linuxdebug/net/openvswitch/flow_netlink.c

3784 lines
100 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2007-2017 Nicira, Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/geneve.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include <net/mpls.h>
#include <net/vxlan.h>
#include <net/tun_proto.h>
#include <net/erspan.h>
#include "flow_netlink.h"
struct ovs_len_tbl {
int len;
const struct ovs_len_tbl *next;
};
#define OVS_ATTR_NESTED -1
#define OVS_ATTR_VARIABLE -2
static bool actions_may_change_flow(const struct nlattr *actions)
{
struct nlattr *nla;
int rem;
nla_for_each_nested(nla, actions, rem) {
u16 action = nla_type(nla);
switch (action) {
case OVS_ACTION_ATTR_OUTPUT:
case OVS_ACTION_ATTR_RECIRC:
case OVS_ACTION_ATTR_TRUNC:
case OVS_ACTION_ATTR_USERSPACE:
break;
case OVS_ACTION_ATTR_CT:
case OVS_ACTION_ATTR_CT_CLEAR:
case OVS_ACTION_ATTR_HASH:
case OVS_ACTION_ATTR_POP_ETH:
case OVS_ACTION_ATTR_POP_MPLS:
case OVS_ACTION_ATTR_POP_NSH:
case OVS_ACTION_ATTR_POP_VLAN:
case OVS_ACTION_ATTR_PUSH_ETH:
case OVS_ACTION_ATTR_PUSH_MPLS:
case OVS_ACTION_ATTR_PUSH_NSH:
case OVS_ACTION_ATTR_PUSH_VLAN:
case OVS_ACTION_ATTR_SAMPLE:
case OVS_ACTION_ATTR_SET:
case OVS_ACTION_ATTR_SET_MASKED:
case OVS_ACTION_ATTR_METER:
case OVS_ACTION_ATTR_CHECK_PKT_LEN:
case OVS_ACTION_ATTR_ADD_MPLS:
case OVS_ACTION_ATTR_DEC_TTL:
default:
return true;
}
}
return false;
}
static void update_range(struct sw_flow_match *match,
size_t offset, size_t size, bool is_mask)
{
struct sw_flow_key_range *range;
size_t start = rounddown(offset, sizeof(long));
size_t end = roundup(offset + size, sizeof(long));
if (!is_mask)
range = &match->range;
else
range = &match->mask->range;
if (range->start == range->end) {
range->start = start;
range->end = end;
return;
}
if (range->start > start)
range->start = start;
if (range->end < end)
range->end = end;
}
#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
do { \
update_range(match, offsetof(struct sw_flow_key, field), \
sizeof((match)->key->field), is_mask); \
if (is_mask) \
(match)->mask->key.field = value; \
else \
(match)->key->field = value; \
} while (0)
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
do { \
update_range(match, offset, len, is_mask); \
if (is_mask) \
memcpy((u8 *)&(match)->mask->key + offset, value_p, \
len); \
else \
memcpy((u8 *)(match)->key + offset, value_p, len); \
} while (0)
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
value_p, len, is_mask)
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
do { \
update_range(match, offsetof(struct sw_flow_key, field), \
sizeof((match)->key->field), is_mask); \
if (is_mask) \
memset((u8 *)&(match)->mask->key.field, value, \
sizeof((match)->mask->key.field)); \
else \
memset((u8 *)&(match)->key->field, value, \
sizeof((match)->key->field)); \
} while (0)
static bool match_validate(const struct sw_flow_match *match,
u64 key_attrs, u64 mask_attrs, bool log)
{
u64 key_expected = 0;
u64 mask_allowed = key_attrs; /* At most allow all key attributes */
/* The following mask attributes allowed only if they
* pass the validation tests. */
mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
| (1 << OVS_KEY_ATTR_IPV6)
| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
| (1 << OVS_KEY_ATTR_TCP)
| (1 << OVS_KEY_ATTR_TCP_FLAGS)
| (1 << OVS_KEY_ATTR_UDP)
| (1 << OVS_KEY_ATTR_SCTP)
| (1 << OVS_KEY_ATTR_ICMP)
| (1 << OVS_KEY_ATTR_ICMPV6)
| (1 << OVS_KEY_ATTR_ARP)
| (1 << OVS_KEY_ATTR_ND)
| (1 << OVS_KEY_ATTR_MPLS)
| (1 << OVS_KEY_ATTR_NSH));
/* Always allowed mask fields. */
mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
| (1 << OVS_KEY_ATTR_IN_PORT)
| (1 << OVS_KEY_ATTR_ETHERTYPE));
/* Check key attributes. */
if (match->key->eth.type == htons(ETH_P_ARP)
|| match->key->eth.type == htons(ETH_P_RARP)) {
key_expected |= 1 << OVS_KEY_ATTR_ARP;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
}
if (eth_p_mpls(match->key->eth.type)) {
key_expected |= 1 << OVS_KEY_ATTR_MPLS;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
}
if (match->key->eth.type == htons(ETH_P_IP)) {
key_expected |= 1 << OVS_KEY_ATTR_IPV4;
if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
}
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1 << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_SCTP) {
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1 << OVS_KEY_ATTR_TCP;
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
}
}
if (match->key->ip.proto == IPPROTO_ICMP) {
key_expected |= 1 << OVS_KEY_ATTR_ICMP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
}
}
}
if (match->key->eth.type == htons(ETH_P_IPV6)) {
key_expected |= 1 << OVS_KEY_ATTR_IPV6;
if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
}
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1 << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_SCTP) {
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1 << OVS_KEY_ATTR_TCP;
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
}
}
if (match->key->ip.proto == IPPROTO_ICMPV6) {
key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
if (match->key->tp.src ==
htons(NDISC_NEIGHBOUR_SOLICITATION) ||
match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
key_expected |= 1 << OVS_KEY_ATTR_ND;
/* Original direction conntrack tuple
* uses the same space as the ND fields
* in the key, so both are not allowed
* at the same time.
*/
mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
if (match->mask && (match->mask->key.tp.src == htons(0xff)))
mask_allowed |= 1 << OVS_KEY_ATTR_ND;
}
}
}
}
if (match->key->eth.type == htons(ETH_P_NSH)) {
key_expected |= 1 << OVS_KEY_ATTR_NSH;
if (match->mask &&
match->mask->key.eth.type == htons(0xffff)) {
mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
}
}
if ((key_attrs & key_expected) != key_expected) {
/* Key attributes check failed. */
OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
(unsigned long long)key_attrs,
(unsigned long long)key_expected);
return false;
}
if ((mask_attrs & mask_allowed) != mask_attrs) {
/* Mask attributes check failed. */
OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
(unsigned long long)mask_attrs,
(unsigned long long)mask_allowed);
return false;
}
return true;
}
size_t ovs_tun_key_attr_size(void)
{
/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
* updating this function.
*/
return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
+ nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
+ nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
+ nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
+ nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
+ nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
* OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
*/
+ nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
+ nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
}
static size_t ovs_nsh_key_attr_size(void)
{
/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
* updating this function.
*/
return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
* mutually exclusive, so the bigger one can cover
* the small one.
*/
+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
}
size_t ovs_key_attr_size(void)
{
/* Whenever adding new OVS_KEY_ FIELDS, we should consider
* updating this function.
*/
BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
+ nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
+ ovs_tun_key_attr_size()
+ nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
+ nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
+ nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
+ nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
+ nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
+ nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
+ nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
+ nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
+ nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
+ nla_total_size(0) /* OVS_KEY_ATTR_NSH */
+ ovs_nsh_key_attr_size()
+ nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
+ nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
+ nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
+ nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
+ nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
+ nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
+ nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
+ nla_total_size(28) /* OVS_KEY_ATTR_ND */
+ nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */
}
static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
[OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
};
static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
[OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
[OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
[OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
[OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
[OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
[OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
[OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
.next = ovs_vxlan_ext_key_lens },
[OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
};
static const struct ovs_len_tbl
ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
[OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
[OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
};
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
[OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
[OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
[OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
[OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
[OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
[OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
[OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
[OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
[OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
[OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
[OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
[OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
.next = ovs_tunnel_key_lens, },
[OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
[OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
[OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
[OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
.next = ovs_nsh_key_attr_lens, },
[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
.len = sizeof(struct ovs_key_ipv6_exthdrs) },
};
static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
{
return expected_len == attr_len ||
expected_len == OVS_ATTR_NESTED ||
expected_len == OVS_ATTR_VARIABLE;
}
static bool is_all_zero(const u8 *fp, size_t size)
{
int i;
if (!fp)
return false;
for (i = 0; i < size; i++)
if (fp[i])
return false;
return true;
}
static int __parse_flow_nlattrs(const struct nlattr *attr,
const struct nlattr *a[],
u64 *attrsp, bool log, bool nz)
{
const struct nlattr *nla;
u64 attrs;
int rem;
attrs = *attrsp;
nla_for_each_nested(nla, attr, rem) {
u16 type = nla_type(nla);
int expected_len;
if (type > OVS_KEY_ATTR_MAX) {
OVS_NLERR(log, "Key type %d is out of range max %d",
type, OVS_KEY_ATTR_MAX);
return -EINVAL;
}
if (type == OVS_KEY_ATTR_PACKET_TYPE ||
type == OVS_KEY_ATTR_ND_EXTENSIONS ||
type == OVS_KEY_ATTR_TUNNEL_INFO) {
OVS_NLERR(log, "Key type %d is not supported", type);
return -EINVAL;
}
if (attrs & (1ULL << type)) {
OVS_NLERR(log, "Duplicate key (type %d).", type);
return -EINVAL;
}
expected_len = ovs_key_lens[type].len;
if (!check_attr_len(nla_len(nla), expected_len)) {
OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
type, nla_len(nla), expected_len);
return -EINVAL;
}
if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
attrs |= 1ULL << type;
a[type] = nla;
}
}
if (rem) {
OVS_NLERR(log, "Message has %d unknown bytes.", rem);
return -EINVAL;
}
*attrsp = attrs;
return 0;
}
static int parse_flow_mask_nlattrs(const struct nlattr *attr,
const struct nlattr *a[], u64 *attrsp,
bool log)
{
return __parse_flow_nlattrs(attr, a, attrsp, log, true);
}
int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
u64 *attrsp, bool log)
{
return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}
static int genev_tun_opt_from_nlattr(const struct nlattr *a,
struct sw_flow_match *match, bool is_mask,
bool log)
{
unsigned long opt_key_offset;
if (nla_len(a) > sizeof(match->key->tun_opts)) {
OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
nla_len(a), sizeof(match->key->tun_opts));
return -EINVAL;
}
if (nla_len(a) % 4 != 0) {
OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
nla_len(a));
return -EINVAL;
}
/* We need to record the length of the options passed
* down, otherwise packets with the same format but
* additional options will be silently matched.
*/
if (!is_mask) {
SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
false);
} else {
/* This is somewhat unusual because it looks at
* both the key and mask while parsing the
* attributes (and by extension assumes the key
* is parsed first). Normally, we would verify
* that each is the correct length and that the
* attributes line up in the validate function.
* However, that is difficult because this is
* variable length and we won't have the
* information later.
*/
if (match->key->tun_opts_len != nla_len(a)) {
OVS_NLERR(log, "Geneve option len %d != mask len %d",
match->key->tun_opts_len, nla_len(a));
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
}
opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
nla_len(a), is_mask);
return 0;
}
static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
struct sw_flow_match *match, bool is_mask,
bool log)
{
struct nlattr *a;
int rem;
unsigned long opt_key_offset;
struct vxlan_metadata opts;
BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
memset(&opts, 0, sizeof(opts));
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
if (type > OVS_VXLAN_EXT_MAX) {
OVS_NLERR(log, "VXLAN extension %d out of range max %d",
type, OVS_VXLAN_EXT_MAX);
return -EINVAL;
}
if (!check_attr_len(nla_len(a),
ovs_vxlan_ext_key_lens[type].len)) {
OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
type, nla_len(a),
ovs_vxlan_ext_key_lens[type].len);
return -EINVAL;
}
switch (type) {
case OVS_VXLAN_EXT_GBP:
opts.gbp = nla_get_u32(a);
break;
default:
OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
type);
return -EINVAL;
}
}
if (rem) {
OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
rem);
return -EINVAL;
}
if (!is_mask)
SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
else
SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
is_mask);
return 0;
}
static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
struct sw_flow_match *match, bool is_mask,
bool log)
{
unsigned long opt_key_offset;
BUILD_BUG_ON(sizeof(struct erspan_metadata) >
sizeof(match->key->tun_opts));
if (nla_len(a) > sizeof(match->key->tun_opts)) {
OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
nla_len(a), sizeof(match->key->tun_opts));
return -EINVAL;
}
if (!is_mask)
SW_FLOW_KEY_PUT(match, tun_opts_len,
sizeof(struct erspan_metadata), false);
else
SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
nla_len(a), is_mask);
return 0;
}
static int ip_tun_from_nlattr(const struct nlattr *attr,
struct sw_flow_match *match, bool is_mask,
bool log)
{
bool ttl = false, ipv4 = false, ipv6 = false;
bool info_bridge_mode = false;
__be16 tun_flags = 0;
int opts_type = 0;
struct nlattr *a;
int rem;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
int err;
if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
OVS_NLERR(log, "Tunnel attr %d out of range max %d",
type, OVS_TUNNEL_KEY_ATTR_MAX);
return -EINVAL;
}
if (!check_attr_len(nla_len(a),
ovs_tunnel_key_lens[type].len)) {
OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
type, nla_len(a), ovs_tunnel_key_lens[type].len);
return -EINVAL;
}
switch (type) {
case OVS_TUNNEL_KEY_ATTR_ID:
SW_FLOW_KEY_PUT(match, tun_key.tun_id,
nla_get_be64(a), is_mask);
tun_flags |= TUNNEL_KEY;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
nla_get_in_addr(a), is_mask);
ipv4 = true;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
nla_get_in_addr(a), is_mask);
ipv4 = true;
break;
case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
nla_get_in6_addr(a), is_mask);
ipv6 = true;
break;
case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
nla_get_in6_addr(a), is_mask);
ipv6 = true;
break;
case OVS_TUNNEL_KEY_ATTR_TOS:
SW_FLOW_KEY_PUT(match, tun_key.tos,
nla_get_u8(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TTL:
SW_FLOW_KEY_PUT(match, tun_key.ttl,
nla_get_u8(a), is_mask);
ttl = true;
break;
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
tun_flags |= TUNNEL_DONT_FRAGMENT;
break;
case OVS_TUNNEL_KEY_ATTR_CSUM:
tun_flags |= TUNNEL_CSUM;
break;
case OVS_TUNNEL_KEY_ATTR_TP_SRC:
SW_FLOW_KEY_PUT(match, tun_key.tp_src,
nla_get_be16(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TP_DST:
SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
nla_get_be16(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_OAM:
tun_flags |= TUNNEL_OAM;
break;
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
if (opts_type) {
OVS_NLERR(log, "Multiple metadata blocks provided");
return -EINVAL;
}
err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
if (err)
return err;
tun_flags |= TUNNEL_GENEVE_OPT;
opts_type = type;
break;
case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
if (opts_type) {
OVS_NLERR(log, "Multiple metadata blocks provided");
return -EINVAL;
}
err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
if (err)
return err;
tun_flags |= TUNNEL_VXLAN_OPT;
opts_type = type;
break;
case OVS_TUNNEL_KEY_ATTR_PAD:
break;
case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
if (opts_type) {
OVS_NLERR(log, "Multiple metadata blocks provided");
return -EINVAL;
}
err = erspan_tun_opt_from_nlattr(a, match, is_mask,
log);
if (err)
return err;
tun_flags |= TUNNEL_ERSPAN_OPT;
opts_type = type;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
info_bridge_mode = true;
ipv4 = true;
break;
default:
OVS_NLERR(log, "Unknown IP tunnel attribute %d",
type);
return -EINVAL;
}
}
SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
if (is_mask)
SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
else
SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
false);
if (rem > 0) {
OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
rem);
return -EINVAL;
}
if (ipv4 && ipv6) {
OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
return -EINVAL;
}
if (!is_mask) {
if (!ipv4 && !ipv6) {
OVS_NLERR(log, "IP tunnel dst address not specified");
return -EINVAL;
}
if (ipv4) {
if (info_bridge_mode) {
if (match->key->tun_key.u.ipv4.src ||
match->key->tun_key.u.ipv4.dst ||
match->key->tun_key.tp_src ||
match->key->tun_key.tp_dst ||
match->key->tun_key.ttl ||
match->key->tun_key.tos ||
tun_flags & ~TUNNEL_KEY) {
OVS_NLERR(log, "IPv4 tun info is not correct");
return -EINVAL;
}
} else if (!match->key->tun_key.u.ipv4.dst) {
OVS_NLERR(log, "IPv4 tunnel dst address is zero");
return -EINVAL;
}
}
if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
OVS_NLERR(log, "IPv6 tunnel dst address is zero");
return -EINVAL;
}
if (!ttl && !info_bridge_mode) {
OVS_NLERR(log, "IP tunnel TTL not specified.");
return -EINVAL;
}
}
return opts_type;
}
static int vxlan_opt_to_nlattr(struct sk_buff *skb,
const void *tun_opts, int swkey_tun_opts_len)
{
const struct vxlan_metadata *opts = tun_opts;
struct nlattr *nla;
nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
if (!nla)
return -EMSGSIZE;
if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
return -EMSGSIZE;
nla_nest_end(skb, nla);
return 0;
}
static int __ip_tun_to_nlattr(struct sk_buff *skb,
const struct ip_tunnel_key *output,
const void *tun_opts, int swkey_tun_opts_len,
unsigned short tun_proto, u8 mode)
{
if (output->tun_flags & TUNNEL_KEY &&
nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
OVS_TUNNEL_KEY_ATTR_PAD))
return -EMSGSIZE;
if (mode & IP_TUNNEL_INFO_BRIDGE)
return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
? -EMSGSIZE : 0;
switch (tun_proto) {
case AF_INET:
if (output->u.ipv4.src &&
nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
output->u.ipv4.src))
return -EMSGSIZE;
if (output->u.ipv4.dst &&
nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
output->u.ipv4.dst))
return -EMSGSIZE;
break;
case AF_INET6:
if (!ipv6_addr_any(&output->u.ipv6.src) &&
nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
&output->u.ipv6.src))
return -EMSGSIZE;
if (!ipv6_addr_any(&output->u.ipv6.dst) &&
nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
&output->u.ipv6.dst))
return -EMSGSIZE;
break;
}
if (output->tos &&
nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
return -EMSGSIZE;
if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_CSUM) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
return -EMSGSIZE;
if (output->tp_src &&
nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
return -EMSGSIZE;
if (output->tp_dst &&
nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_OAM) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
return -EMSGSIZE;
if (swkey_tun_opts_len) {
if (output->tun_flags & TUNNEL_GENEVE_OPT &&
nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
swkey_tun_opts_len, tun_opts))
return -EMSGSIZE;
else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
return -EMSGSIZE;
else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
swkey_tun_opts_len, tun_opts))
return -EMSGSIZE;
}
return 0;
}
static int ip_tun_to_nlattr(struct sk_buff *skb,
const struct ip_tunnel_key *output,
const void *tun_opts, int swkey_tun_opts_len,
unsigned short tun_proto, u8 mode)
{
struct nlattr *nla;
int err;
nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
if (!nla)
return -EMSGSIZE;
err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
tun_proto, mode);
if (err)
return err;
nla_nest_end(skb, nla);
return 0;
}
int ovs_nla_put_tunnel_info(struct sk_buff *skb,
struct ip_tunnel_info *tun_info)
{
return __ip_tun_to_nlattr(skb, &tun_info->key,
ip_tunnel_info_opts(tun_info),
tun_info->options_len,
ip_tunnel_info_af(tun_info), tun_info->mode);
}
static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
const struct nlattr *a[],
bool is_mask, bool inner)
{
__be16 tci = 0;
__be16 tpid = 0;
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (a[OVS_KEY_ATTR_ETHERTYPE])
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (likely(!inner)) {
SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
} else {
SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
}
return 0;
}
static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
u64 key_attrs, bool inner,
const struct nlattr **a, bool log)
{
__be16 tci = 0;
if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
/* Not a VLAN. */
return 0;
}
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!(tci & htons(VLAN_CFI_MASK))) {
if (tci) {
OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
/* Corner case for truncated VLAN header. */
OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
}
return 1;
}
static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
u64 key_attrs, bool inner,
const struct nlattr **a, bool log)
{
__be16 tci = 0;
__be16 tpid = 0;
bool encap_valid = !!(match->key->eth.vlan.tci &
htons(VLAN_CFI_MASK));
bool i_encap_valid = !!(match->key->eth.cvlan.tci &
htons(VLAN_CFI_MASK));
if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
/* Not a VLAN. */
return 0;
}
if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (a[OVS_KEY_ATTR_ETHERTYPE])
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (tpid != htons(0xffff)) {
OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
(inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
return -EINVAL;
}
if (!(tci & htons(VLAN_CFI_MASK))) {
OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
return 1;
}
static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
u64 *key_attrs, bool inner,
const struct nlattr **a, bool is_mask,
bool log)
{
int err;
const struct nlattr *encap;
if (!is_mask)
err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
a, log);
else
err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
a, log);
if (err <= 0)
return err;
err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
if (err)
return err;
*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
encap = a[OVS_KEY_ATTR_ENCAP];
if (!is_mask)
err = parse_flow_nlattrs(encap, a, key_attrs, log);
else
err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
return err;
}
static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
u64 *key_attrs, const struct nlattr **a,
bool is_mask, bool log)
{
int err;
bool encap_valid = false;
err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
is_mask, log);
if (err)
return err;
encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
if (encap_valid) {
err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
is_mask, log);
if (err)
return err;
}
return 0;
}
static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
u64 *attrs, const struct nlattr **a,
bool is_mask, bool log)
{
__be16 eth_type;
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (is_mask) {
/* Always exact match EtherType. */
eth_type = htons(0xffff);
} else if (!eth_proto_is_802_3(eth_type)) {
OVS_NLERR(log, "EtherType %x is less than min %x",
ntohs(eth_type), ETH_P_802_3_MIN);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
return 0;
}
static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
u64 *attrs, const struct nlattr **a,
bool is_mask, bool log)
{
u8 mac_proto = MAC_PROTO_ETHERNET;
if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
}
if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
}
if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
SW_FLOW_KEY_PUT(match, phy.priority,
nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
}
if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
if (is_mask) {
in_port = 0xffffffff; /* Always exact match in_port. */
} else if (in_port >= DP_MAX_PORTS) {
OVS_NLERR(log, "Port %d exceeds max allowable %d",
in_port, DP_MAX_PORTS);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
}
if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
}
if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
is_mask, log) < 0)
return -EINVAL;
*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
}
if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
if (ct_state & ~CT_SUPPORTED_MASK) {
OVS_NLERR(log, "ct_state flags %08x unsupported",
ct_state);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
}
if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
}
if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
}
if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
const struct ovs_key_ct_labels *cl;
cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
sizeof(*cl), is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
}
if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
const struct ovs_key_ct_tuple_ipv4 *ct;
ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
}
if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
const struct ovs_key_ct_tuple_ipv6 *ct;
ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
sizeof(match->key->ipv6.ct_orig.src),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
sizeof(match->key->ipv6.ct_orig.dst),
is_mask);
SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
}
/* For layer 3 packets the Ethernet type is provided
* and treated as metadata but no MAC addresses are provided.
*/
if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
(*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
mac_proto = MAC_PROTO_NONE;
/* Always exact match mac_proto */
SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
if (mac_proto == MAC_PROTO_NONE)
return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
log);
return 0;
}
int nsh_hdr_from_nlattr(const struct nlattr *attr,
struct nshhdr *nh, size_t size)
{
struct nlattr *a;
int rem;
u8 flags = 0;
u8 ttl = 0;
int mdlen = 0;
/* validate_nsh has check this, so we needn't do duplicate check here
*/
if (size < NSH_BASE_HDR_LEN)
return -ENOBUFS;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
switch (type) {
case OVS_NSH_KEY_ATTR_BASE: {
const struct ovs_nsh_key_base *base = nla_data(a);
flags = base->flags;
ttl = base->ttl;
nh->np = base->np;
nh->mdtype = base->mdtype;
nh->path_hdr = base->path_hdr;
break;
}
case OVS_NSH_KEY_ATTR_MD1:
mdlen = nla_len(a);
if (mdlen > size - NSH_BASE_HDR_LEN)
return -ENOBUFS;
memcpy(&nh->md1, nla_data(a), mdlen);
break;
case OVS_NSH_KEY_ATTR_MD2:
mdlen = nla_len(a);
if (mdlen > size - NSH_BASE_HDR_LEN)
return -ENOBUFS;
memcpy(&nh->md2, nla_data(a), mdlen);
break;
default:
return -EINVAL;
}
}
/* nsh header length = NSH_BASE_HDR_LEN + mdlen */
nh->ver_flags_ttl_len = 0;
nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
return 0;
}
int nsh_key_from_nlattr(const struct nlattr *attr,
struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
{
struct nlattr *a;
int rem;
/* validate_nsh has check this, so we needn't do duplicate check here
*/
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
switch (type) {
case OVS_NSH_KEY_ATTR_BASE: {
const struct ovs_nsh_key_base *base = nla_data(a);
const struct ovs_nsh_key_base *base_mask = base + 1;
nsh->base = *base;
nsh_mask->base = *base_mask;
break;
}
case OVS_NSH_KEY_ATTR_MD1: {
const struct ovs_nsh_key_md1 *md1 = nla_data(a);
const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
memcpy(nsh->context, md1->context, sizeof(*md1));
memcpy(nsh_mask->context, md1_mask->context,
sizeof(*md1_mask));
break;
}
case OVS_NSH_KEY_ATTR_MD2:
/* Not supported yet */
return -ENOTSUPP;
default:
return -EINVAL;
}
}
return 0;
}
static int nsh_key_put_from_nlattr(const struct nlattr *attr,
struct sw_flow_match *match, bool is_mask,
bool is_push_nsh, bool log)
{
struct nlattr *a;
int rem;
bool has_base = false;
bool has_md1 = false;
bool has_md2 = false;
u8 mdtype = 0;
int mdlen = 0;
if (WARN_ON(is_push_nsh && is_mask))
return -EINVAL;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
int i;
if (type > OVS_NSH_KEY_ATTR_MAX) {
OVS_NLERR(log, "nsh attr %d is out of range max %d",
type, OVS_NSH_KEY_ATTR_MAX);
return -EINVAL;
}
if (!check_attr_len(nla_len(a),
ovs_nsh_key_attr_lens[type].len)) {
OVS_NLERR(
log,
"nsh attr %d has unexpected len %d expected %d",
type,
nla_len(a),
ovs_nsh_key_attr_lens[type].len
);
return -EINVAL;
}
switch (type) {
case OVS_NSH_KEY_ATTR_BASE: {
const struct ovs_nsh_key_base *base = nla_data(a);
has_base = true;
mdtype = base->mdtype;
SW_FLOW_KEY_PUT(match, nsh.base.flags,
base->flags, is_mask);
SW_FLOW_KEY_PUT(match, nsh.base.ttl,
base->ttl, is_mask);
SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
base->mdtype, is_mask);
SW_FLOW_KEY_PUT(match, nsh.base.np,
base->np, is_mask);
SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
base->path_hdr, is_mask);
break;
}
case OVS_NSH_KEY_ATTR_MD1: {
const struct ovs_nsh_key_md1 *md1 = nla_data(a);
has_md1 = true;
for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
SW_FLOW_KEY_PUT(match, nsh.context[i],
md1->context[i], is_mask);
break;
}
case OVS_NSH_KEY_ATTR_MD2:
if (!is_push_nsh) /* Not supported MD type 2 yet */
return -ENOTSUPP;
has_md2 = true;
mdlen = nla_len(a);
if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
OVS_NLERR(
log,
"Invalid MD length %d for MD type %d",
mdlen,
mdtype
);
return -EINVAL;
}
break;
default:
OVS_NLERR(log, "Unknown nsh attribute %d",
type);
return -EINVAL;
}
}
if (rem > 0) {
OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
return -EINVAL;
}
if (has_md1 && has_md2) {
OVS_NLERR(
1,
"invalid nsh attribute: md1 and md2 are exclusive."
);
return -EINVAL;
}
if (!is_mask) {
if ((has_md1 && mdtype != NSH_M_TYPE1) ||
(has_md2 && mdtype != NSH_M_TYPE2)) {
OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
mdtype);
return -EINVAL;
}
if (is_push_nsh &&
(!has_base || (!has_md1 && !has_md2))) {
OVS_NLERR(
1,
"push_nsh: missing base or metadata attributes"
);
return -EINVAL;
}
}
return 0;
}
static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
u64 attrs, const struct nlattr **a,
bool is_mask, bool log)
{
int err;
err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
if (err)
return err;
if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
const struct ovs_key_ethernet *eth_key;
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
SW_FLOW_KEY_MEMCPY(match, eth.src,
eth_key->eth_src, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, eth.dst,
eth_key->eth_dst, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
/* VLAN attribute is always parsed before getting here since it
* may occur multiple times.
*/
OVS_NLERR(log, "VLAN attribute unexpected.");
return -EINVAL;
}
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
log);
if (err)
return err;
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
}
} else if (!match->key->eth.type) {
OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
return -EINVAL;
}
if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
const struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ip.proto,
ipv4_key->ipv4_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv4_key->ipv4_tos, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv4_key->ipv4_ttl, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv4_key->ipv4_frag, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
ipv4_key->ipv4_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
ipv4_key->ipv4_dst, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
}
if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
const struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv6.label,
ipv6_key->ipv6_label, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ipv6_key->ipv6_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv6_key->ipv6_tclass, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv6_key->ipv6_hlimit, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv6_key->ipv6_frag, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
ipv6_key->ipv6_src,
sizeof(match->key->ipv6.addr.src),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
ipv6_key->ipv6_dst,
sizeof(match->key->ipv6.addr.dst),
is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
}
if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
ipv6_exthdrs_key->hdrs, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
}
if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
const struct ovs_key_arp *arp_key;
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
arp_key->arp_op);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
arp_key->arp_sip, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
arp_key->arp_tip, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ntohs(arp_key->arp_op), is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
arp_key->arp_sha, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
arp_key->arp_tha, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ARP);
}
if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
is_mask, false, log) < 0)
return -EINVAL;
attrs &= ~(1 << OVS_KEY_ATTR_NSH);
}
if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
const struct ovs_key_mpls *mpls_key;
u32 hdr_len;
u32 label_count, label_count_mask, i;
mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
label_count = hdr_len / sizeof(struct ovs_key_mpls);
if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
hdr_len % sizeof(struct ovs_key_mpls))
return -EINVAL;
label_count_mask = GENMASK(label_count - 1, 0);
for (i = 0 ; i < label_count; i++)
SW_FLOW_KEY_PUT(match, mpls.lse[i],
mpls_key[i].mpls_lse, is_mask);
SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
label_count_mask, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
}
if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
const struct ovs_key_tcp *tcp_key;
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_TCP);
}
if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
SW_FLOW_KEY_PUT(match, tp.flags,
nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
}
if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
const struct ovs_key_udp *udp_key;
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_UDP);
}
if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
const struct ovs_key_sctp *sctp_key;
sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
}
if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
const struct ovs_key_icmp *icmp_key;
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
SW_FLOW_KEY_PUT(match, tp.src,
htons(icmp_key->icmp_type), is_mask);
SW_FLOW_KEY_PUT(match, tp.dst,
htons(icmp_key->icmp_code), is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
}
if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
const struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
SW_FLOW_KEY_PUT(match, tp.src,
htons(icmpv6_key->icmpv6_type), is_mask);
SW_FLOW_KEY_PUT(match, tp.dst,
htons(icmpv6_key->icmpv6_code), is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
}
if (attrs & (1 << OVS_KEY_ATTR_ND)) {
const struct ovs_key_nd *nd_key;
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
nd_key->nd_target,
sizeof(match->key->ipv6.nd.target),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
nd_key->nd_sll, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
nd_key->nd_tll, ETH_ALEN, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_ND);
}
if (attrs != 0) {
OVS_NLERR(log, "Unknown key attributes %llx",
(unsigned long long)attrs);
return -EINVAL;
}
return 0;
}
static void nlattr_set(struct nlattr *attr, u8 val,
const struct ovs_len_tbl *tbl)
{
struct nlattr *nla;
int rem;
/* The nlattr stream should already have been validated */
nla_for_each_nested(nla, attr, rem) {
if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
else
memset(nla_data(nla), val, nla_len(nla));
if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
}
}
static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
nlattr_set(attr, val, ovs_key_lens);
}
/**
* ovs_nla_get_match - parses Netlink attributes into a flow key and
* mask. In case the 'mask' is NULL, the flow is treated as exact match
* flow. Otherwise, it is treated as a wildcarded flow, except the mask
* does not include any don't care bit.
* @net: Used to determine per-namespace field support.
* @match: receives the extracted flow match information.
* @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence. The fields should of the packet that triggered the creation
* of this flow.
* @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
* Netlink attribute specifies the mask field of the wildcarded flow.
* @log: Boolean to allow kernel error logging. Normally true, but when
* probing for feature compatibility this should be passed in as false to
* suppress unnecessary error logging.
*/
int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
const struct nlattr *nla_key,
const struct nlattr *nla_mask,
bool log)
{
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
struct nlattr *newmask = NULL;
u64 key_attrs = 0;
u64 mask_attrs = 0;
int err;
err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
if (err)
return err;
err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
if (err)
return err;
err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
if (err)
return err;
if (match->mask) {
if (!nla_mask) {
/* Create an exact match mask. We need to set to 0xff
* all the 'match->mask' fields that have been touched
* in 'match->key'. We cannot simply memset
* 'match->mask', because padding bytes and fields not
* specified in 'match->key' should be left to 0.
* Instead, we use a stream of netlink attributes,
* copied from 'key' and set to 0xff.
* ovs_key_from_nlattrs() will take care of filling
* 'match->mask' appropriately.
*/
newmask = kmemdup(nla_key,
nla_total_size(nla_len(nla_key)),
GFP_KERNEL);
if (!newmask)
return -ENOMEM;
mask_set_nlattr(newmask, 0xff);
/* The userspace does not send tunnel attributes that
* are 0, but we should not wildcard them nonetheless.
*/
if (match->key->tun_proto)
SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
0xff, true);
nla_mask = newmask;
}
err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
if (err)
goto free_newmask;
/* Always match on tci. */
SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
if (err)
goto free_newmask;
err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
log);
if (err)
goto free_newmask;
}
if (!match_validate(match, key_attrs, mask_attrs, log))
err = -EINVAL;
free_newmask:
kfree(newmask);
return err;
}
static size_t get_ufid_len(const struct nlattr *attr, bool log)
{
size_t len;
if (!attr)
return 0;
len = nla_len(attr);
if (len < 1 || len > MAX_UFID_LENGTH) {
OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
nla_len(attr), MAX_UFID_LENGTH);
return 0;
}
return len;
}
/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
* or false otherwise.
*/
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
bool log)
{
sfid->ufid_len = get_ufid_len(attr, log);
if (sfid->ufid_len)
memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
return sfid->ufid_len;
}
int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
const struct sw_flow_key *key, bool log)
{
struct sw_flow_key *new_key;
if (ovs_nla_get_ufid(sfid, ufid, log))
return 0;
/* If UFID was not provided, use unmasked key. */
new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
if (!new_key)
return -ENOMEM;
memcpy(new_key, key, sizeof(*key));
sfid->unmasked_key = new_key;
return 0;
}
u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
{
return attr ? nla_get_u32(attr) : 0;
}
/**
* ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
* @net: Network namespace.
* @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
* metadata.
* @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
* attributes.
* @attrs: Bit mask for the netlink attributes included in @a.
* @log: Boolean to allow kernel error logging. Normally true, but when
* probing for feature compatibility this should be passed in as false to
* suppress unnecessary error logging.
*
* This parses a series of Netlink attributes that form a flow key, which must
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
* get the metadata, that is, the parts of the flow key that cannot be
* extracted from the packet itself.
*
* This must be called before the packet key fields are filled in 'key'.
*/
int ovs_nla_get_flow_metadata(struct net *net,
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
u64 attrs, struct sw_flow_key *key, bool log)
{
struct sw_flow_match match;
memset(&match, 0, sizeof(match));
match.key = key;
key->ct_state = 0;
key->ct_zone = 0;
key->ct_orig_proto = 0;
memset(&key->ct, 0, sizeof(key->ct));
memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
key->phy.in_port = DP_MAX_PORTS;
return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
}
static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
bool is_mask)
{
__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
return -EMSGSIZE;
return 0;
}
static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
struct sk_buff *skb)
{
struct nlattr *start;
start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
if (!start)
return -EMSGSIZE;
if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
goto nla_put_failure;
if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
sizeof(nsh->context), nsh->context))
goto nla_put_failure;
}
/* Don't support MD type 2 yet */
nla_nest_end(skb, start);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, bool is_mask,
struct sk_buff *skb)
{
struct ovs_key_ethernet *eth_key;
struct nlattr *nla;
struct nlattr *encap = NULL;
struct nlattr *in_encap = NULL;
if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
goto nla_put_failure;
if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
goto nla_put_failure;
if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
goto nla_put_failure;
if ((swkey->tun_proto || is_mask)) {
const void *opts = NULL;
if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
swkey->tun_opts_len, swkey->tun_proto, 0))
goto nla_put_failure;
}
if (swkey->phy.in_port == DP_MAX_PORTS) {
if (is_mask && (output->phy.in_port == 0xffff))
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
goto nla_put_failure;
} else {
u16 upper_u16;
upper_u16 = !is_mask ? 0 : 0xffff;
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
(upper_u16 << 16) | output->phy.in_port))
goto nla_put_failure;
}
if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
goto nla_put_failure;
if (ovs_ct_put_key(swkey, output, skb))
goto nla_put_failure;
if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
if (!nla)
goto nla_put_failure;
eth_key = nla_data(nla);
ether_addr_copy(eth_key->eth_src, output->eth.src);
ether_addr_copy(eth_key->eth_dst, output->eth.dst);
if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
goto nla_put_failure;
encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.vlan.tci)
goto unencap;
if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
goto nla_put_failure;
in_encap = nla_nest_start_noflag(skb,
OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.cvlan.tci)
goto unencap;
}
}
if (swkey->eth.type == htons(ETH_P_802_2)) {
/*
* Ethertype 802.2 is represented in the netlink with omitted
* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
* 0xffff in the mask attribute. Ethertype can also
* be wildcarded.
*/
if (is_mask && output->eth.type)
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
output->eth.type))
goto nla_put_failure;
goto unencap;
}
}
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
goto nla_put_failure;
if (eth_type_vlan(swkey->eth.type)) {
/* There are 3 VLAN tags, we don't know anything about the rest
* of the packet, so truncate here.
*/
WARN_ON_ONCE(!(encap && in_encap));
goto unencap;
}
if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ipv4 *ipv4_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
if (!nla)
goto nla_put_failure;
ipv4_key = nla_data(nla);
ipv4_key->ipv4_src = output->ipv4.addr.src;
ipv4_key->ipv4_dst = output->ipv4.addr.dst;
ipv4_key->ipv4_proto = output->ip.proto;
ipv4_key->ipv4_tos = output->ip.tos;
ipv4_key->ipv4_ttl = output->ip.ttl;
ipv4_key->ipv4_frag = output->ip.frag;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
if (!nla)
goto nla_put_failure;
ipv6_key = nla_data(nla);
memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
sizeof(ipv6_key->ipv6_src));
memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
sizeof(ipv6_key->ipv6_dst));
ipv6_key->ipv6_label = output->ipv6.label;
ipv6_key->ipv6_proto = output->ip.proto;
ipv6_key->ipv6_tclass = output->ip.tos;
ipv6_key->ipv6_hlimit = output->ip.ttl;
ipv6_key->ipv6_frag = output->ip.frag;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
sizeof(*ipv6_exthdrs_key));
if (!nla)
goto nla_put_failure;
ipv6_exthdrs_key = nla_data(nla);
ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
} else if (swkey->eth.type == htons(ETH_P_NSH)) {
if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
goto nla_put_failure;
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
swkey->eth.type == htons(ETH_P_RARP)) {
struct ovs_key_arp *arp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
if (!nla)
goto nla_put_failure;
arp_key = nla_data(nla);
memset(arp_key, 0, sizeof(struct ovs_key_arp));
arp_key->arp_sip = output->ipv4.addr.src;
arp_key->arp_tip = output->ipv4.addr.dst;
arp_key->arp_op = htons(output->ip.proto);
ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
} else if (eth_p_mpls(swkey->eth.type)) {
u8 i, num_labels;
struct ovs_key_mpls *mpls_key;
num_labels = hweight_long(output->mpls.num_labels_mask);
nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
num_labels * sizeof(*mpls_key));
if (!nla)
goto nla_put_failure;
mpls_key = nla_data(nla);
for (i = 0; i < num_labels; i++)
mpls_key[i].mpls_lse = output->mpls.lse[i];
}
if ((swkey->eth.type == htons(ETH_P_IP) ||
swkey->eth.type == htons(ETH_P_IPV6)) &&
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
if (swkey->ip.proto == IPPROTO_TCP) {
struct ovs_key_tcp *tcp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
if (!nla)
goto nla_put_failure;
tcp_key = nla_data(nla);
tcp_key->tcp_src = output->tp.src;
tcp_key->tcp_dst = output->tp.dst;
if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
output->tp.flags))
goto nla_put_failure;
} else if (swkey->ip.proto == IPPROTO_UDP) {
struct ovs_key_udp *udp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
if (!nla)
goto nla_put_failure;
udp_key = nla_data(nla);
udp_key->udp_src = output->tp.src;
udp_key->udp_dst = output->tp.dst;
} else if (swkey->ip.proto == IPPROTO_SCTP) {
struct ovs_key_sctp *sctp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
if (!nla)
goto nla_put_failure;
sctp_key = nla_data(nla);
sctp_key->sctp_src = output->tp.src;
sctp_key->sctp_dst = output->tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IP) &&
swkey->ip.proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
if (!nla)
goto nla_put_failure;
icmp_key = nla_data(nla);
icmp_key->icmp_type = ntohs(output->tp.src);
icmp_key->icmp_code = ntohs(output->tp.dst);
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
swkey->ip.proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
sizeof(*icmpv6_key));
if (!nla)
goto nla_put_failure;
icmpv6_key = nla_data(nla);
icmpv6_key->icmpv6_type = ntohs(output->tp.src);
icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
struct ovs_key_nd *nd_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
if (!nla)
goto nla_put_failure;
nd_key = nla_data(nla);
memcpy(nd_key->nd_target, &output->ipv6.nd.target,
sizeof(nd_key->nd_target));
ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
}
}
}
unencap:
if (in_encap)
nla_nest_end(skb, in_encap);
if (encap)
nla_nest_end(skb, encap);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
int ovs_nla_put_key(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, int attr, bool is_mask,
struct sk_buff *skb)
{
int err;
struct nlattr *nla;
nla = nla_nest_start_noflag(skb, attr);
if (!nla)
return -EMSGSIZE;
err = __ovs_nla_put_key(swkey, output, is_mask, skb);
if (err)
return err;
nla_nest_end(skb, nla);
return 0;
}
/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
{
if (ovs_identifier_is_ufid(&flow->id))
return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
flow->id.ufid);
return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
OVS_FLOW_ATTR_KEY, false, skb);
}
/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
{
return ovs_nla_put_key(&flow->key, &flow->key,
OVS_FLOW_ATTR_KEY, false, skb);
}
/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
{
return ovs_nla_put_key(&flow->key, &flow->mask->key,
OVS_FLOW_ATTR_MASK, true, skb);
}
#define MAX_ACTIONS_BUFSIZE (32 * 1024)
static struct sw_flow_actions *nla_alloc_flow_actions(int size)
{
struct sw_flow_actions *sfa;
WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->actions_len = 0;
return sfa;
}
static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
{
const struct nlattr *a;
int rem;
nla_for_each_nested(a, action, rem) {
switch (nla_type(a)) {
case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
break;
}
}
}
static void ovs_nla_free_clone_action(const struct nlattr *action)
{
const struct nlattr *a = nla_data(action);
int rem = nla_len(action);
switch (nla_type(a)) {
case OVS_CLONE_ATTR_EXEC:
/* The real list of actions follows this attribute. */
a = nla_next(a, &rem);
ovs_nla_free_nested_actions(a, rem);
break;
}
}
static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
{
const struct nlattr *a = nla_data(action);
switch (nla_type(a)) {
case OVS_DEC_TTL_ATTR_ACTION:
ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
break;
}
}
static void ovs_nla_free_sample_action(const struct nlattr *action)
{
const struct nlattr *a = nla_data(action);
int rem = nla_len(action);
switch (nla_type(a)) {
case OVS_SAMPLE_ATTR_ARG:
/* The real list of actions follows this attribute. */
a = nla_next(a, &rem);
ovs_nla_free_nested_actions(a, rem);
break;
}
}
static void ovs_nla_free_set_action(const struct nlattr *a)
{
const struct nlattr *ovs_key = nla_data(a);
struct ovs_tunnel_info *ovs_tun;
switch (nla_type(ovs_key)) {
case OVS_KEY_ATTR_TUNNEL_INFO:
ovs_tun = nla_data(ovs_key);
dst_release((struct dst_entry *)ovs_tun->tun_dst);
break;
}
}
static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
{
const struct nlattr *a;
int rem;
/* Whenever new actions are added, the need to update this
* function should be considered.
*/
BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 23);
if (!actions)
return;
nla_for_each_attr(a, actions, len, rem) {
switch (nla_type(a)) {
case OVS_ACTION_ATTR_CHECK_PKT_LEN:
ovs_nla_free_check_pkt_len_action(a);
break;
case OVS_ACTION_ATTR_CLONE:
ovs_nla_free_clone_action(a);
break;
case OVS_ACTION_ATTR_CT:
ovs_ct_free_action(a);
break;
case OVS_ACTION_ATTR_DEC_TTL:
ovs_nla_free_dec_ttl_action(a);
break;
case OVS_ACTION_ATTR_SAMPLE:
ovs_nla_free_sample_action(a);
break;
case OVS_ACTION_ATTR_SET:
ovs_nla_free_set_action(a);
break;
}
}
}
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
if (!sf_acts)
return;
ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
kfree(sf_acts);
}
static void __ovs_nla_free_flow_actions(struct rcu_head *head)
{
ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
}
static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
int attr_len, bool log)
{
struct sw_flow_actions *acts;
int new_acts_size;
size_t req_size = NLA_ALIGN(attr_len);
int next_offset = offsetof(struct sw_flow_actions, actions) +
(*sfa)->actions_len;
if (req_size <= (ksize(*sfa) - next_offset))
goto out;
new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
OVS_NLERR(log, "Flow action size exceeds max %u",
MAX_ACTIONS_BUFSIZE);
return ERR_PTR(-EMSGSIZE);
}
new_acts_size = MAX_ACTIONS_BUFSIZE;
}
acts = nla_alloc_flow_actions(new_acts_size);
if (IS_ERR(acts))
return (void *)acts;
memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
acts->actions_len = (*sfa)->actions_len;
acts->orig_len = (*sfa)->orig_len;
kfree(*sfa);
*sfa = acts;
out:
(*sfa)->actions_len += req_size;
return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
int attrtype, void *data, int len, bool log)
{
struct nlattr *a;
a = reserve_sfa_size(sfa, nla_attr_size(len), log);
if (IS_ERR(a))
return a;
a->nla_type = attrtype;
a->nla_len = nla_attr_size(len);
if (data)
memcpy(nla_data(a), data, len);
memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
return a;
}
int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
int len, bool log)
{
struct nlattr *a;
a = __add_action(sfa, attrtype, data, len, log);
return PTR_ERR_OR_ZERO(a);
}
static inline int add_nested_action_start(struct sw_flow_actions **sfa,
int attrtype, bool log)
{
int used = (*sfa)->actions_len;
int err;
err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
if (err)
return err;
return used;
}
static inline void add_nested_action_end(struct sw_flow_actions *sfa,
int st_offset)
{
struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
st_offset);
a->nla_len = sfa->actions_len - st_offset;
}
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count, bool log);
static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count, bool log, bool last)
{
const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
const struct nlattr *probability, *actions;
const struct nlattr *a;
int rem, start, err;
struct sample_arg arg;
memset(attrs, 0, sizeof(attrs));
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
return -EINVAL;
attrs[type] = a;
}
if (rem)
return -EINVAL;
probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
if (!probability || nla_len(probability) != sizeof(u32))
return -EINVAL;
actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
return -EINVAL;
/* validation done, copy sample action. */
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
if (start < 0)
return start;
/* When both skb and flow may be changed, put the sample
* into a deferred fifo. On the other hand, if only skb
* may be modified, the actions can be executed in place.
*
* Do this analysis at the flow installation time.
* Set 'clone_action->exec' to true if the actions can be
* executed without being deferred.
*
* If the sample is the last action, it can always be excuted
* rather than deferred.
*/
arg.exec = last || !actions_may_change_flow(actions);
arg.probability = nla_get_u32(probability);
err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
log);
if (err)
return err;
err = __ovs_nla_copy_actions(net, actions, key, sfa,
eth_type, vlan_tci, mpls_label_count, log);
if (err)
return err;
add_nested_action_end(*sfa, start);
return 0;
}
static int validate_and_copy_dec_ttl(struct net *net,
const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count, bool log)
{
const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
int start, action_start, err, rem;
const struct nlattr *a, *actions;
memset(attrs, 0, sizeof(attrs));
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
/* Ignore unknown attributes to be future proof. */
if (type > OVS_DEC_TTL_ATTR_MAX)
continue;
if (!type || attrs[type]) {
OVS_NLERR(log, "Duplicate or invalid key (type %d).",
type);
return -EINVAL;
}
attrs[type] = a;
}
if (rem) {
OVS_NLERR(log, "Message has %d unknown bytes.", rem);
return -EINVAL;
}
actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
OVS_NLERR(log, "Missing valid actions attribute.");
return -EINVAL;
}
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
if (start < 0)
return start;
action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
if (action_start < 0)
return action_start;
err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
vlan_tci, mpls_label_count, log);
if (err)
return err;
add_nested_action_end(*sfa, action_start);
add_nested_action_end(*sfa, start);
return 0;
}
static int validate_and_copy_clone(struct net *net,
const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count, bool log, bool last)
{
int start, err;
u32 exec;
if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
return -EINVAL;
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
if (start < 0)
return start;
exec = last || !actions_may_change_flow(attr);
err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
sizeof(exec), log);
if (err)
return err;
err = __ovs_nla_copy_actions(net, attr, key, sfa,
eth_type, vlan_tci, mpls_label_count, log);
if (err)
return err;
add_nested_action_end(*sfa, start);
return 0;
}
void ovs_match_init(struct sw_flow_match *match,
struct sw_flow_key *key,
bool reset_key,
struct sw_flow_mask *mask)
{
memset(match, 0, sizeof(*match));
match->key = key;
match->mask = mask;
if (reset_key)
memset(key, 0, sizeof(*key));
if (mask) {
memset(&mask->key, 0, sizeof(mask->key));
mask->range.start = mask->range.end = 0;
}
}
static int validate_geneve_opts(struct sw_flow_key *key)
{
struct geneve_opt *option;
int opts_len = key->tun_opts_len;
bool crit_opt = false;
option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
while (opts_len > 0) {
int len;
if (opts_len < sizeof(*option))
return -EINVAL;
len = sizeof(*option) + option->length * 4;
if (len > opts_len)
return -EINVAL;
crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
option = (struct geneve_opt *)((u8 *)option + len);
opts_len -= len;
}
key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
return 0;
}
static int validate_and_copy_set_tun(const struct nlattr *attr,
struct sw_flow_actions **sfa, bool log)
{
struct sw_flow_match match;
struct sw_flow_key key;
struct metadata_dst *tun_dst;
struct ip_tunnel_info *tun_info;
struct ovs_tunnel_info *ovs_tun;
struct nlattr *a;
int err = 0, start, opts_type;
__be16 dst_opt_type;
dst_opt_type = 0;
ovs_match_init(&match, &key, true, NULL);
opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
if (opts_type < 0)
return opts_type;
if (key.tun_opts_len) {
switch (opts_type) {
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
err = validate_geneve_opts(&key);
if (err < 0)
return err;
dst_opt_type = TUNNEL_GENEVE_OPT;
break;
case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
dst_opt_type = TUNNEL_VXLAN_OPT;
break;
case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
dst_opt_type = TUNNEL_ERSPAN_OPT;
break;
}
}
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
if (start < 0)
return start;
tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
GFP_KERNEL);
if (!tun_dst)
return -ENOMEM;
err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
if (err) {
dst_release((struct dst_entry *)tun_dst);
return err;
}
a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
sizeof(*ovs_tun), log);
if (IS_ERR(a)) {
dst_release((struct dst_entry *)tun_dst);
return PTR_ERR(a);
}
ovs_tun = nla_data(a);
ovs_tun->tun_dst = tun_dst;
tun_info = &tun_dst->u.tun_info;
tun_info->mode = IP_TUNNEL_INFO_TX;
if (key.tun_proto == AF_INET6)
tun_info->mode |= IP_TUNNEL_INFO_IPV6;
else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
tun_info->key = key.tun_key;
/* We need to store the options in the action itself since
* everything else will go away after flow setup. We can append
* it to tun_info and then point there.
*/
ip_tunnel_info_opts_set(tun_info,
TUN_METADATA_OPTS(&key, key.tun_opts_len),
key.tun_opts_len, dst_opt_type);
add_nested_action_end(*sfa, start);
return err;
}
static bool validate_nsh(const struct nlattr *attr, bool is_mask,
bool is_push_nsh, bool log)
{
struct sw_flow_match match;
struct sw_flow_key key;
int ret = 0;
ovs_match_init(&match, &key, true, NULL);
ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
is_push_nsh, log);
return !ret;
}
/* Return false if there are any non-masked bits set.
* Mask follows data immediately, before any netlink padding.
*/
static bool validate_masked(u8 *data, int len)
{
u8 *mask = data + len;
while (len--)
if (*data++ & ~*mask++)
return false;
return true;
}
static int validate_set(const struct nlattr *a,
const struct sw_flow_key *flow_key,
struct sw_flow_actions **sfa, bool *skip_copy,
u8 mac_proto, __be16 eth_type, bool masked, bool log)
{
const struct nlattr *ovs_key = nla_data(a);
int key_type = nla_type(ovs_key);
size_t key_len;
/* There can be only one key in a action */
if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
return -EINVAL;
key_len = nla_len(ovs_key);
if (masked)
key_len /= 2;
if (key_type > OVS_KEY_ATTR_MAX ||
!check_attr_len(key_len, ovs_key_lens[key_type].len))
return -EINVAL;
if (masked && !validate_masked(nla_data(ovs_key), key_len))
return -EINVAL;
switch (key_type) {
case OVS_KEY_ATTR_PRIORITY:
case OVS_KEY_ATTR_SKB_MARK:
case OVS_KEY_ATTR_CT_MARK:
case OVS_KEY_ATTR_CT_LABELS:
break;
case OVS_KEY_ATTR_ETHERNET:
if (mac_proto != MAC_PROTO_ETHERNET)
return -EINVAL;
break;
case OVS_KEY_ATTR_TUNNEL: {
int err;
if (masked)
return -EINVAL; /* Masked tunnel set not supported. */
*skip_copy = true;
err = validate_and_copy_set_tun(a, sfa, log);
if (err)
return err;
break;
}
case OVS_KEY_ATTR_IPV4: {
const struct ovs_key_ipv4 *ipv4_key;
if (eth_type != htons(ETH_P_IP))
return -EINVAL;
ipv4_key = nla_data(ovs_key);
if (masked) {
const struct ovs_key_ipv4 *mask = ipv4_key + 1;
/* Non-writeable fields. */
if (mask->ipv4_proto || mask->ipv4_frag)
return -EINVAL;
} else {
if (ipv4_key->ipv4_proto != flow_key->ip.proto)
return -EINVAL;
if (ipv4_key->ipv4_frag != flow_key->ip.frag)
return -EINVAL;
}
break;
}
case OVS_KEY_ATTR_IPV6: {
const struct ovs_key_ipv6 *ipv6_key;
if (eth_type != htons(ETH_P_IPV6))
return -EINVAL;
ipv6_key = nla_data(ovs_key);
if (masked) {
const struct ovs_key_ipv6 *mask = ipv6_key + 1;
/* Non-writeable fields. */
if (mask->ipv6_proto || mask->ipv6_frag)
return -EINVAL;
/* Invalid bits in the flow label mask? */
if (ntohl(mask->ipv6_label) & 0xFFF00000)
return -EINVAL;
} else {
if (ipv6_key->ipv6_proto != flow_key->ip.proto)
return -EINVAL;
if (ipv6_key->ipv6_frag != flow_key->ip.frag)
return -EINVAL;
}
if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
return -EINVAL;
break;
}
case OVS_KEY_ATTR_TCP:
if ((eth_type != htons(ETH_P_IP) &&
eth_type != htons(ETH_P_IPV6)) ||
flow_key->ip.proto != IPPROTO_TCP)
return -EINVAL;
break;
case OVS_KEY_ATTR_UDP:
if ((eth_type != htons(ETH_P_IP) &&
eth_type != htons(ETH_P_IPV6)) ||
flow_key->ip.proto != IPPROTO_UDP)
return -EINVAL;
break;
case OVS_KEY_ATTR_MPLS:
if (!eth_p_mpls(eth_type))
return -EINVAL;
break;
case OVS_KEY_ATTR_SCTP:
if ((eth_type != htons(ETH_P_IP) &&
eth_type != htons(ETH_P_IPV6)) ||
flow_key->ip.proto != IPPROTO_SCTP)
return -EINVAL;
break;
case OVS_KEY_ATTR_NSH:
if (eth_type != htons(ETH_P_NSH))
return -EINVAL;
if (!validate_nsh(nla_data(a), masked, false, log))
return -EINVAL;
break;
default:
return -EINVAL;
}
/* Convert non-masked non-tunnel set actions to masked set actions. */
if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
int start, len = key_len * 2;
struct nlattr *at;
*skip_copy = true;
start = add_nested_action_start(sfa,
OVS_ACTION_ATTR_SET_TO_MASKED,
log);
if (start < 0)
return start;
at = __add_action(sfa, key_type, NULL, len, log);
if (IS_ERR(at))
return PTR_ERR(at);
memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
/* Clear non-writeable bits from otherwise writeable fields. */
if (key_type == OVS_KEY_ATTR_IPV6) {
struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
mask->ipv6_label &= htonl(0x000FFFFF);
}
add_nested_action_end(*sfa, start);
}
return 0;
}
static int validate_userspace(const struct nlattr *attr)
{
static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
};
struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
int error;
error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
userspace_policy, NULL);
if (error)
return error;
if (!a[OVS_USERSPACE_ATTR_PID] ||
!nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
return -EINVAL;
return 0;
}
static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
};
static int validate_and_copy_check_pkt_len(struct net *net,
const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count,
bool log, bool last)
{
const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
struct check_pkt_len_arg arg;
int nested_acts_start;
int start, err;
err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
nla_data(attr), nla_len(attr),
cpl_policy, NULL);
if (err)
return err;
if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
!nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
return -EINVAL;
acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
/* Both the nested action should be present. */
if (!acts_if_greater || !acts_if_lesser_eq)
return -EINVAL;
/* validation done, copy the nested actions. */
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
log);
if (start < 0)
return start;
arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
arg.exec_for_lesser_equal =
last || !actions_may_change_flow(acts_if_lesser_eq);
arg.exec_for_greater =
last || !actions_may_change_flow(acts_if_greater);
err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
sizeof(arg), log);
if (err)
return err;
nested_acts_start = add_nested_action_start(sfa,
OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
if (nested_acts_start < 0)
return nested_acts_start;
err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
eth_type, vlan_tci, mpls_label_count, log);
if (err)
return err;
add_nested_action_end(*sfa, nested_acts_start);
nested_acts_start = add_nested_action_start(sfa,
OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
if (nested_acts_start < 0)
return nested_acts_start;
err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
eth_type, vlan_tci, mpls_label_count, log);
if (err)
return err;
add_nested_action_end(*sfa, nested_acts_start);
add_nested_action_end(*sfa, start);
return 0;
}
static int copy_action(const struct nlattr *from,
struct sw_flow_actions **sfa, bool log)
{
int totlen = NLA_ALIGN(from->nla_len);
struct nlattr *to;
to = reserve_sfa_size(sfa, from->nla_len, log);
if (IS_ERR(to))
return PTR_ERR(to);
memcpy(to, from, totlen);
return 0;
}
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa,
__be16 eth_type, __be16 vlan_tci,
u32 mpls_label_count, bool log)
{
u8 mac_proto = ovs_key_mac_proto(key);
const struct nlattr *a;
int rem, err;
nla_for_each_nested(a, attr, rem) {
/* Expected argument lengths, (u32)-1 for variable length. */
static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
[OVS_ACTION_ATTR_POP_VLAN] = 0,
[OVS_ACTION_ATTR_SET] = (u32)-1,
[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
[OVS_ACTION_ATTR_CT] = (u32)-1,
[OVS_ACTION_ATTR_CT_CLEAR] = 0,
[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
[OVS_ACTION_ATTR_POP_ETH] = 0,
[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
[OVS_ACTION_ATTR_POP_NSH] = 0,
[OVS_ACTION_ATTR_METER] = sizeof(u32),
[OVS_ACTION_ATTR_CLONE] = (u32)-1,
[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
};
const struct ovs_action_push_vlan *vlan;
int type = nla_type(a);
bool skip_copy;
if (type > OVS_ACTION_ATTR_MAX ||
(action_lens[type] != nla_len(a) &&
action_lens[type] != (u32)-1))
return -EINVAL;
skip_copy = false;
switch (type) {
case OVS_ACTION_ATTR_UNSPEC:
return -EINVAL;
case OVS_ACTION_ATTR_USERSPACE:
err = validate_userspace(a);
if (err)
return err;
break;
case OVS_ACTION_ATTR_OUTPUT:
if (nla_get_u32(a) >= DP_MAX_PORTS)
return -EINVAL;
break;
case OVS_ACTION_ATTR_TRUNC: {
const struct ovs_action_trunc *trunc = nla_data(a);
if (trunc->max_len < ETH_HLEN)
return -EINVAL;
break;
}
case OVS_ACTION_ATTR_HASH: {
const struct ovs_action_hash *act_hash = nla_data(a);
switch (act_hash->hash_alg) {
case OVS_HASH_ALG_L4:
break;
default:
return -EINVAL;
}
break;
}
case OVS_ACTION_ATTR_POP_VLAN:
if (mac_proto != MAC_PROTO_ETHERNET)
return -EINVAL;
vlan_tci = htons(0);
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
if (mac_proto != MAC_PROTO_ETHERNET)
return -EINVAL;
vlan = nla_data(a);
if (!eth_type_vlan(vlan->vlan_tpid))
return -EINVAL;
if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
return -EINVAL;
vlan_tci = vlan->vlan_tci;
break;
case OVS_ACTION_ATTR_RECIRC:
break;
case OVS_ACTION_ATTR_ADD_MPLS: {
const struct ovs_action_add_mpls *mpls = nla_data(a);
if (!eth_p_mpls(mpls->mpls_ethertype))
return -EINVAL;
if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
if (vlan_tci & htons(VLAN_CFI_MASK) ||
(eth_type != htons(ETH_P_IP) &&
eth_type != htons(ETH_P_IPV6) &&
eth_type != htons(ETH_P_ARP) &&
eth_type != htons(ETH_P_RARP) &&
!eth_p_mpls(eth_type)))
return -EINVAL;
mpls_label_count++;
} else {
if (mac_proto == MAC_PROTO_ETHERNET) {
mpls_label_count = 1;
mac_proto = MAC_PROTO_NONE;
} else {
mpls_label_count++;
}
}
eth_type = mpls->mpls_ethertype;
break;
}
case OVS_ACTION_ATTR_PUSH_MPLS: {
const struct ovs_action_push_mpls *mpls = nla_data(a);
if (!eth_p_mpls(mpls->mpls_ethertype))
return -EINVAL;
/* Prohibit push MPLS other than to a white list
* for packets that have a known tag order.
*/
if (vlan_tci & htons(VLAN_CFI_MASK) ||
(eth_type != htons(ETH_P_IP) &&
eth_type != htons(ETH_P_IPV6) &&
eth_type != htons(ETH_P_ARP) &&
eth_type != htons(ETH_P_RARP) &&
!eth_p_mpls(eth_type)))
return -EINVAL;
eth_type = mpls->mpls_ethertype;
mpls_label_count++;
break;
}
case OVS_ACTION_ATTR_POP_MPLS: {
__be16 proto;
if (vlan_tci & htons(VLAN_CFI_MASK) ||
!eth_p_mpls(eth_type))
return -EINVAL;
/* Disallow subsequent L2.5+ set actions and mpls_pop
* actions once the last MPLS label in the packet is
* popped as there is no check here to ensure that
* the new eth type is valid and thus set actions could
* write off the end of the packet or otherwise corrupt
* it.
*
* Support for these actions is planned using packet
* recirculation.
*/
proto = nla_get_be16(a);
if (proto == htons(ETH_P_TEB) &&
mac_proto != MAC_PROTO_NONE)
return -EINVAL;
mpls_label_count--;
if (!eth_p_mpls(proto) || !mpls_label_count)
eth_type = htons(0);
else
eth_type = proto;
break;
}
case OVS_ACTION_ATTR_SET:
err = validate_set(a, key, sfa,
&skip_copy, mac_proto, eth_type,
false, log);
if (err)
return err;
break;
case OVS_ACTION_ATTR_SET_MASKED:
err = validate_set(a, key, sfa,
&skip_copy, mac_proto, eth_type,
true, log);
if (err)
return err;
break;
case OVS_ACTION_ATTR_SAMPLE: {
bool last = nla_is_last(a, rem);
err = validate_and_copy_sample(net, a, key, sfa,
eth_type, vlan_tci,
mpls_label_count,
log, last);
if (err)
return err;
skip_copy = true;
break;
}
case OVS_ACTION_ATTR_CT:
err = ovs_ct_copy_action(net, a, key, sfa, log);
if (err)
return err;
skip_copy = true;
break;
case OVS_ACTION_ATTR_CT_CLEAR:
break;
case OVS_ACTION_ATTR_PUSH_ETH:
/* Disallow pushing an Ethernet header if one
* is already present */
if (mac_proto != MAC_PROTO_NONE)
return -EINVAL;
mac_proto = MAC_PROTO_ETHERNET;
break;
case OVS_ACTION_ATTR_POP_ETH:
if (mac_proto != MAC_PROTO_ETHERNET)
return -EINVAL;
if (vlan_tci & htons(VLAN_CFI_MASK))
return -EINVAL;
mac_proto = MAC_PROTO_NONE;
break;
case OVS_ACTION_ATTR_PUSH_NSH:
if (mac_proto != MAC_PROTO_ETHERNET) {
u8 next_proto;
next_proto = tun_p_from_eth_p(eth_type);
if (!next_proto)
return -EINVAL;
}
mac_proto = MAC_PROTO_NONE;
if (!validate_nsh(nla_data(a), false, true, true))
return -EINVAL;
break;
case OVS_ACTION_ATTR_POP_NSH: {
__be16 inner_proto;
if (eth_type != htons(ETH_P_NSH))
return -EINVAL;
inner_proto = tun_p_to_eth_p(key->nsh.base.np);
if (!inner_proto)
return -EINVAL;
if (key->nsh.base.np == TUN_P_ETHERNET)
mac_proto = MAC_PROTO_ETHERNET;
else
mac_proto = MAC_PROTO_NONE;
break;
}
case OVS_ACTION_ATTR_METER:
/* Non-existent meters are simply ignored. */
break;
case OVS_ACTION_ATTR_CLONE: {
bool last = nla_is_last(a, rem);
err = validate_and_copy_clone(net, a, key, sfa,
eth_type, vlan_tci,
mpls_label_count,
log, last);
if (err)
return err;
skip_copy = true;
break;
}
case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
bool last = nla_is_last(a, rem);
err = validate_and_copy_check_pkt_len(net, a, key, sfa,
eth_type,
vlan_tci,
mpls_label_count,
log, last);
if (err)
return err;
skip_copy = true;
break;
}
case OVS_ACTION_ATTR_DEC_TTL:
err = validate_and_copy_dec_ttl(net, a, key, sfa,
eth_type, vlan_tci,
mpls_label_count, log);
if (err)
return err;
skip_copy = true;
break;
default:
OVS_NLERR(log, "Unknown Action type %d", type);
return -EINVAL;
}
if (!skip_copy) {
err = copy_action(a, sfa, log);
if (err)
return err;
}
}
if (rem > 0)
return -EINVAL;
return 0;
}
/* 'key' must be the masked key. */
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa, bool log)
{
int err;
u32 mpls_label_count = 0;
*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
if (IS_ERR(*sfa))
return PTR_ERR(*sfa);
if (eth_p_mpls(key->eth.type))
mpls_label_count = hweight_long(key->mpls.num_labels_mask);
(*sfa)->orig_len = nla_len(attr);
err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
key->eth.vlan.tci, mpls_label_count, log);
if (err)
ovs_nla_free_flow_actions(*sfa);
return err;
}
static int sample_action_to_attr(const struct nlattr *attr,
struct sk_buff *skb)
{
struct nlattr *start, *ac_start = NULL, *sample_arg;
int err = 0, rem = nla_len(attr);
const struct sample_arg *arg;
struct nlattr *actions;
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
if (!start)
return -EMSGSIZE;
sample_arg = nla_data(attr);
arg = nla_data(sample_arg);
actions = nla_next(sample_arg, &rem);
if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
err = -EMSGSIZE;
goto out;
}
ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
if (!ac_start) {
err = -EMSGSIZE;
goto out;
}
err = ovs_nla_put_actions(actions, rem, skb);
out:
if (err) {
nla_nest_cancel(skb, ac_start);
nla_nest_cancel(skb, start);
} else {
nla_nest_end(skb, ac_start);
nla_nest_end(skb, start);
}
return err;
}
static int clone_action_to_attr(const struct nlattr *attr,
struct sk_buff *skb)
{
struct nlattr *start;
int err = 0, rem = nla_len(attr);
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
if (!start)
return -EMSGSIZE;
/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
attr = nla_next(nla_data(attr), &rem);
err = ovs_nla_put_actions(attr, rem, skb);
if (err)
nla_nest_cancel(skb, start);
else
nla_nest_end(skb, start);
return err;
}
static int check_pkt_len_action_to_attr(const struct nlattr *attr,
struct sk_buff *skb)
{
struct nlattr *start, *ac_start = NULL;
const struct check_pkt_len_arg *arg;
const struct nlattr *a, *cpl_arg;
int err = 0, rem = nla_len(attr);
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
if (!start)
return -EMSGSIZE;
/* The first nested attribute in 'attr' is always
* 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
*/
cpl_arg = nla_data(attr);
arg = nla_data(cpl_arg);
if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
err = -EMSGSIZE;
goto out;
}
/* Second nested attribute in 'attr' is always
* 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
*/
a = nla_next(cpl_arg, &rem);
ac_start = nla_nest_start_noflag(skb,
OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
if (!ac_start) {
err = -EMSGSIZE;
goto out;
}
err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
if (err) {
nla_nest_cancel(skb, ac_start);
goto out;
} else {
nla_nest_end(skb, ac_start);
}
/* Third nested attribute in 'attr' is always
* OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
*/
a = nla_next(a, &rem);
ac_start = nla_nest_start_noflag(skb,
OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
if (!ac_start) {
err = -EMSGSIZE;
goto out;
}
err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
if (err) {
nla_nest_cancel(skb, ac_start);
goto out;
} else {
nla_nest_end(skb, ac_start);
}
nla_nest_end(skb, start);
return 0;
out:
nla_nest_cancel(skb, start);
return err;
}
static int dec_ttl_action_to_attr(const struct nlattr *attr,
struct sk_buff *skb)
{
struct nlattr *start, *action_start;
const struct nlattr *a;
int err = 0, rem;
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
if (!start)
return -EMSGSIZE;
nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
switch (nla_type(a)) {
case OVS_DEC_TTL_ATTR_ACTION:
action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
if (!action_start) {
err = -EMSGSIZE;
goto out;
}
err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
if (err)
goto out;
nla_nest_end(skb, action_start);
break;
default:
/* Ignore all other option to be future compatible */
break;
}
}
nla_nest_end(skb, start);
return 0;
out:
nla_nest_cancel(skb, start);
return err;
}
static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
const struct nlattr *ovs_key = nla_data(a);
int key_type = nla_type(ovs_key);
struct nlattr *start;
int err;
switch (key_type) {
case OVS_KEY_ATTR_TUNNEL_INFO: {
struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
if (!start)
return -EMSGSIZE;
err = ip_tun_to_nlattr(skb, &tun_info->key,
ip_tunnel_info_opts(tun_info),
tun_info->options_len,
ip_tunnel_info_af(tun_info), tun_info->mode);
if (err)
return err;
nla_nest_end(skb, start);
break;
}
default:
if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
return -EMSGSIZE;
break;
}
return 0;
}
static int masked_set_action_to_set_action_attr(const struct nlattr *a,
struct sk_buff *skb)
{
const struct nlattr *ovs_key = nla_data(a);
struct nlattr *nla;
size_t key_len = nla_len(ovs_key) / 2;
/* Revert the conversion we did from a non-masked set action to
* masked set action.
*/
nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
if (!nla)
return -EMSGSIZE;
if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
return -EMSGSIZE;
nla_nest_end(skb, nla);
return 0;
}
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
const struct nlattr *a;
int rem, err;
nla_for_each_attr(a, attr, len, rem) {
int type = nla_type(a);
switch (type) {
case OVS_ACTION_ATTR_SET:
err = set_action_to_attr(a, skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_SET_TO_MASKED:
err = masked_set_action_to_set_action_attr(a, skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_SAMPLE:
err = sample_action_to_attr(a, skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_CT:
err = ovs_ct_action_to_attr(nla_data(a), skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_CLONE:
err = clone_action_to_attr(a, skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_CHECK_PKT_LEN:
err = check_pkt_len_action_to_attr(a, skb);
if (err)
return err;
break;
case OVS_ACTION_ATTR_DEC_TTL:
err = dec_ttl_action_to_attr(a, skb);
if (err)
return err;
break;
default:
if (nla_put(skb, type, nla_len(a), nla_data(a)))
return -EMSGSIZE;
break;
}
}
return 0;
}