linuxdebug/sound/oss/dmasound/dmasound_atari.c

1622 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/sound/oss/dmasound/dmasound_atari.c
*
* Atari TT and Falcon DMA Sound Driver
*
* See linux/sound/oss/dmasound/dmasound_core.c for copyright and credits
* prior to 28/01/2001
*
* 28/01/2001 [0.1] Iain Sandoe
* - added versioning
* - put in and populated the hardware_afmts field.
* [0.2] - put in SNDCTL_DSP_GETCAPS value.
* 01/02/2001 [0.3] - put in default hard/soft settings.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/soundcard.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <asm/atariints.h>
#include <asm/atari_stram.h>
#include "dmasound.h"
#define DMASOUND_ATARI_REVISION 0
#define DMASOUND_ATARI_EDITION 3
extern void atari_microwire_cmd(int cmd);
static int is_falcon;
static int write_sq_ignore_int; /* ++TeSche: used for Falcon */
static int expand_bal; /* Balance factor for expanding (not volume!) */
static int expand_data; /* Data for expanding */
/*** Translations ************************************************************/
/* ++TeSche: radically changed for new expanding purposes...
*
* These two routines now deal with copying/expanding/translating the samples
* from user space into our buffer at the right frequency. They take care about
* how much data there's actually to read, how much buffer space there is and
* to convert samples into the right frequency/encoding. They will only work on
* complete samples so it may happen they leave some bytes in the input stream
* if the user didn't write a multiple of the current sample size. They both
* return the number of bytes they've used from both streams so you may detect
* such a situation. Luckily all programs should be able to cope with that.
*
* I think I've optimized anything as far as one can do in plain C, all
* variables should fit in registers and the loops are really short. There's
* one loop for every possible situation. Writing a more generalized and thus
* parameterized loop would only produce slower code. Feel free to optimize
* this in assembler if you like. :)
*
* I think these routines belong here because they're not yet really hardware
* independent, especially the fact that the Falcon can play 16bit samples
* only in stereo is hardcoded in both of them!
*
* ++geert: split in even more functions (one per format)
*/
static ssize_t ata_ct_law(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_s8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_u8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_s16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_u16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_s16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ct_u16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_law(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_s8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_u8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_s16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_u16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_s16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
static ssize_t ata_ctx_u16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft);
/*** Low level stuff *********************************************************/
static void *AtaAlloc(unsigned int size, gfp_t flags);
static void AtaFree(void *, unsigned int size);
static int AtaIrqInit(void);
#ifdef MODULE
static void AtaIrqCleanUp(void);
#endif /* MODULE */
static int AtaSetBass(int bass);
static int AtaSetTreble(int treble);
static void TTSilence(void);
static void TTInit(void);
static int TTSetFormat(int format);
static int TTSetVolume(int volume);
static int TTSetGain(int gain);
static void FalconSilence(void);
static void FalconInit(void);
static int FalconSetFormat(int format);
static int FalconSetVolume(int volume);
static void AtaPlayNextFrame(int index);
static void AtaPlay(void);
static irqreturn_t AtaInterrupt(int irq, void *dummy);
/*** Mid level stuff *********************************************************/
static void TTMixerInit(void);
static void FalconMixerInit(void);
static int AtaMixerIoctl(u_int cmd, u_long arg);
static int TTMixerIoctl(u_int cmd, u_long arg);
static int FalconMixerIoctl(u_int cmd, u_long arg);
static int AtaWriteSqSetup(void);
static int AtaSqOpen(fmode_t mode);
static int TTStateInfo(char *buffer, size_t space);
static int FalconStateInfo(char *buffer, size_t space);
/*** Translations ************************************************************/
static ssize_t ata_ct_law(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
char *table = dmasound.soft.format == AFMT_MU_LAW ? dmasound_ulaw2dma8
: dmasound_alaw2dma8;
ssize_t count, used;
u_char *p = &frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft);
if (dmasound.soft.stereo)
count &= ~1;
used = count;
while (count > 0) {
u_char data;
if (get_user(data, userPtr++))
return -EFAULT;
*p++ = table[data];
count--;
}
*frameUsed += used;
return used;
}
static ssize_t ata_ct_s8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
void *p = &frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft);
if (dmasound.soft.stereo)
count &= ~1;
used = count;
if (copy_from_user(p, userPtr, count))
return -EFAULT;
*frameUsed += used;
return used;
}
static ssize_t ata_ct_u8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
if (!dmasound.soft.stereo) {
u_char *p = &frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft);
used = count;
while (count > 0) {
u_char data;
if (get_user(data, userPtr++))
return -EFAULT;
*p++ = data ^ 0x80;
count--;
}
} else {
u_short *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>1;
used = count*2;
while (count > 0) {
u_short data;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
*p++ = data ^ 0x8080;
count--;
}
}
*frameUsed += used;
return used;
}
static ssize_t ata_ct_s16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>1;
used = count*2;
while (count > 0) {
u_short data;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
*p++ = data;
*p++ = data;
count--;
}
*frameUsed += used*2;
} else {
void *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft) & ~3;
used = count;
if (copy_from_user(p, userPtr, count))
return -EFAULT;
*frameUsed += used;
}
return used;
}
static ssize_t ata_ct_u16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>1;
used = count*2;
while (count > 0) {
u_short data;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data ^= 0x8000;
*p++ = data;
*p++ = data;
count--;
}
*frameUsed += used*2;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>2;
used = count*4;
while (count > 0) {
u_int data;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
*p++ = data ^ 0x80008000;
count--;
}
*frameUsed += used;
}
return used;
}
static ssize_t ata_ct_s16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
count = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>1;
used = count*2;
while (count > 0) {
u_short data;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data = le2be16(data);
*p++ = data;
*p++ = data;
count--;
}
*frameUsed += used*2;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>2;
used = count*4;
while (count > 0) {
u_long data;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
data = le2be16dbl(data);
*p++ = data;
count--;
}
*frameUsed += used;
}
return used;
}
static ssize_t ata_ct_u16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
ssize_t count, used;
count = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>1;
used = count*2;
while (count > 0) {
u_short data;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data = le2be16(data) ^ 0x8000;
*p++ = data;
*p++ = data;
}
*frameUsed += used*2;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
count = min_t(unsigned long, userCount, frameLeft)>>2;
used = count;
while (count > 0) {
u_long data;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
data = le2be16dbl(data) ^ 0x80008000;
*p++ = data;
count--;
}
*frameUsed += used;
}
return used;
}
static ssize_t ata_ctx_law(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
char *table = dmasound.soft.format == AFMT_MU_LAW ? dmasound_ulaw2dma8
: dmasound_alaw2dma8;
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_char *p = &frame[*frameUsed];
u_char data = expand_data;
while (frameLeft) {
u_char c;
if (bal < 0) {
if (!userCount)
break;
if (get_user(c, userPtr++))
return -EFAULT;
data = table[c];
userCount--;
bal += hSpeed;
}
*p++ = data;
frameLeft--;
bal -= sSpeed;
}
expand_data = data;
} else {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 2) {
u_char c;
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(c, userPtr++))
return -EFAULT;
data = table[c] << 8;
if (get_user(c, userPtr++))
return -EFAULT;
data |= table[c];
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 2;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_s8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_char *p = &frame[*frameUsed];
u_char data = expand_data;
while (frameLeft) {
if (bal < 0) {
if (!userCount)
break;
if (get_user(data, userPtr++))
return -EFAULT;
userCount--;
bal += hSpeed;
}
*p++ = data;
frameLeft--;
bal -= sSpeed;
}
expand_data = data;
} else {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 2) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 2;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_u8(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_char *p = &frame[*frameUsed];
u_char data = expand_data;
while (frameLeft) {
if (bal < 0) {
if (!userCount)
break;
if (get_user(data, userPtr++))
return -EFAULT;
data ^= 0x80;
userCount--;
bal += hSpeed;
}
*p++ = data;
frameLeft--;
bal -= sSpeed;
}
expand_data = data;
} else {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 2) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data ^= 0x8080;
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 2;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_s16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
u_long data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 4)
break;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
userCount -= 4;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_u16be(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data ^= 0x8000;
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
u_long data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 4)
break;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
data ^= 0x80008000;
userCount -= 4;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_s16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data = le2be16(data);
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
u_long data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 4)
break;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
data = le2be16dbl(data);
userCount -= 4;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static ssize_t ata_ctx_u16le(const u_char __user *userPtr, size_t userCount,
u_char frame[], ssize_t *frameUsed,
ssize_t frameLeft)
{
/* this should help gcc to stuff everything into registers */
long bal = expand_bal;
long hSpeed = dmasound.hard.speed, sSpeed = dmasound.soft.speed;
ssize_t used, usedf;
used = userCount;
usedf = frameLeft;
if (!dmasound.soft.stereo) {
u_short *p = (u_short *)&frame[*frameUsed];
u_short data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 2)
break;
if (get_user(data, (u_short __user *)userPtr))
return -EFAULT;
userPtr += 2;
data = le2be16(data) ^ 0x8000;
userCount -= 2;
bal += hSpeed;
}
*p++ = data;
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
} else {
u_long *p = (u_long *)&frame[*frameUsed];
u_long data = expand_data;
while (frameLeft >= 4) {
if (bal < 0) {
if (userCount < 4)
break;
if (get_user(data, (u_int __user *)userPtr))
return -EFAULT;
userPtr += 4;
data = le2be16dbl(data) ^ 0x80008000;
userCount -= 4;
bal += hSpeed;
}
*p++ = data;
frameLeft -= 4;
bal -= sSpeed;
}
expand_data = data;
}
expand_bal = bal;
used -= userCount;
*frameUsed += usedf-frameLeft;
return used;
}
static TRANS transTTNormal = {
.ct_ulaw = ata_ct_law,
.ct_alaw = ata_ct_law,
.ct_s8 = ata_ct_s8,
.ct_u8 = ata_ct_u8,
};
static TRANS transTTExpanding = {
.ct_ulaw = ata_ctx_law,
.ct_alaw = ata_ctx_law,
.ct_s8 = ata_ctx_s8,
.ct_u8 = ata_ctx_u8,
};
static TRANS transFalconNormal = {
.ct_ulaw = ata_ct_law,
.ct_alaw = ata_ct_law,
.ct_s8 = ata_ct_s8,
.ct_u8 = ata_ct_u8,
.ct_s16be = ata_ct_s16be,
.ct_u16be = ata_ct_u16be,
.ct_s16le = ata_ct_s16le,
.ct_u16le = ata_ct_u16le
};
static TRANS transFalconExpanding = {
.ct_ulaw = ata_ctx_law,
.ct_alaw = ata_ctx_law,
.ct_s8 = ata_ctx_s8,
.ct_u8 = ata_ctx_u8,
.ct_s16be = ata_ctx_s16be,
.ct_u16be = ata_ctx_u16be,
.ct_s16le = ata_ctx_s16le,
.ct_u16le = ata_ctx_u16le,
};
/*** Low level stuff *********************************************************/
/*
* Atari (TT/Falcon)
*/
static void *AtaAlloc(unsigned int size, gfp_t flags)
{
return atari_stram_alloc(size, "dmasound");
}
static void AtaFree(void *obj, unsigned int size)
{
atari_stram_free( obj );
}
static int __init AtaIrqInit(void)
{
/* Set up timer A. Timer A
will receive a signal upon end of playing from the sound
hardware. Furthermore Timer A is able to count events
and will cause an interrupt after a programmed number
of events. So all we need to keep the music playing is
to provide the sound hardware with new data upon
an interrupt from timer A. */
st_mfp.tim_ct_a = 0; /* ++roman: Stop timer before programming! */
st_mfp.tim_dt_a = 1; /* Cause interrupt after first event. */
st_mfp.tim_ct_a = 8; /* Turn on event counting. */
/* Register interrupt handler. */
if (request_irq(IRQ_MFP_TIMA, AtaInterrupt, 0, "DMA sound",
AtaInterrupt))
return 0;
st_mfp.int_en_a |= 0x20; /* Turn interrupt on. */
st_mfp.int_mk_a |= 0x20;
return 1;
}
#ifdef MODULE
static void AtaIrqCleanUp(void)
{
st_mfp.tim_ct_a = 0; /* stop timer */
st_mfp.int_en_a &= ~0x20; /* turn interrupt off */
free_irq(IRQ_MFP_TIMA, AtaInterrupt);
}
#endif /* MODULE */
#define TONE_VOXWARE_TO_DB(v) \
(((v) < 0) ? -12 : ((v) > 100) ? 12 : ((v) - 50) * 6 / 25)
#define TONE_DB_TO_VOXWARE(v) (((v) * 25 + ((v) > 0 ? 5 : -5)) / 6 + 50)
static int AtaSetBass(int bass)
{
dmasound.bass = TONE_VOXWARE_TO_DB(bass);
atari_microwire_cmd(MW_LM1992_BASS(dmasound.bass));
return TONE_DB_TO_VOXWARE(dmasound.bass);
}
static int AtaSetTreble(int treble)
{
dmasound.treble = TONE_VOXWARE_TO_DB(treble);
atari_microwire_cmd(MW_LM1992_TREBLE(dmasound.treble));
return TONE_DB_TO_VOXWARE(dmasound.treble);
}
/*
* TT
*/
static void TTSilence(void)
{
tt_dmasnd.ctrl = DMASND_CTRL_OFF;
atari_microwire_cmd(MW_LM1992_PSG_HIGH); /* mix in PSG signal 1:1 */
}
static void TTInit(void)
{
int mode, i, idx;
const int freq[4] = {50066, 25033, 12517, 6258};
/* search a frequency that fits into the allowed error range */
idx = -1;
for (i = 0; i < ARRAY_SIZE(freq); i++)
/* this isn't as much useful for a TT than for a Falcon, but
* then it doesn't hurt very much to implement it for a TT too.
*/
if ((100 * abs(dmasound.soft.speed - freq[i]) / freq[i]) < catchRadius)
idx = i;
if (idx > -1) {
dmasound.soft.speed = freq[idx];
dmasound.trans_write = &transTTNormal;
} else
dmasound.trans_write = &transTTExpanding;
TTSilence();
dmasound.hard = dmasound.soft;
if (dmasound.hard.speed > 50066) {
/* we would need to squeeze the sound, but we won't do that */
dmasound.hard.speed = 50066;
mode = DMASND_MODE_50KHZ;
dmasound.trans_write = &transTTNormal;
} else if (dmasound.hard.speed > 25033) {
dmasound.hard.speed = 50066;
mode = DMASND_MODE_50KHZ;
} else if (dmasound.hard.speed > 12517) {
dmasound.hard.speed = 25033;
mode = DMASND_MODE_25KHZ;
} else if (dmasound.hard.speed > 6258) {
dmasound.hard.speed = 12517;
mode = DMASND_MODE_12KHZ;
} else {
dmasound.hard.speed = 6258;
mode = DMASND_MODE_6KHZ;
}
tt_dmasnd.mode = (dmasound.hard.stereo ?
DMASND_MODE_STEREO : DMASND_MODE_MONO) |
DMASND_MODE_8BIT | mode;
expand_bal = -dmasound.soft.speed;
}
static int TTSetFormat(int format)
{
/* TT sound DMA supports only 8bit modes */
switch (format) {
case AFMT_QUERY:
return dmasound.soft.format;
case AFMT_MU_LAW:
case AFMT_A_LAW:
case AFMT_S8:
case AFMT_U8:
break;
default:
format = AFMT_S8;
}
dmasound.soft.format = format;
dmasound.soft.size = 8;
if (dmasound.minDev == SND_DEV_DSP) {
dmasound.dsp.format = format;
dmasound.dsp.size = 8;
}
TTInit();
return format;
}
#define VOLUME_VOXWARE_TO_DB(v) \
(((v) < 0) ? -40 : ((v) > 100) ? 0 : ((v) * 2) / 5 - 40)
#define VOLUME_DB_TO_VOXWARE(v) ((((v) + 40) * 5 + 1) / 2)
static int TTSetVolume(int volume)
{
dmasound.volume_left = VOLUME_VOXWARE_TO_DB(volume & 0xff);
atari_microwire_cmd(MW_LM1992_BALLEFT(dmasound.volume_left));
dmasound.volume_right = VOLUME_VOXWARE_TO_DB((volume & 0xff00) >> 8);
atari_microwire_cmd(MW_LM1992_BALRIGHT(dmasound.volume_right));
return VOLUME_DB_TO_VOXWARE(dmasound.volume_left) |
(VOLUME_DB_TO_VOXWARE(dmasound.volume_right) << 8);
}
#define GAIN_VOXWARE_TO_DB(v) \
(((v) < 0) ? -80 : ((v) > 100) ? 0 : ((v) * 4) / 5 - 80)
#define GAIN_DB_TO_VOXWARE(v) ((((v) + 80) * 5 + 1) / 4)
static int TTSetGain(int gain)
{
dmasound.gain = GAIN_VOXWARE_TO_DB(gain);
atari_microwire_cmd(MW_LM1992_VOLUME(dmasound.gain));
return GAIN_DB_TO_VOXWARE(dmasound.gain);
}
/*
* Falcon
*/
static void FalconSilence(void)
{
/* stop playback, set sample rate 50kHz for PSG sound */
tt_dmasnd.ctrl = DMASND_CTRL_OFF;
tt_dmasnd.mode = DMASND_MODE_50KHZ | DMASND_MODE_STEREO | DMASND_MODE_8BIT;
tt_dmasnd.int_div = 0; /* STE compatible divider */
tt_dmasnd.int_ctrl = 0x0;
tt_dmasnd.cbar_src = 0x0000; /* no matrix inputs */
tt_dmasnd.cbar_dst = 0x0000; /* no matrix outputs */
tt_dmasnd.dac_src = 1; /* connect ADC to DAC, disconnect matrix */
tt_dmasnd.adc_src = 3; /* ADC Input = PSG */
}
static void FalconInit(void)
{
int divider, i, idx;
const int freq[8] = {49170, 32780, 24585, 19668, 16390, 12292, 9834, 8195};
/* search a frequency that fits into the allowed error range */
idx = -1;
for (i = 0; i < ARRAY_SIZE(freq); i++)
/* if we will tolerate 3% error 8000Hz->8195Hz (2.38%) would
* be playable without expanding, but that now a kernel runtime
* option
*/
if ((100 * abs(dmasound.soft.speed - freq[i]) / freq[i]) < catchRadius)
idx = i;
if (idx > -1) {
dmasound.soft.speed = freq[idx];
dmasound.trans_write = &transFalconNormal;
} else
dmasound.trans_write = &transFalconExpanding;
FalconSilence();
dmasound.hard = dmasound.soft;
if (dmasound.hard.size == 16) {
/* the Falcon can play 16bit samples only in stereo */
dmasound.hard.stereo = 1;
}
if (dmasound.hard.speed > 49170) {
/* we would need to squeeze the sound, but we won't do that */
dmasound.hard.speed = 49170;
divider = 1;
dmasound.trans_write = &transFalconNormal;
} else if (dmasound.hard.speed > 32780) {
dmasound.hard.speed = 49170;
divider = 1;
} else if (dmasound.hard.speed > 24585) {
dmasound.hard.speed = 32780;
divider = 2;
} else if (dmasound.hard.speed > 19668) {
dmasound.hard.speed = 24585;
divider = 3;
} else if (dmasound.hard.speed > 16390) {
dmasound.hard.speed = 19668;
divider = 4;
} else if (dmasound.hard.speed > 12292) {
dmasound.hard.speed = 16390;
divider = 5;
} else if (dmasound.hard.speed > 9834) {
dmasound.hard.speed = 12292;
divider = 7;
} else if (dmasound.hard.speed > 8195) {
dmasound.hard.speed = 9834;
divider = 9;
} else {
dmasound.hard.speed = 8195;
divider = 11;
}
tt_dmasnd.int_div = divider;
/* Setup Falcon sound DMA for playback */
tt_dmasnd.int_ctrl = 0x4; /* Timer A int at play end */
tt_dmasnd.track_select = 0x0; /* play 1 track, track 1 */
tt_dmasnd.cbar_src = 0x0001; /* DMA(25MHz) --> DAC */
tt_dmasnd.cbar_dst = 0x0000;
tt_dmasnd.rec_track_select = 0;
tt_dmasnd.dac_src = 2; /* connect matrix to DAC */
tt_dmasnd.adc_src = 0; /* ADC Input = Mic */
tt_dmasnd.mode = (dmasound.hard.stereo ?
DMASND_MODE_STEREO : DMASND_MODE_MONO) |
((dmasound.hard.size == 8) ?
DMASND_MODE_8BIT : DMASND_MODE_16BIT) |
DMASND_MODE_6KHZ;
expand_bal = -dmasound.soft.speed;
}
static int FalconSetFormat(int format)
{
int size;
/* Falcon sound DMA supports 8bit and 16bit modes */
switch (format) {
case AFMT_QUERY:
return dmasound.soft.format;
case AFMT_MU_LAW:
case AFMT_A_LAW:
case AFMT_U8:
case AFMT_S8:
size = 8;
break;
case AFMT_S16_BE:
case AFMT_U16_BE:
case AFMT_S16_LE:
case AFMT_U16_LE:
size = 16;
break;
default: /* :-) */
size = 8;
format = AFMT_S8;
}
dmasound.soft.format = format;
dmasound.soft.size = size;
if (dmasound.minDev == SND_DEV_DSP) {
dmasound.dsp.format = format;
dmasound.dsp.size = dmasound.soft.size;
}
FalconInit();
return format;
}
/* This is for the Falcon output *attenuation* in 1.5dB steps,
* i.e. output level from 0 to -22.5dB in -1.5dB steps.
*/
#define VOLUME_VOXWARE_TO_ATT(v) \
((v) < 0 ? 15 : (v) > 100 ? 0 : 15 - (v) * 3 / 20)
#define VOLUME_ATT_TO_VOXWARE(v) (100 - (v) * 20 / 3)
static int FalconSetVolume(int volume)
{
dmasound.volume_left = VOLUME_VOXWARE_TO_ATT(volume & 0xff);
dmasound.volume_right = VOLUME_VOXWARE_TO_ATT((volume & 0xff00) >> 8);
tt_dmasnd.output_atten = dmasound.volume_left << 8 | dmasound.volume_right << 4;
return VOLUME_ATT_TO_VOXWARE(dmasound.volume_left) |
VOLUME_ATT_TO_VOXWARE(dmasound.volume_right) << 8;
}
static void AtaPlayNextFrame(int index)
{
char *start, *end;
/* used by AtaPlay() if all doubts whether there really is something
* to be played are already wiped out.
*/
start = write_sq.buffers[write_sq.front];
end = start+((write_sq.count == index) ? write_sq.rear_size
: write_sq.block_size);
/* end might not be a legal virtual address. */
DMASNDSetEnd(virt_to_phys(end - 1) + 1);
DMASNDSetBase(virt_to_phys(start));
/* Since only an even number of samples per frame can
be played, we might lose one byte here. (TO DO) */
write_sq.front = (write_sq.front+1) % write_sq.max_count;
write_sq.active++;
tt_dmasnd.ctrl = DMASND_CTRL_ON | DMASND_CTRL_REPEAT;
}
static void AtaPlay(void)
{
/* ++TeSche: Note that write_sq.active is no longer just a flag but
* holds the number of frames the DMA is currently programmed for
* instead, may be 0, 1 (currently being played) or 2 (pre-programmed).
*
* Changes done to write_sq.count and write_sq.active are a bit more
* subtle again so now I must admit I also prefer disabling the irq
* here rather than considering all possible situations. But the point
* is that disabling the irq doesn't have any bad influence on this
* version of the driver as we benefit from having pre-programmed the
* DMA wherever possible: There's no need to reload the DMA at the
* exact time of an interrupt but only at some time while the
* pre-programmed frame is playing!
*/
atari_disable_irq(IRQ_MFP_TIMA);
if (write_sq.active == 2 || /* DMA is 'full' */
write_sq.count <= 0) { /* nothing to do */
atari_enable_irq(IRQ_MFP_TIMA);
return;
}
if (write_sq.active == 0) {
/* looks like there's nothing 'in' the DMA yet, so try
* to put two frames into it (at least one is available).
*/
if (write_sq.count == 1 &&
write_sq.rear_size < write_sq.block_size &&
!write_sq.syncing) {
/* hmmm, the only existing frame is not
* yet filled and we're not syncing?
*/
atari_enable_irq(IRQ_MFP_TIMA);
return;
}
AtaPlayNextFrame(1);
if (write_sq.count == 1) {
/* no more frames */
atari_enable_irq(IRQ_MFP_TIMA);
return;
}
if (write_sq.count == 2 &&
write_sq.rear_size < write_sq.block_size &&
!write_sq.syncing) {
/* hmmm, there were two frames, but the second
* one is not yet filled and we're not syncing?
*/
atari_enable_irq(IRQ_MFP_TIMA);
return;
}
AtaPlayNextFrame(2);
} else {
/* there's already a frame being played so we may only stuff
* one new into the DMA, but even if this may be the last
* frame existing the previous one is still on write_sq.count.
*/
if (write_sq.count == 2 &&
write_sq.rear_size < write_sq.block_size &&
!write_sq.syncing) {
/* hmmm, the only existing frame is not
* yet filled and we're not syncing?
*/
atari_enable_irq(IRQ_MFP_TIMA);
return;
}
AtaPlayNextFrame(2);
}
atari_enable_irq(IRQ_MFP_TIMA);
}
static irqreturn_t AtaInterrupt(int irq, void *dummy)
{
#if 0
/* ++TeSche: if you should want to test this... */
static int cnt;
if (write_sq.active == 2)
if (++cnt == 10) {
/* simulate losing an interrupt */
cnt = 0;
return IRQ_HANDLED;
}
#endif
spin_lock(&dmasound.lock);
if (write_sq_ignore_int && is_falcon) {
/* ++TeSche: Falcon only: ignore first irq because it comes
* immediately after starting a frame. after that, irqs come
* (almost) like on the TT.
*/
write_sq_ignore_int = 0;
goto out;
}
if (!write_sq.active) {
/* playing was interrupted and sq_reset() has already cleared
* the sq variables, so better don't do anything here.
*/
WAKE_UP(write_sq.sync_queue);
goto out;
}
/* Probably ;) one frame is finished. Well, in fact it may be that a
* pre-programmed one is also finished because there has been a long
* delay in interrupt delivery and we've completely lost one, but
* there's no way to detect such a situation. In such a case the last
* frame will be played more than once and the situation will recover
* as soon as the irq gets through.
*/
write_sq.count--;
write_sq.active--;
if (!write_sq.active) {
tt_dmasnd.ctrl = DMASND_CTRL_OFF;
write_sq_ignore_int = 1;
}
WAKE_UP(write_sq.action_queue);
/* At least one block of the queue is free now
so wake up a writing process blocked because
of a full queue. */
if ((write_sq.active != 1) || (write_sq.count != 1))
/* We must be a bit carefully here: write_sq.count indicates the
* number of buffers used and not the number of frames to be
* played. If write_sq.count==1 and write_sq.active==1 that
* means the only remaining frame was already programmed
* earlier (and is currently running) so we mustn't call
* AtaPlay() here, otherwise we'll play one frame too much.
*/
AtaPlay();
if (!write_sq.active) WAKE_UP(write_sq.sync_queue);
/* We are not playing after AtaPlay(), so there
is nothing to play any more. Wake up a process
waiting for audio output to drain. */
out:
spin_unlock(&dmasound.lock);
return IRQ_HANDLED;
}
/*** Mid level stuff *********************************************************/
/*
* /dev/mixer abstraction
*/
#define RECLEVEL_VOXWARE_TO_GAIN(v) \
((v) < 0 ? 0 : (v) > 100 ? 15 : (v) * 3 / 20)
#define RECLEVEL_GAIN_TO_VOXWARE(v) (((v) * 20 + 2) / 3)
static void __init TTMixerInit(void)
{
atari_microwire_cmd(MW_LM1992_VOLUME(0));
dmasound.volume_left = 0;
atari_microwire_cmd(MW_LM1992_BALLEFT(0));
dmasound.volume_right = 0;
atari_microwire_cmd(MW_LM1992_BALRIGHT(0));
atari_microwire_cmd(MW_LM1992_TREBLE(0));
atari_microwire_cmd(MW_LM1992_BASS(0));
}
static void __init FalconMixerInit(void)
{
dmasound.volume_left = (tt_dmasnd.output_atten & 0xf00) >> 8;
dmasound.volume_right = (tt_dmasnd.output_atten & 0xf0) >> 4;
}
static int AtaMixerIoctl(u_int cmd, u_long arg)
{
int data;
unsigned long flags;
switch (cmd) {
case SOUND_MIXER_READ_SPEAKER:
if (is_falcon || MACH_IS_TT) {
int porta;
spin_lock_irqsave(&dmasound.lock, flags);
sound_ym.rd_data_reg_sel = 14;
porta = sound_ym.rd_data_reg_sel;
spin_unlock_irqrestore(&dmasound.lock, flags);
return IOCTL_OUT(arg, porta & 0x40 ? 0 : 100);
}
break;
case SOUND_MIXER_WRITE_VOLUME:
IOCTL_IN(arg, data);
return IOCTL_OUT(arg, dmasound_set_volume(data));
case SOUND_MIXER_WRITE_SPEAKER:
if (is_falcon || MACH_IS_TT) {
int porta;
IOCTL_IN(arg, data);
spin_lock_irqsave(&dmasound.lock, flags);
sound_ym.rd_data_reg_sel = 14;
porta = (sound_ym.rd_data_reg_sel & ~0x40) |
(data < 50 ? 0x40 : 0);
sound_ym.wd_data = porta;
spin_unlock_irqrestore(&dmasound.lock, flags);
return IOCTL_OUT(arg, porta & 0x40 ? 0 : 100);
}
}
return -EINVAL;
}
static int TTMixerIoctl(u_int cmd, u_long arg)
{
int data;
switch (cmd) {
case SOUND_MIXER_READ_RECMASK:
return IOCTL_OUT(arg, 0);
case SOUND_MIXER_READ_DEVMASK:
return IOCTL_OUT(arg,
SOUND_MASK_VOLUME | SOUND_MASK_TREBLE | SOUND_MASK_BASS |
(MACH_IS_TT ? SOUND_MASK_SPEAKER : 0));
case SOUND_MIXER_READ_STEREODEVS:
return IOCTL_OUT(arg, SOUND_MASK_VOLUME);
case SOUND_MIXER_READ_VOLUME:
return IOCTL_OUT(arg,
VOLUME_DB_TO_VOXWARE(dmasound.volume_left) |
(VOLUME_DB_TO_VOXWARE(dmasound.volume_right) << 8));
case SOUND_MIXER_READ_BASS:
return IOCTL_OUT(arg, TONE_DB_TO_VOXWARE(dmasound.bass));
case SOUND_MIXER_READ_TREBLE:
return IOCTL_OUT(arg, TONE_DB_TO_VOXWARE(dmasound.treble));
case SOUND_MIXER_READ_OGAIN:
return IOCTL_OUT(arg, GAIN_DB_TO_VOXWARE(dmasound.gain));
case SOUND_MIXER_WRITE_BASS:
IOCTL_IN(arg, data);
return IOCTL_OUT(arg, dmasound_set_bass(data));
case SOUND_MIXER_WRITE_TREBLE:
IOCTL_IN(arg, data);
return IOCTL_OUT(arg, dmasound_set_treble(data));
case SOUND_MIXER_WRITE_OGAIN:
IOCTL_IN(arg, data);
return IOCTL_OUT(arg, dmasound_set_gain(data));
}
return AtaMixerIoctl(cmd, arg);
}
static int FalconMixerIoctl(u_int cmd, u_long arg)
{
int data;
switch (cmd) {
case SOUND_MIXER_READ_RECMASK:
return IOCTL_OUT(arg, SOUND_MASK_MIC);
case SOUND_MIXER_READ_DEVMASK:
return IOCTL_OUT(arg, SOUND_MASK_VOLUME | SOUND_MASK_MIC | SOUND_MASK_SPEAKER);
case SOUND_MIXER_READ_STEREODEVS:
return IOCTL_OUT(arg, SOUND_MASK_VOLUME | SOUND_MASK_MIC);
case SOUND_MIXER_READ_VOLUME:
return IOCTL_OUT(arg,
VOLUME_ATT_TO_VOXWARE(dmasound.volume_left) |
VOLUME_ATT_TO_VOXWARE(dmasound.volume_right) << 8);
case SOUND_MIXER_READ_CAPS:
return IOCTL_OUT(arg, SOUND_CAP_EXCL_INPUT);
case SOUND_MIXER_WRITE_MIC:
IOCTL_IN(arg, data);
tt_dmasnd.input_gain =
RECLEVEL_VOXWARE_TO_GAIN(data & 0xff) << 4 |
RECLEVEL_VOXWARE_TO_GAIN(data >> 8 & 0xff);
fallthrough; /* return set value */
case SOUND_MIXER_READ_MIC:
return IOCTL_OUT(arg,
RECLEVEL_GAIN_TO_VOXWARE(tt_dmasnd.input_gain >> 4 & 0xf) |
RECLEVEL_GAIN_TO_VOXWARE(tt_dmasnd.input_gain & 0xf) << 8);
}
return AtaMixerIoctl(cmd, arg);
}
static int AtaWriteSqSetup(void)
{
write_sq_ignore_int = 0;
return 0 ;
}
static int AtaSqOpen(fmode_t mode)
{
write_sq_ignore_int = 1;
return 0 ;
}
static int TTStateInfo(char *buffer, size_t space)
{
int len = 0;
len += sprintf(buffer+len, "\tvol left %ddB [-40... 0]\n",
dmasound.volume_left);
len += sprintf(buffer+len, "\tvol right %ddB [-40... 0]\n",
dmasound.volume_right);
len += sprintf(buffer+len, "\tbass %ddB [-12...+12]\n",
dmasound.bass);
len += sprintf(buffer+len, "\ttreble %ddB [-12...+12]\n",
dmasound.treble);
if (len >= space) {
printk(KERN_ERR "dmasound_atari: overflowed state buffer alloc.\n") ;
len = space ;
}
return len;
}
static int FalconStateInfo(char *buffer, size_t space)
{
int len = 0;
len += sprintf(buffer+len, "\tvol left %ddB [-22.5 ... 0]\n",
dmasound.volume_left);
len += sprintf(buffer+len, "\tvol right %ddB [-22.5 ... 0]\n",
dmasound.volume_right);
if (len >= space) {
printk(KERN_ERR "dmasound_atari: overflowed state buffer alloc.\n") ;
len = space ;
}
return len;
}
/*** Machine definitions *****************************************************/
static SETTINGS def_hard_falcon = {
.format = AFMT_S8,
.stereo = 0,
.size = 8,
.speed = 8195
} ;
static SETTINGS def_hard_tt = {
.format = AFMT_S8,
.stereo = 0,
.size = 8,
.speed = 12517
} ;
static SETTINGS def_soft = {
.format = AFMT_U8,
.stereo = 0,
.size = 8,
.speed = 8000
} ;
static __initdata MACHINE machTT = {
.name = "Atari",
.name2 = "TT",
.owner = THIS_MODULE,
.dma_alloc = AtaAlloc,
.dma_free = AtaFree,
.irqinit = AtaIrqInit,
#ifdef MODULE
.irqcleanup = AtaIrqCleanUp,
#endif /* MODULE */
.init = TTInit,
.silence = TTSilence,
.setFormat = TTSetFormat,
.setVolume = TTSetVolume,
.setBass = AtaSetBass,
.setTreble = AtaSetTreble,
.setGain = TTSetGain,
.play = AtaPlay,
.mixer_init = TTMixerInit,
.mixer_ioctl = TTMixerIoctl,
.write_sq_setup = AtaWriteSqSetup,
.sq_open = AtaSqOpen,
.state_info = TTStateInfo,
.min_dsp_speed = 6258,
.version = ((DMASOUND_ATARI_REVISION<<8) | DMASOUND_ATARI_EDITION),
.hardware_afmts = AFMT_S8, /* h'ware-supported formats *only* here */
.capabilities = DSP_CAP_BATCH /* As per SNDCTL_DSP_GETCAPS */
};
static __initdata MACHINE machFalcon = {
.name = "Atari",
.name2 = "FALCON",
.dma_alloc = AtaAlloc,
.dma_free = AtaFree,
.irqinit = AtaIrqInit,
#ifdef MODULE
.irqcleanup = AtaIrqCleanUp,
#endif /* MODULE */
.init = FalconInit,
.silence = FalconSilence,
.setFormat = FalconSetFormat,
.setVolume = FalconSetVolume,
.setBass = AtaSetBass,
.setTreble = AtaSetTreble,
.play = AtaPlay,
.mixer_init = FalconMixerInit,
.mixer_ioctl = FalconMixerIoctl,
.write_sq_setup = AtaWriteSqSetup,
.sq_open = AtaSqOpen,
.state_info = FalconStateInfo,
.min_dsp_speed = 8195,
.version = ((DMASOUND_ATARI_REVISION<<8) | DMASOUND_ATARI_EDITION),
.hardware_afmts = (AFMT_S8 | AFMT_S16_BE), /* h'ware-supported formats *only* here */
.capabilities = DSP_CAP_BATCH /* As per SNDCTL_DSP_GETCAPS */
};
/*** Config & Setup **********************************************************/
static int __init dmasound_atari_init(void)
{
if (MACH_IS_ATARI && ATARIHW_PRESENT(PCM_8BIT)) {
if (ATARIHW_PRESENT(CODEC)) {
dmasound.mach = machFalcon;
dmasound.mach.default_soft = def_soft ;
dmasound.mach.default_hard = def_hard_falcon ;
is_falcon = 1;
} else if (ATARIHW_PRESENT(MICROWIRE)) {
dmasound.mach = machTT;
dmasound.mach.default_soft = def_soft ;
dmasound.mach.default_hard = def_hard_tt ;
is_falcon = 0;
} else
return -ENODEV;
if ((st_mfp.int_en_a & st_mfp.int_mk_a & 0x20) == 0)
return dmasound_init();
else {
printk("DMA sound driver: Timer A interrupt already in use\n");
return -EBUSY;
}
}
return -ENODEV;
}
static void __exit dmasound_atari_cleanup(void)
{
dmasound_deinit();
}
module_init(dmasound_atari_init);
module_exit(dmasound_atari_cleanup);
MODULE_LICENSE("GPL");