLOCK_CONTROL_1, reg);
reg = snd_soc_component_read(component, WM9081_CLOCK_CONTROL_3);
if (fll)
reg |= WM9081_CLK_SRC_SEL;
else
reg &= ~WM9081_CLK_SRC_SEL;
snd_soc_component_write(component, WM9081_CLOCK_CONTROL_3, reg);
dev_dbg(component->dev, "CLK_SYS is %dHz\n", wm9081->sysclk_rate);
return ret;
}
static int clk_sys_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
/* This should be done on init() for bypass paths */
switch (wm9081->sysclk_source) {
case WM9081_SYSCLK_MCLK:
dev_dbg(component->dev, "Using %dHz MCLK\n", wm9081->mclk_rate);
break;
case WM9081_SYSCLK_FLL_MCLK:
dev_dbg(component->dev, "Using %dHz MCLK with FLL\n",
wm9081->mclk_rate);
break;
default:
dev_err(component->dev, "System clock not configured\n");
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
configure_clock(component);
break;
case SND_SOC_DAPM_POST_PMD:
/* Disable the FLL if it's running */
wm9081_set_fll(component, 0, 0, 0);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget wm9081_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1"),
SND_SOC_DAPM_INPUT("IN2"),
SND_SOC_DAPM_DAC("DAC", NULL, WM9081_POWER_MANAGEMENT, 0, 0),
SND_SOC_DAPM_MIXER_NAMED_CTL("Mixer", SND_SOC_NOPM, 0, 0,
mixer, ARRAY_SIZE(mixer)),
SND_SOC_DAPM_PGA("LINEOUT PGA", WM9081_POWER_MANAGEMENT, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA("Speaker PGA", WM9081_POWER_MANAGEMENT, 2, 0, NULL, 0),
SND_SOC_DAPM_OUT_DRV("Speaker", WM9081_POWER_MANAGEMENT, 1, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("LINEOUT"),
SND_SOC_DAPM_OUTPUT("SPKN"),
SND_SOC_DAPM_OUTPUT("SPKP"),
SND_SOC_DAPM_SUPPLY("CLK_SYS", WM9081_CLOCK_CONTROL_3, 0, 0, clk_sys_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("CLK_DSP", WM9081_CLOCK_CONTROL_3, 1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TOCLK", WM9081_CLOCK_CONTROL_3, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TSENSE", WM9081_POWER_MANAGEMENT, 7, 0, NULL, 0),
};
static const struct snd_soc_dapm_route wm9081_audio_paths[] = {
{ "DAC", NULL, "CLK_SYS" },
{ "DAC", NULL, "CLK_DSP" },
{ "DAC", NULL, "AIF" },
{ "Mixer", "IN1 Switch", "IN1" },
{ "Mixer", "IN2 Switch", "IN2" },
{ "Mixer", "Playback Switch", "DAC" },
{ "LINEOUT PGA", NULL, "Mixer" },
{ "LINEOUT PGA", NULL, "TOCLK" },
{ "LINEOUT PGA", NULL, "CLK_SYS" },
{ "LINEOUT", NULL, "LINEOUT PGA" },
{ "Speaker PGA", NULL, "Mixer" },
{ "Speaker PGA", NULL, "TOCLK" },
{ "Speaker PGA", NULL, "CLK_SYS" },
{ "Speaker", NULL, "Speaker PGA" },
{ "Speaker", NULL, "TSENSE" },
{ "SPKN", NULL, "Speaker" },
{ "SPKP", NULL, "Speaker" },
};
static int wm9081_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* VMID=2*40k */
snd_soc_component_update_bits(component, WM9081_VMID_CONTROL,
WM9081_VMID_SEL_MASK, 0x2);
/* Normal bias current */
snd_soc_component_update_bits(component, WM9081_BIAS_CONTROL_1,
WM9081_STBY_BIAS_ENA, 0);
break;
case SND_SOC_BIAS_STANDBY:
/* Initial cold start */
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
regcache_cache_only(wm9081->regmap, false);
regcache_sync(wm9081->regmap);
/* Disable LINEOUT discharge */
snd_soc_component_update_bits(component, WM9081_ANTI_POP_CONTROL,
WM9081_LINEOUT_DISCH, 0);
/* Select startup bias source */
snd_soc_component_update_bits(component, WM9081_BIAS_CONTROL_1,
WM9081_BIAS_SRC | WM9081_BIAS_ENA,
WM9081_BIAS_SRC | WM9081_BIAS_ENA);
/* VMID 2*4k; Soft VMID ramp enable */
snd_soc_component_update_bits(component, WM9081_VMID_CONTROL,
WM9081_VMID_RAMP |
WM9081_VMID_SEL_MASK,
WM9081_VMID_RAMP | 0x6);
mdelay(100);
/* Normal bias enable & soft start off */
snd_soc_component_update_bits(component, WM9081_VMID_CONTROL,
WM9081_VMID_RAMP, 0);
/* Standard bias source */
snd_soc_component_update_bits(component, WM9081_BIAS_CONTROL_1,
WM9081_BIAS_SRC, 0);
}
/* VMID 2*240k */
snd_soc_component_update_bits(component, WM9081_VMID_CONTROL,
WM9081_VMID_SEL_MASK, 0x04);
/* Standby bias current on */
snd_soc_component_update_bits(component, WM9081_BIAS_CONTROL_1,
WM9081_STBY_BIAS_ENA,
WM9081_STBY_BIAS_ENA);
break;
case SND_SOC_BIAS_OFF:
/* Startup bias source and disable bias */
snd_soc_component_update_bits(component, WM9081_BIAS_CONTROL_1,
WM9081_BIAS_SRC | WM9081_BIAS_ENA,
WM9081_BIAS_SRC);
/* Disable VMID with soft ramping */
snd_soc_component_update_bits(component, WM9081_VMID_CONTROL,
WM9081_VMID_RAMP | WM9081_VMID_SEL_MASK,
WM9081_VMID_RAMP);
/* Actively discharge LINEOUT */
snd_soc_component_update_bits(component, WM9081_ANTI_POP_CONTROL,
WM9081_LINEOUT_DISCH,
WM9081_LINEOUT_DISCH);
regcache_cache_only(wm9081->regmap, true);
break;
}
return 0;
}
static int wm9081_set_dai_fmt(struct snd_soc_dai *dai,
unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
unsigned int aif2 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_2);
aif2 &= ~(WM9081_AIF_BCLK_INV | WM9081_AIF_LRCLK_INV |
WM9081_BCLK_DIR | WM9081_LRCLK_DIR | WM9081_AIF_FMT_MASK);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
wm9081->master = 0;
break;
case SND_SOC_DAIFMT_CBS_CFM:
aif2 |= WM9081_LRCLK_DIR;
wm9081->master = 1;
break;
case SND_SOC_DAIFMT_CBM_CFS:
aif2 |= WM9081_BCLK_DIR;
wm9081->master = 1;
break;
case SND_SOC_DAIFMT_CBM_CFM:
aif2 |= WM9081_LRCLK_DIR | WM9081_BCLK_DIR;
wm9081->master = 1;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_B:
aif2 |= WM9081_AIF_LRCLK_INV;
fallthrough;
case SND_SOC_DAIFMT_DSP_A:
aif2 |= 0x3;
break;
case SND_SOC_DAIFMT_I2S:
aif2 |= 0x2;
break;
case SND_SOC_DAIFMT_RIGHT_J:
break;
case SND_SOC_DAIFMT_LEFT_J:
aif2 |= 0x1;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
/* frame inversion not valid for DSP modes */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
aif2 |= WM9081_AIF_BCLK_INV;
break;
default:
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
aif2 |= WM9081_AIF_BCLK_INV | WM9081_AIF_LRCLK_INV;
break;
case SND_SOC_DAIFMT_IB_NF:
aif2 |= WM9081_AIF_BCLK_INV;
break;
case SND_SOC_DAIFMT_NB_IF:
aif2 |= WM9081_AIF_LRCLK_INV;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
snd_soc_component_write(component, WM9081_AUDIO_INTERFACE_2, aif2);
return 0;
}
static int wm9081_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
int ret, i, best, best_val, cur_val;
unsigned int clk_ctrl2, aif1, aif2, aif3, aif4;
clk_ctrl2 = snd_soc_component_read(component, WM9081_CLOCK_CONTROL_2);
clk_ctrl2 &= ~(WM9081_CLK_SYS_RATE_MASK | WM9081_SAMPLE_RATE_MASK);
aif1 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_1);
aif2 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_2);
aif2 &= ~WM9081_AIF_WL_MASK;
aif3 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_3);
aif3 &= ~WM9081_BCLK_DIV_MASK;
aif4 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_4);
aif4 &= ~WM9081_LRCLK_RATE_MASK;
wm9081->fs = params_rate(params);
if (wm9081->tdm_width) {
/* If TDM is set up then that fixes our BCLK. */
int slots = ((aif1 & WM9081_AIFDAC_TDM_MODE_MASK) >>
WM9081_AIFDAC_TDM_MODE_SHIFT) + 1;
wm9081->bclk = wm9081->fs * wm9081->tdm_width * slots;
} else {
/* Otherwise work out a BCLK from the sample size */
wm9081->bclk = 2 * wm9081->fs;
switch (params_width(params)) {
case 16:
wm9081->bclk *= 16;
break;
case 20:
wm9081->bclk *= 20;
aif2 |= 0x4;
break;
case 24:
wm9081->bclk *= 24;
aif2 |= 0x8;
break;
case 32:
wm9081->bclk *= 32;
aif2 |= 0xc;
break;
default:
return -EINVAL;
}
}
dev_dbg(component->dev, "Target BCLK is %dHz\n", wm9081->bclk);
ret = configure_clock(component);
if (ret != 0)
return ret;
/* Select nearest CLK_SYS_RATE */
best = 0;
best_val = abs((wm9081->sysclk_rate / clk_sys_rates[0].ratio)
- wm9081->fs);
for (i = 1; i < ARRAY_SIZE(clk_sys_rates); i++) {
cur_val = abs((wm9081->sysclk_rate /
clk_sys_rates[i].ratio) - wm9081->fs);
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
dev_dbg(component->dev, "Selected CLK_SYS_RATIO of %d\n",
clk_sys_rates[best].ratio);
clk_ctrl2 |= (clk_sys_rates[best].clk_sys_rate
<< WM9081_CLK_SYS_RATE_SHIFT);
/* SAMPLE_RATE */
best = 0;
best_val = abs(wm9081->fs - sample_rates[0].rate);
for (i = 1; i < ARRAY_SIZE(sample_rates); i++) {
/* Closest match */
cur_val = abs(wm9081->fs - sample_rates[i].rate);
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
dev_dbg(component->dev, "Selected SAMPLE_RATE of %dHz\n",
sample_rates[best].rate);
clk_ctrl2 |= (sample_rates[best].sample_rate
<< WM9081_SAMPLE_RATE_SHIFT);
/* BCLK_DIV */
best = 0;
best_val = INT_MAX;
for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) {
cur_val = ((wm9081->sysclk_rate * 10) / bclk_divs[i].div)
- wm9081->bclk;
if (cur_val < 0) /* Table is sorted */
break;
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
wm9081->bclk = (wm9081->sysclk_rate * 10) / bclk_divs[best].div;
dev_dbg(component->dev, "Selected BCLK_DIV of %d for %dHz BCLK\n",
bclk_divs[best].div, wm9081->bclk);
aif3 |= bclk_divs[best].bclk_div;
/* LRCLK is a simple fraction of BCLK */
dev_dbg(component->dev, "LRCLK_RATE is %d\n", wm9081->bclk / wm9081->fs);
aif4 |= wm9081->bclk / wm9081->fs;
/* Apply a ReTune Mobile configuration if it's in use */
if (wm9081->pdata.num_retune_configs) {
struct wm9081_pdata *pdata = &wm9081->pdata;
struct wm9081_retune_mobile_setting *s;
int eq1;
best = 0;
best_val = abs(pdata->retune_configs[0].rate - wm9081->fs);
for (i = 0; i < pdata->num_retune_configs; i++) {
cur_val = abs(pdata->retune_configs[i].rate -
wm9081->fs);
if (cur_val < best_val) {
best_val = cur_val;
best = i;
}
}
s = &pdata->retune_configs[best];
dev_dbg(component->dev, "ReTune Mobile %s tuned for %dHz\n",
s->name, s->rate);
/* If the EQ is enabled then disable it while we write out */
eq1 = snd_soc_component_read(component, WM9081_EQ_1) & WM9081_EQ_ENA;
if (eq1 & WM9081_EQ_ENA)
snd_soc_component_write(component, WM9081_EQ_1, 0);
/* Write out the other values */
for (i = 1; i < ARRAY_SIZE(s->config); i++)
snd_soc_component_write(component, WM9081_EQ_1 + i, s->config[i]);
eq1 |= (s->config[0] & ~WM9081_EQ_ENA);
snd_soc_component_write(component, WM9081_EQ_1, eq1);
}
snd_soc_component_write(component, WM9081_CLOCK_CONTROL_2, clk_ctrl2);
snd_soc_component_write(component, WM9081_AUDIO_INTERFACE_2, aif2);
snd_soc_component_write(component, WM9081_AUDIO_INTERFACE_3, aif3);
snd_soc_component_write(component, WM9081_AUDIO_INTERFACE_4, aif4);
return 0;
}
static int wm9081_mute(struct snd_soc_dai *codec_dai, int mute, int direction)
{
struct snd_soc_component *component = codec_dai->component;
unsigned int reg;
reg = snd_soc_component_read(component, WM9081_DAC_DIGITAL_2);
if (mute)
reg |= WM9081_DAC_MUTE;
else
reg &= ~WM9081_DAC_MUTE;
snd_soc_component_write(component, WM9081_DAC_DIGITAL_2, reg);
return 0;
}
static int wm9081_set_sysclk(struct snd_soc_component *component, int clk_id,
int source, unsigned int freq, int dir)
{
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
switch (clk_id) {
case WM9081_SYSCLK_MCLK:
case WM9081_SYSCLK_FLL_MCLK:
wm9081->sysclk_source = clk_id;
wm9081->mclk_rate = freq;
break;
default:
return -EINVAL;
}
return 0;
}
static int wm9081_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
unsigned int aif1 = snd_soc_component_read(component, WM9081_AUDIO_INTERFACE_1);
aif1 &= ~(WM9081_AIFDAC_TDM_SLOT_MASK | WM9081_AIFDAC_TDM_MODE_MASK);
if (slots < 0 || slots > 4)
return -EINVAL;
wm9081->tdm_width = slot_width;
if (slots == 0)
slots = 1;
aif1 |= (slots - 1) << WM9081_AIFDAC_TDM_MODE_SHIFT;
switch (rx_mask) {
case 1:
break;
case 2:
aif1 |= 0x10;
break;
case 4:
aif1 |= 0x20;
break;
case 8:
aif1 |= 0x30;
break;
default:
return -EINVAL;
}
snd_soc_component_write(component, WM9081_AUDIO_INTERFACE_1, aif1);
return 0;
}
#define WM9081_RATES SNDRV_PCM_RATE_8000_96000
#define WM9081_FORMATS \
(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops wm9081_dai_ops = {
.hw_params = wm9081_hw_params,
.set_fmt = wm9081_set_dai_fmt,
.mute_stream = wm9081_mute,
.set_tdm_slot = wm9081_set_tdm_slot,
.no_capture_mute = 1,
};
/* We report two channels because the CODEC processes a stereo signal, even
* though it is only capable of handling a mono output.
*/
static struct snd_soc_dai_driver wm9081_dai = {
.name = "wm9081-hifi",
.playback = {
.stream_name = "AIF",
.channels_min = 1,
.channels_max = 2,
.rates = WM9081_RATES,
.formats = WM9081_FORMATS,
},
.ops = &wm9081_dai_ops,
};
static int wm9081_probe(struct snd_soc_component *component)
{
struct wm9081_priv *wm9081 = snd_soc_component_get_drvdata(component);
/* Enable zero cross by default */
snd_soc_component_update_bits(component, WM9081_ANALOGUE_LINEOUT,
WM9081_LINEOUTZC, WM9081_LINEOUTZC);
snd_soc_component_update_bits(component, WM9081_ANALOGUE_SPEAKER_PGA,
WM9081_SPKPGAZC, WM9081_SPKPGAZC);
if (!wm9081->pdata.num_retune_configs) {
dev_dbg(component->dev,
"No ReTune Mobile data, using normal EQ\n");
snd_soc_add_component_controls(component, wm9081_eq_controls,
ARRAY_SIZE(wm9081_eq_controls));
}
return 0;
}
static const struct snd_soc_component_driver soc_component_dev_wm9081 = {
.probe = wm9081_probe,
.set_sysclk = wm9081_set_sysclk,
.set_bias_level = wm9081_set_bias_level,
.controls = wm9081_snd_controls,
.num_controls = ARRAY_SIZE(wm9081_snd_controls),
.dapm_widgets = wm9081_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(wm9081_dapm_widgets),
.dapm_routes = wm9081_audio_paths,
.num_dapm_routes = ARRAY_SIZE(wm9081_audio_paths),
.use_pmdown_time = 1,
.endianness = 1,
};
static const struct regmap_config wm9081_regmap = {
.reg_bits = 8,
.val_bits = 16,
.max_register = WM9081_MAX_REGISTER,
.reg_defaults = wm9081_reg,
.num_reg_defaults = ARRAY_SIZE(wm9081_reg),
.volatile_reg = wm9081_volatile_register,
.readable_reg = wm9081_readable_register,
.cache_type = REGCACHE_RBTREE,
};
static int wm9081_i2c_probe(struct i2c_client *i2c)
{
struct wm9081_priv *wm9081;
unsigned int reg;
int ret;
wm9081 = devm_kzalloc(&i2c->dev, sizeof(struct wm9081_priv),
GFP_KERNEL);
if (wm9081 == NULL)
return -ENOMEM;
i2c_set_clientdata(i2c, wm9081);
wm9081->regmap = devm_regmap_init_i2c(i2c, &wm9081_regmap);
if (IS_ERR(wm9081->regmap)) {
ret = PTR_ERR(wm9081->regmap);
dev_err(&i2c->dev, "regmap_init() failed: %d\n", ret);
return ret;
}
ret = regmap_read(wm9081->regmap, WM9081_SOFTWARE_RESET, &reg);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to read chip ID: %d\n", ret);
return ret;
}
if (reg != 0x9081) {
dev_err(&i2c->dev, "Device is not a WM9081: ID=0x%x\n", reg);
return -EINVAL;
}
ret = wm9081_reset(wm9081->regmap);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to issue reset\n");
return ret;
}
if (dev_get_platdata(&i2c->dev))
memcpy(&wm9081->pdata, dev_get_platdata(&i2c->dev),
sizeof(wm9081->pdata));
reg = 0;
if (wm9081->pdata.irq_high)
reg |= WM9081_IRQ_POL;
if (!wm9081->pdata.irq_cmos)
reg |= WM9081_IRQ_OP_CTRL;
regmap_update_bits(wm9081->regmap, WM9081_INTERRUPT_CONTROL,
WM9081_IRQ_POL | WM9081_IRQ_OP_CTRL, reg);
regcache_cache_only(wm9081->regmap, true);
ret = devm_snd_soc_register_component(&i2c->dev,
&soc_component_dev_wm9081, &wm9081_dai, 1);
if (ret < 0)
return ret;
return 0;
}
static void wm9081_i2c_remove(struct i2c_client *client)
{}
static const struct i2c_device_id wm9081_i2c_id[] = {
{ "wm9081", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, wm9081_i2c_id);
static struct i2c_driver wm9081_i2c_driver = {
.driver = {
.name = "wm9081",
},
.probe_new = wm9081_i2c_probe,
.remove = wm9081_i2c_remove,
.id_table = wm9081_i2c_id,
};
module_i2c_driver(wm9081_i2c_driver);
MODULE_DESCRIPTION("ASoC WM9081 driver");
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
MODULE_LICENSE("GPL");