8036 lines
206 KiB
C
8036 lines
206 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018 Facebook */
|
|
|
|
#include <uapi/linux/btf.h>
|
|
#include <uapi/linux/bpf.h>
|
|
#include <uapi/linux/bpf_perf_event.h>
|
|
#include <uapi/linux/types.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/file.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
#include <linux/skmsg.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
#include <net/sock.h>
|
|
#include "../tools/lib/bpf/relo_core.h"
|
|
|
|
/* BTF (BPF Type Format) is the meta data format which describes
|
|
* the data types of BPF program/map. Hence, it basically focus
|
|
* on the C programming language which the modern BPF is primary
|
|
* using.
|
|
*
|
|
* ELF Section:
|
|
* ~~~~~~~~~~~
|
|
* The BTF data is stored under the ".BTF" ELF section
|
|
*
|
|
* struct btf_type:
|
|
* ~~~~~~~~~~~~~~~
|
|
* Each 'struct btf_type' object describes a C data type.
|
|
* Depending on the type it is describing, a 'struct btf_type'
|
|
* object may be followed by more data. F.e.
|
|
* To describe an array, 'struct btf_type' is followed by
|
|
* 'struct btf_array'.
|
|
*
|
|
* 'struct btf_type' and any extra data following it are
|
|
* 4 bytes aligned.
|
|
*
|
|
* Type section:
|
|
* ~~~~~~~~~~~~~
|
|
* The BTF type section contains a list of 'struct btf_type' objects.
|
|
* Each one describes a C type. Recall from the above section
|
|
* that a 'struct btf_type' object could be immediately followed by extra
|
|
* data in order to describe some particular C types.
|
|
*
|
|
* type_id:
|
|
* ~~~~~~~
|
|
* Each btf_type object is identified by a type_id. The type_id
|
|
* is implicitly implied by the location of the btf_type object in
|
|
* the BTF type section. The first one has type_id 1. The second
|
|
* one has type_id 2...etc. Hence, an earlier btf_type has
|
|
* a smaller type_id.
|
|
*
|
|
* A btf_type object may refer to another btf_type object by using
|
|
* type_id (i.e. the "type" in the "struct btf_type").
|
|
*
|
|
* NOTE that we cannot assume any reference-order.
|
|
* A btf_type object can refer to an earlier btf_type object
|
|
* but it can also refer to a later btf_type object.
|
|
*
|
|
* For example, to describe "const void *". A btf_type
|
|
* object describing "const" may refer to another btf_type
|
|
* object describing "void *". This type-reference is done
|
|
* by specifying type_id:
|
|
*
|
|
* [1] CONST (anon) type_id=2
|
|
* [2] PTR (anon) type_id=0
|
|
*
|
|
* The above is the btf_verifier debug log:
|
|
* - Each line started with "[?]" is a btf_type object
|
|
* - [?] is the type_id of the btf_type object.
|
|
* - CONST/PTR is the BTF_KIND_XXX
|
|
* - "(anon)" is the name of the type. It just
|
|
* happens that CONST and PTR has no name.
|
|
* - type_id=XXX is the 'u32 type' in btf_type
|
|
*
|
|
* NOTE: "void" has type_id 0
|
|
*
|
|
* String section:
|
|
* ~~~~~~~~~~~~~~
|
|
* The BTF string section contains the names used by the type section.
|
|
* Each string is referred by an "offset" from the beginning of the
|
|
* string section.
|
|
*
|
|
* Each string is '\0' terminated.
|
|
*
|
|
* The first character in the string section must be '\0'
|
|
* which is used to mean 'anonymous'. Some btf_type may not
|
|
* have a name.
|
|
*/
|
|
|
|
/* BTF verification:
|
|
*
|
|
* To verify BTF data, two passes are needed.
|
|
*
|
|
* Pass #1
|
|
* ~~~~~~~
|
|
* The first pass is to collect all btf_type objects to
|
|
* an array: "btf->types".
|
|
*
|
|
* Depending on the C type that a btf_type is describing,
|
|
* a btf_type may be followed by extra data. We don't know
|
|
* how many btf_type is there, and more importantly we don't
|
|
* know where each btf_type is located in the type section.
|
|
*
|
|
* Without knowing the location of each type_id, most verifications
|
|
* cannot be done. e.g. an earlier btf_type may refer to a later
|
|
* btf_type (recall the "const void *" above), so we cannot
|
|
* check this type-reference in the first pass.
|
|
*
|
|
* In the first pass, it still does some verifications (e.g.
|
|
* checking the name is a valid offset to the string section).
|
|
*
|
|
* Pass #2
|
|
* ~~~~~~~
|
|
* The main focus is to resolve a btf_type that is referring
|
|
* to another type.
|
|
*
|
|
* We have to ensure the referring type:
|
|
* 1) does exist in the BTF (i.e. in btf->types[])
|
|
* 2) does not cause a loop:
|
|
* struct A {
|
|
* struct B b;
|
|
* };
|
|
*
|
|
* struct B {
|
|
* struct A a;
|
|
* };
|
|
*
|
|
* btf_type_needs_resolve() decides if a btf_type needs
|
|
* to be resolved.
|
|
*
|
|
* The needs_resolve type implements the "resolve()" ops which
|
|
* essentially does a DFS and detects backedge.
|
|
*
|
|
* During resolve (or DFS), different C types have different
|
|
* "RESOLVED" conditions.
|
|
*
|
|
* When resolving a BTF_KIND_STRUCT, we need to resolve all its
|
|
* members because a member is always referring to another
|
|
* type. A struct's member can be treated as "RESOLVED" if
|
|
* it is referring to a BTF_KIND_PTR. Otherwise, the
|
|
* following valid C struct would be rejected:
|
|
*
|
|
* struct A {
|
|
* int m;
|
|
* struct A *a;
|
|
* };
|
|
*
|
|
* When resolving a BTF_KIND_PTR, it needs to keep resolving if
|
|
* it is referring to another BTF_KIND_PTR. Otherwise, we cannot
|
|
* detect a pointer loop, e.g.:
|
|
* BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
|
|
* ^ |
|
|
* +-----------------------------------------+
|
|
*
|
|
*/
|
|
|
|
#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
|
|
#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
|
|
#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
|
|
#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
|
|
#define BITS_ROUNDUP_BYTES(bits) \
|
|
(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
|
|
|
|
#define BTF_INFO_MASK 0x9f00ffff
|
|
#define BTF_INT_MASK 0x0fffffff
|
|
#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
|
|
#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
|
|
|
|
/* 16MB for 64k structs and each has 16 members and
|
|
* a few MB spaces for the string section.
|
|
* The hard limit is S32_MAX.
|
|
*/
|
|
#define BTF_MAX_SIZE (16 * 1024 * 1024)
|
|
|
|
#define for_each_member_from(i, from, struct_type, member) \
|
|
for (i = from, member = btf_type_member(struct_type) + from; \
|
|
i < btf_type_vlen(struct_type); \
|
|
i++, member++)
|
|
|
|
#define for_each_vsi_from(i, from, struct_type, member) \
|
|
for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
|
|
i < btf_type_vlen(struct_type); \
|
|
i++, member++)
|
|
|
|
DEFINE_IDR(btf_idr);
|
|
DEFINE_SPINLOCK(btf_idr_lock);
|
|
|
|
enum btf_kfunc_hook {
|
|
BTF_KFUNC_HOOK_XDP,
|
|
BTF_KFUNC_HOOK_TC,
|
|
BTF_KFUNC_HOOK_STRUCT_OPS,
|
|
BTF_KFUNC_HOOK_TRACING,
|
|
BTF_KFUNC_HOOK_SYSCALL,
|
|
BTF_KFUNC_HOOK_MAX,
|
|
};
|
|
|
|
enum {
|
|
BTF_KFUNC_SET_MAX_CNT = 256,
|
|
BTF_DTOR_KFUNC_MAX_CNT = 256,
|
|
};
|
|
|
|
struct btf_kfunc_set_tab {
|
|
struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
|
|
};
|
|
|
|
struct btf_id_dtor_kfunc_tab {
|
|
u32 cnt;
|
|
struct btf_id_dtor_kfunc dtors[];
|
|
};
|
|
|
|
struct btf {
|
|
void *data;
|
|
struct btf_type **types;
|
|
u32 *resolved_ids;
|
|
u32 *resolved_sizes;
|
|
const char *strings;
|
|
void *nohdr_data;
|
|
struct btf_header hdr;
|
|
u32 nr_types; /* includes VOID for base BTF */
|
|
u32 types_size;
|
|
u32 data_size;
|
|
refcount_t refcnt;
|
|
u32 id;
|
|
struct rcu_head rcu;
|
|
struct btf_kfunc_set_tab *kfunc_set_tab;
|
|
struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
|
|
|
|
/* split BTF support */
|
|
struct btf *base_btf;
|
|
u32 start_id; /* first type ID in this BTF (0 for base BTF) */
|
|
u32 start_str_off; /* first string offset (0 for base BTF) */
|
|
char name[MODULE_NAME_LEN];
|
|
bool kernel_btf;
|
|
};
|
|
|
|
enum verifier_phase {
|
|
CHECK_META,
|
|
CHECK_TYPE,
|
|
};
|
|
|
|
struct resolve_vertex {
|
|
const struct btf_type *t;
|
|
u32 type_id;
|
|
u16 next_member;
|
|
};
|
|
|
|
enum visit_state {
|
|
NOT_VISITED,
|
|
VISITED,
|
|
RESOLVED,
|
|
};
|
|
|
|
enum resolve_mode {
|
|
RESOLVE_TBD, /* To Be Determined */
|
|
RESOLVE_PTR, /* Resolving for Pointer */
|
|
RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
|
|
* or array
|
|
*/
|
|
};
|
|
|
|
#define MAX_RESOLVE_DEPTH 32
|
|
|
|
struct btf_sec_info {
|
|
u32 off;
|
|
u32 len;
|
|
};
|
|
|
|
struct btf_verifier_env {
|
|
struct btf *btf;
|
|
u8 *visit_states;
|
|
struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
|
|
struct bpf_verifier_log log;
|
|
u32 log_type_id;
|
|
u32 top_stack;
|
|
enum verifier_phase phase;
|
|
enum resolve_mode resolve_mode;
|
|
};
|
|
|
|
static const char * const btf_kind_str[NR_BTF_KINDS] = {
|
|
[BTF_KIND_UNKN] = "UNKNOWN",
|
|
[BTF_KIND_INT] = "INT",
|
|
[BTF_KIND_PTR] = "PTR",
|
|
[BTF_KIND_ARRAY] = "ARRAY",
|
|
[BTF_KIND_STRUCT] = "STRUCT",
|
|
[BTF_KIND_UNION] = "UNION",
|
|
[BTF_KIND_ENUM] = "ENUM",
|
|
[BTF_KIND_FWD] = "FWD",
|
|
[BTF_KIND_TYPEDEF] = "TYPEDEF",
|
|
[BTF_KIND_VOLATILE] = "VOLATILE",
|
|
[BTF_KIND_CONST] = "CONST",
|
|
[BTF_KIND_RESTRICT] = "RESTRICT",
|
|
[BTF_KIND_FUNC] = "FUNC",
|
|
[BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
|
|
[BTF_KIND_VAR] = "VAR",
|
|
[BTF_KIND_DATASEC] = "DATASEC",
|
|
[BTF_KIND_FLOAT] = "FLOAT",
|
|
[BTF_KIND_DECL_TAG] = "DECL_TAG",
|
|
[BTF_KIND_TYPE_TAG] = "TYPE_TAG",
|
|
[BTF_KIND_ENUM64] = "ENUM64",
|
|
};
|
|
|
|
const char *btf_type_str(const struct btf_type *t)
|
|
{
|
|
return btf_kind_str[BTF_INFO_KIND(t->info)];
|
|
}
|
|
|
|
/* Chunk size we use in safe copy of data to be shown. */
|
|
#define BTF_SHOW_OBJ_SAFE_SIZE 32
|
|
|
|
/*
|
|
* This is the maximum size of a base type value (equivalent to a
|
|
* 128-bit int); if we are at the end of our safe buffer and have
|
|
* less than 16 bytes space we can't be assured of being able
|
|
* to copy the next type safely, so in such cases we will initiate
|
|
* a new copy.
|
|
*/
|
|
#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
|
|
|
|
/* Type name size */
|
|
#define BTF_SHOW_NAME_SIZE 80
|
|
|
|
/*
|
|
* Common data to all BTF show operations. Private show functions can add
|
|
* their own data to a structure containing a struct btf_show and consult it
|
|
* in the show callback. See btf_type_show() below.
|
|
*
|
|
* One challenge with showing nested data is we want to skip 0-valued
|
|
* data, but in order to figure out whether a nested object is all zeros
|
|
* we need to walk through it. As a result, we need to make two passes
|
|
* when handling structs, unions and arrays; the first path simply looks
|
|
* for nonzero data, while the second actually does the display. The first
|
|
* pass is signalled by show->state.depth_check being set, and if we
|
|
* encounter a non-zero value we set show->state.depth_to_show to
|
|
* the depth at which we encountered it. When we have completed the
|
|
* first pass, we will know if anything needs to be displayed if
|
|
* depth_to_show > depth. See btf_[struct,array]_show() for the
|
|
* implementation of this.
|
|
*
|
|
* Another problem is we want to ensure the data for display is safe to
|
|
* access. To support this, the anonymous "struct {} obj" tracks the data
|
|
* object and our safe copy of it. We copy portions of the data needed
|
|
* to the object "copy" buffer, but because its size is limited to
|
|
* BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
|
|
* traverse larger objects for display.
|
|
*
|
|
* The various data type show functions all start with a call to
|
|
* btf_show_start_type() which returns a pointer to the safe copy
|
|
* of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
|
|
* raw data itself). btf_show_obj_safe() is responsible for
|
|
* using copy_from_kernel_nofault() to update the safe data if necessary
|
|
* as we traverse the object's data. skbuff-like semantics are
|
|
* used:
|
|
*
|
|
* - obj.head points to the start of the toplevel object for display
|
|
* - obj.size is the size of the toplevel object
|
|
* - obj.data points to the current point in the original data at
|
|
* which our safe data starts. obj.data will advance as we copy
|
|
* portions of the data.
|
|
*
|
|
* In most cases a single copy will suffice, but larger data structures
|
|
* such as "struct task_struct" will require many copies. The logic in
|
|
* btf_show_obj_safe() handles the logic that determines if a new
|
|
* copy_from_kernel_nofault() is needed.
|
|
*/
|
|
struct btf_show {
|
|
u64 flags;
|
|
void *target; /* target of show operation (seq file, buffer) */
|
|
void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
|
|
const struct btf *btf;
|
|
/* below are used during iteration */
|
|
struct {
|
|
u8 depth;
|
|
u8 depth_to_show;
|
|
u8 depth_check;
|
|
u8 array_member:1,
|
|
array_terminated:1;
|
|
u16 array_encoding;
|
|
u32 type_id;
|
|
int status; /* non-zero for error */
|
|
const struct btf_type *type;
|
|
const struct btf_member *member;
|
|
char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
|
|
} state;
|
|
struct {
|
|
u32 size;
|
|
void *head;
|
|
void *data;
|
|
u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
|
|
} obj;
|
|
};
|
|
|
|
struct btf_kind_operations {
|
|
s32 (*check_meta)(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left);
|
|
int (*resolve)(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v);
|
|
int (*check_member)(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type);
|
|
int (*check_kflag_member)(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type);
|
|
void (*log_details)(struct btf_verifier_env *env,
|
|
const struct btf_type *t);
|
|
void (*show)(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offsets,
|
|
struct btf_show *show);
|
|
};
|
|
|
|
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
|
|
static struct btf_type btf_void;
|
|
|
|
static int btf_resolve(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id);
|
|
|
|
static int btf_func_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t);
|
|
|
|
static bool btf_type_is_modifier(const struct btf_type *t)
|
|
{
|
|
/* Some of them is not strictly a C modifier
|
|
* but they are grouped into the same bucket
|
|
* for BTF concern:
|
|
* A type (t) that refers to another
|
|
* type through t->type AND its size cannot
|
|
* be determined without following the t->type.
|
|
*
|
|
* ptr does not fall into this bucket
|
|
* because its size is always sizeof(void *).
|
|
*/
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_TYPE_TAG:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool btf_type_is_void(const struct btf_type *t)
|
|
{
|
|
return t == &btf_void;
|
|
}
|
|
|
|
static bool btf_type_is_fwd(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
|
|
}
|
|
|
|
static bool btf_type_nosize(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
|
|
btf_type_is_func(t) || btf_type_is_func_proto(t);
|
|
}
|
|
|
|
static bool btf_type_nosize_or_null(const struct btf_type *t)
|
|
{
|
|
return !t || btf_type_nosize(t);
|
|
}
|
|
|
|
static bool __btf_type_is_struct(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
|
|
}
|
|
|
|
static bool btf_type_is_array(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
|
|
}
|
|
|
|
static bool btf_type_is_datasec(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
|
|
}
|
|
|
|
static bool btf_type_is_decl_tag(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
|
|
}
|
|
|
|
static bool btf_type_is_decl_tag_target(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_func(t) || btf_type_is_struct(t) ||
|
|
btf_type_is_var(t) || btf_type_is_typedef(t);
|
|
}
|
|
|
|
u32 btf_nr_types(const struct btf *btf)
|
|
{
|
|
u32 total = 0;
|
|
|
|
while (btf) {
|
|
total += btf->nr_types;
|
|
btf = btf->base_btf;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
|
|
{
|
|
const struct btf_type *t;
|
|
const char *tname;
|
|
u32 i, total;
|
|
|
|
total = btf_nr_types(btf);
|
|
for (i = 1; i < total; i++) {
|
|
t = btf_type_by_id(btf, i);
|
|
if (BTF_INFO_KIND(t->info) != kind)
|
|
continue;
|
|
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!strcmp(tname, name))
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
|
|
{
|
|
struct btf *btf;
|
|
s32 ret;
|
|
int id;
|
|
|
|
btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
if (!btf)
|
|
return -EINVAL;
|
|
|
|
ret = btf_find_by_name_kind(btf, name, kind);
|
|
/* ret is never zero, since btf_find_by_name_kind returns
|
|
* positive btf_id or negative error.
|
|
*/
|
|
if (ret > 0) {
|
|
btf_get(btf);
|
|
*btf_p = btf;
|
|
return ret;
|
|
}
|
|
|
|
/* If name is not found in vmlinux's BTF then search in module's BTFs */
|
|
spin_lock_bh(&btf_idr_lock);
|
|
idr_for_each_entry(&btf_idr, btf, id) {
|
|
if (!btf_is_module(btf))
|
|
continue;
|
|
/* linear search could be slow hence unlock/lock
|
|
* the IDR to avoiding holding it for too long
|
|
*/
|
|
btf_get(btf);
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
ret = btf_find_by_name_kind(btf, name, kind);
|
|
if (ret > 0) {
|
|
*btf_p = btf;
|
|
return ret;
|
|
}
|
|
btf_put(btf);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
}
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
return ret;
|
|
}
|
|
|
|
const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, id);
|
|
|
|
while (btf_type_is_modifier(t)) {
|
|
id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
|
|
if (res_id)
|
|
*res_id = id;
|
|
|
|
return t;
|
|
}
|
|
|
|
const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_skip_modifiers(btf, id, NULL);
|
|
if (!btf_type_is_ptr(t))
|
|
return NULL;
|
|
|
|
return btf_type_skip_modifiers(btf, t->type, res_id);
|
|
}
|
|
|
|
const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *ptype;
|
|
|
|
ptype = btf_type_resolve_ptr(btf, id, res_id);
|
|
if (ptype && btf_type_is_func_proto(ptype))
|
|
return ptype;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Types that act only as a source, not sink or intermediate
|
|
* type when resolving.
|
|
*/
|
|
static bool btf_type_is_resolve_source_only(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_var(t) ||
|
|
btf_type_is_decl_tag(t) ||
|
|
btf_type_is_datasec(t);
|
|
}
|
|
|
|
/* What types need to be resolved?
|
|
*
|
|
* btf_type_is_modifier() is an obvious one.
|
|
*
|
|
* btf_type_is_struct() because its member refers to
|
|
* another type (through member->type).
|
|
*
|
|
* btf_type_is_var() because the variable refers to
|
|
* another type. btf_type_is_datasec() holds multiple
|
|
* btf_type_is_var() types that need resolving.
|
|
*
|
|
* btf_type_is_array() because its element (array->type)
|
|
* refers to another type. Array can be thought of a
|
|
* special case of struct while array just has the same
|
|
* member-type repeated by array->nelems of times.
|
|
*/
|
|
static bool btf_type_needs_resolve(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_modifier(t) ||
|
|
btf_type_is_ptr(t) ||
|
|
btf_type_is_struct(t) ||
|
|
btf_type_is_array(t) ||
|
|
btf_type_is_var(t) ||
|
|
btf_type_is_func(t) ||
|
|
btf_type_is_decl_tag(t) ||
|
|
btf_type_is_datasec(t);
|
|
}
|
|
|
|
/* t->size can be used */
|
|
static bool btf_type_has_size(const struct btf_type *t)
|
|
{
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_DATASEC:
|
|
case BTF_KIND_FLOAT:
|
|
case BTF_KIND_ENUM64:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const char *btf_int_encoding_str(u8 encoding)
|
|
{
|
|
if (encoding == 0)
|
|
return "(none)";
|
|
else if (encoding == BTF_INT_SIGNED)
|
|
return "SIGNED";
|
|
else if (encoding == BTF_INT_CHAR)
|
|
return "CHAR";
|
|
else if (encoding == BTF_INT_BOOL)
|
|
return "BOOL";
|
|
else
|
|
return "UNKN";
|
|
}
|
|
|
|
static u32 btf_type_int(const struct btf_type *t)
|
|
{
|
|
return *(u32 *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_array *btf_type_array(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_array *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_enum *btf_type_enum(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_enum *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_var *btf_type_var(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_var *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_decl_tag *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_enum64 *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
|
|
{
|
|
return kind_ops[BTF_INFO_KIND(t->info)];
|
|
}
|
|
|
|
static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
|
|
{
|
|
if (!BTF_STR_OFFSET_VALID(offset))
|
|
return false;
|
|
|
|
while (offset < btf->start_str_off)
|
|
btf = btf->base_btf;
|
|
|
|
offset -= btf->start_str_off;
|
|
return offset < btf->hdr.str_len;
|
|
}
|
|
|
|
static bool __btf_name_char_ok(char c, bool first)
|
|
{
|
|
if ((first ? !isalpha(c) :
|
|
!isalnum(c)) &&
|
|
c != '_' &&
|
|
c != '.')
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
while (offset < btf->start_str_off)
|
|
btf = btf->base_btf;
|
|
|
|
offset -= btf->start_str_off;
|
|
if (offset < btf->hdr.str_len)
|
|
return &btf->strings[offset];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool __btf_name_valid(const struct btf *btf, u32 offset)
|
|
{
|
|
/* offset must be valid */
|
|
const char *src = btf_str_by_offset(btf, offset);
|
|
const char *src_limit;
|
|
|
|
if (!__btf_name_char_ok(*src, true))
|
|
return false;
|
|
|
|
/* set a limit on identifier length */
|
|
src_limit = src + KSYM_NAME_LEN;
|
|
src++;
|
|
while (*src && src < src_limit) {
|
|
if (!__btf_name_char_ok(*src, false))
|
|
return false;
|
|
src++;
|
|
}
|
|
|
|
return !*src;
|
|
}
|
|
|
|
static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
|
|
{
|
|
return __btf_name_valid(btf, offset);
|
|
}
|
|
|
|
static bool btf_name_valid_section(const struct btf *btf, u32 offset)
|
|
{
|
|
return __btf_name_valid(btf, offset);
|
|
}
|
|
|
|
static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
const char *name;
|
|
|
|
if (!offset)
|
|
return "(anon)";
|
|
|
|
name = btf_str_by_offset(btf, offset);
|
|
return name ?: "(invalid-name-offset)";
|
|
}
|
|
|
|
const char *btf_name_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
return btf_str_by_offset(btf, offset);
|
|
}
|
|
|
|
const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
type_id -= btf->start_id;
|
|
if (type_id >= btf->nr_types)
|
|
return NULL;
|
|
return btf->types[type_id];
|
|
}
|
|
EXPORT_SYMBOL_GPL(btf_type_by_id);
|
|
|
|
/*
|
|
* Regular int is not a bit field and it must be either
|
|
* u8/u16/u32/u64 or __int128.
|
|
*/
|
|
static bool btf_type_int_is_regular(const struct btf_type *t)
|
|
{
|
|
u8 nr_bits, nr_bytes;
|
|
u32 int_data;
|
|
|
|
int_data = btf_type_int(t);
|
|
nr_bits = BTF_INT_BITS(int_data);
|
|
nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
|
|
if (BITS_PER_BYTE_MASKED(nr_bits) ||
|
|
BTF_INT_OFFSET(int_data) ||
|
|
(nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
|
|
nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
|
|
nr_bytes != (2 * sizeof(u64)))) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that given struct member is a regular int with expected
|
|
* offset and size.
|
|
*/
|
|
bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
|
|
const struct btf_member *m,
|
|
u32 expected_offset, u32 expected_size)
|
|
{
|
|
const struct btf_type *t;
|
|
u32 id, int_data;
|
|
u8 nr_bits;
|
|
|
|
id = m->type;
|
|
t = btf_type_id_size(btf, &id, NULL);
|
|
if (!t || !btf_type_is_int(t))
|
|
return false;
|
|
|
|
int_data = btf_type_int(t);
|
|
nr_bits = BTF_INT_BITS(int_data);
|
|
if (btf_type_kflag(s)) {
|
|
u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
|
|
u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
|
|
|
|
/* if kflag set, int should be a regular int and
|
|
* bit offset should be at byte boundary.
|
|
*/
|
|
return !bitfield_size &&
|
|
BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
|
|
BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
|
|
}
|
|
|
|
if (BTF_INT_OFFSET(int_data) ||
|
|
BITS_PER_BYTE_MASKED(m->offset) ||
|
|
BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
|
|
BITS_PER_BYTE_MASKED(nr_bits) ||
|
|
BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
|
|
static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
|
|
u32 id)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, id);
|
|
|
|
while (btf_type_is_modifier(t) &&
|
|
BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
#define BTF_SHOW_MAX_ITER 10
|
|
|
|
#define BTF_KIND_BIT(kind) (1ULL << kind)
|
|
|
|
/*
|
|
* Populate show->state.name with type name information.
|
|
* Format of type name is
|
|
*
|
|
* [.member_name = ] (type_name)
|
|
*/
|
|
static const char *btf_show_name(struct btf_show *show)
|
|
{
|
|
/* BTF_MAX_ITER array suffixes "[]" */
|
|
const char *array_suffixes = "[][][][][][][][][][]";
|
|
const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
|
|
/* BTF_MAX_ITER pointer suffixes "*" */
|
|
const char *ptr_suffixes = "**********";
|
|
const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
|
|
const char *name = NULL, *prefix = "", *parens = "";
|
|
const struct btf_member *m = show->state.member;
|
|
const struct btf_type *t;
|
|
const struct btf_array *array;
|
|
u32 id = show->state.type_id;
|
|
const char *member = NULL;
|
|
bool show_member = false;
|
|
u64 kinds = 0;
|
|
int i;
|
|
|
|
show->state.name[0] = '\0';
|
|
|
|
/*
|
|
* Don't show type name if we're showing an array member;
|
|
* in that case we show the array type so don't need to repeat
|
|
* ourselves for each member.
|
|
*/
|
|
if (show->state.array_member)
|
|
return "";
|
|
|
|
/* Retrieve member name, if any. */
|
|
if (m) {
|
|
member = btf_name_by_offset(show->btf, m->name_off);
|
|
show_member = strlen(member) > 0;
|
|
id = m->type;
|
|
}
|
|
|
|
/*
|
|
* Start with type_id, as we have resolved the struct btf_type *
|
|
* via btf_modifier_show() past the parent typedef to the child
|
|
* struct, int etc it is defined as. In such cases, the type_id
|
|
* still represents the starting type while the struct btf_type *
|
|
* in our show->state points at the resolved type of the typedef.
|
|
*/
|
|
t = btf_type_by_id(show->btf, id);
|
|
if (!t)
|
|
return "";
|
|
|
|
/*
|
|
* The goal here is to build up the right number of pointer and
|
|
* array suffixes while ensuring the type name for a typedef
|
|
* is represented. Along the way we accumulate a list of
|
|
* BTF kinds we have encountered, since these will inform later
|
|
* display; for example, pointer types will not require an
|
|
* opening "{" for struct, we will just display the pointer value.
|
|
*
|
|
* We also want to accumulate the right number of pointer or array
|
|
* indices in the format string while iterating until we get to
|
|
* the typedef/pointee/array member target type.
|
|
*
|
|
* We start by pointing at the end of pointer and array suffix
|
|
* strings; as we accumulate pointers and arrays we move the pointer
|
|
* or array string backwards so it will show the expected number of
|
|
* '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
|
|
* and/or arrays and typedefs are supported as a precaution.
|
|
*
|
|
* We also want to get typedef name while proceeding to resolve
|
|
* type it points to so that we can add parentheses if it is a
|
|
* "typedef struct" etc.
|
|
*/
|
|
for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
|
|
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_TYPEDEF:
|
|
if (!name)
|
|
name = btf_name_by_offset(show->btf,
|
|
t->name_off);
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
|
|
id = t->type;
|
|
break;
|
|
case BTF_KIND_ARRAY:
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
|
|
parens = "[";
|
|
if (!t)
|
|
return "";
|
|
array = btf_type_array(t);
|
|
if (array_suffix > array_suffixes)
|
|
array_suffix -= 2;
|
|
id = array->type;
|
|
break;
|
|
case BTF_KIND_PTR:
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
|
|
if (ptr_suffix > ptr_suffixes)
|
|
ptr_suffix -= 1;
|
|
id = t->type;
|
|
break;
|
|
default:
|
|
id = 0;
|
|
break;
|
|
}
|
|
if (!id)
|
|
break;
|
|
t = btf_type_skip_qualifiers(show->btf, id);
|
|
}
|
|
/* We may not be able to represent this type; bail to be safe */
|
|
if (i == BTF_SHOW_MAX_ITER)
|
|
return "";
|
|
|
|
if (!name)
|
|
name = btf_name_by_offset(show->btf, t->name_off);
|
|
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
|
|
"struct" : "union";
|
|
/* if it's an array of struct/union, parens is already set */
|
|
if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
|
|
parens = "{";
|
|
break;
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_ENUM64:
|
|
prefix = "enum";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* pointer does not require parens */
|
|
if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
|
|
parens = "";
|
|
/* typedef does not require struct/union/enum prefix */
|
|
if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
|
|
prefix = "";
|
|
|
|
if (!name)
|
|
name = "";
|
|
|
|
/* Even if we don't want type name info, we want parentheses etc */
|
|
if (show->flags & BTF_SHOW_NONAME)
|
|
snprintf(show->state.name, sizeof(show->state.name), "%s",
|
|
parens);
|
|
else
|
|
snprintf(show->state.name, sizeof(show->state.name),
|
|
"%s%s%s(%s%s%s%s%s%s)%s",
|
|
/* first 3 strings comprise ".member = " */
|
|
show_member ? "." : "",
|
|
show_member ? member : "",
|
|
show_member ? " = " : "",
|
|
/* ...next is our prefix (struct, enum, etc) */
|
|
prefix,
|
|
strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
|
|
/* ...this is the type name itself */
|
|
name,
|
|
/* ...suffixed by the appropriate '*', '[]' suffixes */
|
|
strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
|
|
array_suffix, parens);
|
|
|
|
return show->state.name;
|
|
}
|
|
|
|
static const char *__btf_show_indent(struct btf_show *show)
|
|
{
|
|
const char *indents = " ";
|
|
const char *indent = &indents[strlen(indents)];
|
|
|
|
if ((indent - show->state.depth) >= indents)
|
|
return indent - show->state.depth;
|
|
return indents;
|
|
}
|
|
|
|
static const char *btf_show_indent(struct btf_show *show)
|
|
{
|
|
return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
|
|
}
|
|
|
|
static const char *btf_show_newline(struct btf_show *show)
|
|
{
|
|
return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
|
|
}
|
|
|
|
static const char *btf_show_delim(struct btf_show *show)
|
|
{
|
|
if (show->state.depth == 0)
|
|
return "";
|
|
|
|
if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
|
|
BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
|
|
return "|";
|
|
|
|
return ",";
|
|
}
|
|
|
|
__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!show->state.depth_check) {
|
|
va_start(args, fmt);
|
|
show->showfn(show, fmt, args);
|
|
va_end(args);
|
|
}
|
|
}
|
|
|
|
/* Macros are used here as btf_show_type_value[s]() prepends and appends
|
|
* format specifiers to the format specifier passed in; these do the work of
|
|
* adding indentation, delimiters etc while the caller simply has to specify
|
|
* the type value(s) in the format specifier + value(s).
|
|
*/
|
|
#define btf_show_type_value(show, fmt, value) \
|
|
do { \
|
|
if ((value) != (__typeof__(value))0 || \
|
|
(show->flags & BTF_SHOW_ZERO) || \
|
|
show->state.depth == 0) { \
|
|
btf_show(show, "%s%s" fmt "%s%s", \
|
|
btf_show_indent(show), \
|
|
btf_show_name(show), \
|
|
value, btf_show_delim(show), \
|
|
btf_show_newline(show)); \
|
|
if (show->state.depth > show->state.depth_to_show) \
|
|
show->state.depth_to_show = show->state.depth; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define btf_show_type_values(show, fmt, ...) \
|
|
do { \
|
|
btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
|
|
btf_show_name(show), \
|
|
__VA_ARGS__, btf_show_delim(show), \
|
|
btf_show_newline(show)); \
|
|
if (show->state.depth > show->state.depth_to_show) \
|
|
show->state.depth_to_show = show->state.depth; \
|
|
} while (0)
|
|
|
|
/* How much is left to copy to safe buffer after @data? */
|
|
static int btf_show_obj_size_left(struct btf_show *show, void *data)
|
|
{
|
|
return show->obj.head + show->obj.size - data;
|
|
}
|
|
|
|
/* Is object pointed to by @data of @size already copied to our safe buffer? */
|
|
static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
|
|
{
|
|
return data >= show->obj.data &&
|
|
(data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If object pointed to by @data of @size falls within our safe buffer, return
|
|
* the equivalent pointer to the same safe data. Assumes
|
|
* copy_from_kernel_nofault() has already happened and our safe buffer is
|
|
* populated.
|
|
*/
|
|
static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
|
|
{
|
|
if (btf_show_obj_is_safe(show, data, size))
|
|
return show->obj.safe + (data - show->obj.data);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return a safe-to-access version of data pointed to by @data.
|
|
* We do this by copying the relevant amount of information
|
|
* to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
|
|
*
|
|
* If BTF_SHOW_UNSAFE is specified, just return data as-is; no
|
|
* safe copy is needed.
|
|
*
|
|
* Otherwise we need to determine if we have the required amount
|
|
* of data (determined by the @data pointer and the size of the
|
|
* largest base type we can encounter (represented by
|
|
* BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
|
|
* that we will be able to print some of the current object,
|
|
* and if more is needed a copy will be triggered.
|
|
* Some objects such as structs will not fit into the buffer;
|
|
* in such cases additional copies when we iterate over their
|
|
* members may be needed.
|
|
*
|
|
* btf_show_obj_safe() is used to return a safe buffer for
|
|
* btf_show_start_type(); this ensures that as we recurse into
|
|
* nested types we always have safe data for the given type.
|
|
* This approach is somewhat wasteful; it's possible for example
|
|
* that when iterating over a large union we'll end up copying the
|
|
* same data repeatedly, but the goal is safety not performance.
|
|
* We use stack data as opposed to per-CPU buffers because the
|
|
* iteration over a type can take some time, and preemption handling
|
|
* would greatly complicate use of the safe buffer.
|
|
*/
|
|
static void *btf_show_obj_safe(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
void *data)
|
|
{
|
|
const struct btf_type *rt;
|
|
int size_left, size;
|
|
void *safe = NULL;
|
|
|
|
if (show->flags & BTF_SHOW_UNSAFE)
|
|
return data;
|
|
|
|
rt = btf_resolve_size(show->btf, t, &size);
|
|
if (IS_ERR(rt)) {
|
|
show->state.status = PTR_ERR(rt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Is this toplevel object? If so, set total object size and
|
|
* initialize pointers. Otherwise check if we still fall within
|
|
* our safe object data.
|
|
*/
|
|
if (show->state.depth == 0) {
|
|
show->obj.size = size;
|
|
show->obj.head = data;
|
|
} else {
|
|
/*
|
|
* If the size of the current object is > our remaining
|
|
* safe buffer we _may_ need to do a new copy. However
|
|
* consider the case of a nested struct; it's size pushes
|
|
* us over the safe buffer limit, but showing any individual
|
|
* struct members does not. In such cases, we don't need
|
|
* to initiate a fresh copy yet; however we definitely need
|
|
* at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
|
|
* in our buffer, regardless of the current object size.
|
|
* The logic here is that as we resolve types we will
|
|
* hit a base type at some point, and we need to be sure
|
|
* the next chunk of data is safely available to display
|
|
* that type info safely. We cannot rely on the size of
|
|
* the current object here because it may be much larger
|
|
* than our current buffer (e.g. task_struct is 8k).
|
|
* All we want to do here is ensure that we can print the
|
|
* next basic type, which we can if either
|
|
* - the current type size is within the safe buffer; or
|
|
* - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
|
|
* the safe buffer.
|
|
*/
|
|
safe = __btf_show_obj_safe(show, data,
|
|
min(size,
|
|
BTF_SHOW_OBJ_BASE_TYPE_SIZE));
|
|
}
|
|
|
|
/*
|
|
* We need a new copy to our safe object, either because we haven't
|
|
* yet copied and are initializing safe data, or because the data
|
|
* we want falls outside the boundaries of the safe object.
|
|
*/
|
|
if (!safe) {
|
|
size_left = btf_show_obj_size_left(show, data);
|
|
if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
|
|
size_left = BTF_SHOW_OBJ_SAFE_SIZE;
|
|
show->state.status = copy_from_kernel_nofault(show->obj.safe,
|
|
data, size_left);
|
|
if (!show->state.status) {
|
|
show->obj.data = data;
|
|
safe = show->obj.safe;
|
|
}
|
|
}
|
|
|
|
return safe;
|
|
}
|
|
|
|
/*
|
|
* Set the type we are starting to show and return a safe data pointer
|
|
* to be used for showing the associated data.
|
|
*/
|
|
static void *btf_show_start_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data)
|
|
{
|
|
show->state.type = t;
|
|
show->state.type_id = type_id;
|
|
show->state.name[0] = '\0';
|
|
|
|
return btf_show_obj_safe(show, t, data);
|
|
}
|
|
|
|
static void btf_show_end_type(struct btf_show *show)
|
|
{
|
|
show->state.type = NULL;
|
|
show->state.type_id = 0;
|
|
show->state.name[0] = '\0';
|
|
}
|
|
|
|
static void *btf_show_start_aggr_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data)
|
|
{
|
|
void *safe_data = btf_show_start_type(show, t, type_id, data);
|
|
|
|
if (!safe_data)
|
|
return safe_data;
|
|
|
|
btf_show(show, "%s%s%s", btf_show_indent(show),
|
|
btf_show_name(show),
|
|
btf_show_newline(show));
|
|
show->state.depth++;
|
|
return safe_data;
|
|
}
|
|
|
|
static void btf_show_end_aggr_type(struct btf_show *show,
|
|
const char *suffix)
|
|
{
|
|
show->state.depth--;
|
|
btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
|
|
btf_show_delim(show), btf_show_newline(show));
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static void btf_show_start_member(struct btf_show *show,
|
|
const struct btf_member *m)
|
|
{
|
|
show->state.member = m;
|
|
}
|
|
|
|
static void btf_show_start_array_member(struct btf_show *show)
|
|
{
|
|
show->state.array_member = 1;
|
|
btf_show_start_member(show, NULL);
|
|
}
|
|
|
|
static void btf_show_end_member(struct btf_show *show)
|
|
{
|
|
show->state.member = NULL;
|
|
}
|
|
|
|
static void btf_show_end_array_member(struct btf_show *show)
|
|
{
|
|
show->state.array_member = 0;
|
|
btf_show_end_member(show);
|
|
}
|
|
|
|
static void *btf_show_start_array_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id,
|
|
u16 array_encoding,
|
|
void *data)
|
|
{
|
|
show->state.array_encoding = array_encoding;
|
|
show->state.array_terminated = 0;
|
|
return btf_show_start_aggr_type(show, t, type_id, data);
|
|
}
|
|
|
|
static void btf_show_end_array_type(struct btf_show *show)
|
|
{
|
|
show->state.array_encoding = 0;
|
|
show->state.array_terminated = 0;
|
|
btf_show_end_aggr_type(show, "]");
|
|
}
|
|
|
|
static void *btf_show_start_struct_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id,
|
|
void *data)
|
|
{
|
|
return btf_show_start_aggr_type(show, t, type_id, data);
|
|
}
|
|
|
|
static void btf_show_end_struct_type(struct btf_show *show)
|
|
{
|
|
btf_show_end_aggr_type(show, "}");
|
|
}
|
|
|
|
__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
bool log_details,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct btf *btf = env->btf;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
/* btf verifier prints all types it is processing via
|
|
* btf_verifier_log_type(..., fmt = NULL).
|
|
* Skip those prints for in-kernel BTF verification.
|
|
*/
|
|
if (log->level == BPF_LOG_KERNEL && !fmt)
|
|
return;
|
|
|
|
__btf_verifier_log(log, "[%u] %s %s%s",
|
|
env->log_type_id,
|
|
btf_type_str(t),
|
|
__btf_name_by_offset(btf, t->name_off),
|
|
log_details ? " " : "");
|
|
|
|
if (log_details)
|
|
btf_type_ops(t)->log_details(env, t);
|
|
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
#define btf_verifier_log_type(env, t, ...) \
|
|
__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
|
|
#define btf_verifier_log_basic(env, t, ...) \
|
|
__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
|
|
|
|
__printf(4, 5)
|
|
static void btf_verifier_log_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct btf *btf = env->btf;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
if (log->level == BPF_LOG_KERNEL && !fmt)
|
|
return;
|
|
/* The CHECK_META phase already did a btf dump.
|
|
*
|
|
* If member is logged again, it must hit an error in
|
|
* parsing this member. It is useful to print out which
|
|
* struct this member belongs to.
|
|
*/
|
|
if (env->phase != CHECK_META)
|
|
btf_verifier_log_type(env, struct_type, NULL);
|
|
|
|
if (btf_type_kflag(struct_type))
|
|
__btf_verifier_log(log,
|
|
"\t%s type_id=%u bitfield_size=%u bits_offset=%u",
|
|
__btf_name_by_offset(btf, member->name_off),
|
|
member->type,
|
|
BTF_MEMBER_BITFIELD_SIZE(member->offset),
|
|
BTF_MEMBER_BIT_OFFSET(member->offset));
|
|
else
|
|
__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
|
|
__btf_name_by_offset(btf, member->name_off),
|
|
member->type, member->offset);
|
|
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
__printf(4, 5)
|
|
static void btf_verifier_log_vsi(struct btf_verifier_env *env,
|
|
const struct btf_type *datasec_type,
|
|
const struct btf_var_secinfo *vsi,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
if (log->level == BPF_LOG_KERNEL && !fmt)
|
|
return;
|
|
if (env->phase != CHECK_META)
|
|
btf_verifier_log_type(env, datasec_type, NULL);
|
|
|
|
__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
|
|
vsi->type, vsi->offset, vsi->size);
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
static void btf_verifier_log_hdr(struct btf_verifier_env *env,
|
|
u32 btf_data_size)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
const struct btf *btf = env->btf;
|
|
const struct btf_header *hdr;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
if (log->level == BPF_LOG_KERNEL)
|
|
return;
|
|
hdr = &btf->hdr;
|
|
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
|
|
__btf_verifier_log(log, "version: %u\n", hdr->version);
|
|
__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
|
|
__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
|
|
__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
|
|
__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
|
|
__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
|
|
__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
|
|
__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
|
|
}
|
|
|
|
static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
|
|
if (btf->types_size == btf->nr_types) {
|
|
/* Expand 'types' array */
|
|
|
|
struct btf_type **new_types;
|
|
u32 expand_by, new_size;
|
|
|
|
if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
|
|
btf_verifier_log(env, "Exceeded max num of types");
|
|
return -E2BIG;
|
|
}
|
|
|
|
expand_by = max_t(u32, btf->types_size >> 2, 16);
|
|
new_size = min_t(u32, BTF_MAX_TYPE,
|
|
btf->types_size + expand_by);
|
|
|
|
new_types = kvcalloc(new_size, sizeof(*new_types),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!new_types)
|
|
return -ENOMEM;
|
|
|
|
if (btf->nr_types == 0) {
|
|
if (!btf->base_btf) {
|
|
/* lazily init VOID type */
|
|
new_types[0] = &btf_void;
|
|
btf->nr_types++;
|
|
}
|
|
} else {
|
|
memcpy(new_types, btf->types,
|
|
sizeof(*btf->types) * btf->nr_types);
|
|
}
|
|
|
|
kvfree(btf->types);
|
|
btf->types = new_types;
|
|
btf->types_size = new_size;
|
|
}
|
|
|
|
btf->types[btf->nr_types++] = t;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_alloc_id(struct btf *btf)
|
|
{
|
|
int id;
|
|
|
|
idr_preload(GFP_KERNEL);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
|
|
if (id > 0)
|
|
btf->id = id;
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
idr_preload_end();
|
|
|
|
if (WARN_ON_ONCE(!id))
|
|
return -ENOSPC;
|
|
|
|
return id > 0 ? 0 : id;
|
|
}
|
|
|
|
static void btf_free_id(struct btf *btf)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* In map-in-map, calling map_delete_elem() on outer
|
|
* map will call bpf_map_put on the inner map.
|
|
* It will then eventually call btf_free_id()
|
|
* on the inner map. Some of the map_delete_elem()
|
|
* implementation may have irq disabled, so
|
|
* we need to use the _irqsave() version instead
|
|
* of the _bh() version.
|
|
*/
|
|
spin_lock_irqsave(&btf_idr_lock, flags);
|
|
idr_remove(&btf_idr, btf->id);
|
|
spin_unlock_irqrestore(&btf_idr_lock, flags);
|
|
}
|
|
|
|
static void btf_free_kfunc_set_tab(struct btf *btf)
|
|
{
|
|
struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
|
|
int hook;
|
|
|
|
if (!tab)
|
|
return;
|
|
/* For module BTF, we directly assign the sets being registered, so
|
|
* there is nothing to free except kfunc_set_tab.
|
|
*/
|
|
if (btf_is_module(btf))
|
|
goto free_tab;
|
|
for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
|
|
kfree(tab->sets[hook]);
|
|
free_tab:
|
|
kfree(tab);
|
|
btf->kfunc_set_tab = NULL;
|
|
}
|
|
|
|
static void btf_free_dtor_kfunc_tab(struct btf *btf)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
|
|
|
|
if (!tab)
|
|
return;
|
|
kfree(tab);
|
|
btf->dtor_kfunc_tab = NULL;
|
|
}
|
|
|
|
static void btf_free(struct btf *btf)
|
|
{
|
|
btf_free_dtor_kfunc_tab(btf);
|
|
btf_free_kfunc_set_tab(btf);
|
|
kvfree(btf->types);
|
|
kvfree(btf->resolved_sizes);
|
|
kvfree(btf->resolved_ids);
|
|
kvfree(btf->data);
|
|
kfree(btf);
|
|
}
|
|
|
|
static void btf_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct btf *btf = container_of(rcu, struct btf, rcu);
|
|
|
|
btf_free(btf);
|
|
}
|
|
|
|
void btf_get(struct btf *btf)
|
|
{
|
|
refcount_inc(&btf->refcnt);
|
|
}
|
|
|
|
void btf_put(struct btf *btf)
|
|
{
|
|
if (btf && refcount_dec_and_test(&btf->refcnt)) {
|
|
btf_free_id(btf);
|
|
call_rcu(&btf->rcu, btf_free_rcu);
|
|
}
|
|
}
|
|
|
|
static int env_resolve_init(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
u32 nr_types = btf->nr_types;
|
|
u32 *resolved_sizes = NULL;
|
|
u32 *resolved_ids = NULL;
|
|
u8 *visit_states = NULL;
|
|
|
|
resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!resolved_sizes)
|
|
goto nomem;
|
|
|
|
resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!resolved_ids)
|
|
goto nomem;
|
|
|
|
visit_states = kvcalloc(nr_types, sizeof(*visit_states),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!visit_states)
|
|
goto nomem;
|
|
|
|
btf->resolved_sizes = resolved_sizes;
|
|
btf->resolved_ids = resolved_ids;
|
|
env->visit_states = visit_states;
|
|
|
|
return 0;
|
|
|
|
nomem:
|
|
kvfree(resolved_sizes);
|
|
kvfree(resolved_ids);
|
|
kvfree(visit_states);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void btf_verifier_env_free(struct btf_verifier_env *env)
|
|
{
|
|
kvfree(env->visit_states);
|
|
kfree(env);
|
|
}
|
|
|
|
static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
|
|
const struct btf_type *next_type)
|
|
{
|
|
switch (env->resolve_mode) {
|
|
case RESOLVE_TBD:
|
|
/* int, enum or void is a sink */
|
|
return !btf_type_needs_resolve(next_type);
|
|
case RESOLVE_PTR:
|
|
/* int, enum, void, struct, array, func or func_proto is a sink
|
|
* for ptr
|
|
*/
|
|
return !btf_type_is_modifier(next_type) &&
|
|
!btf_type_is_ptr(next_type);
|
|
case RESOLVE_STRUCT_OR_ARRAY:
|
|
/* int, enum, void, ptr, func or func_proto is a sink
|
|
* for struct and array
|
|
*/
|
|
return !btf_type_is_modifier(next_type) &&
|
|
!btf_type_is_array(next_type) &&
|
|
!btf_type_is_struct(next_type);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static bool env_type_is_resolved(const struct btf_verifier_env *env,
|
|
u32 type_id)
|
|
{
|
|
/* base BTF types should be resolved by now */
|
|
if (type_id < env->btf->start_id)
|
|
return true;
|
|
|
|
return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
|
|
}
|
|
|
|
static int env_stack_push(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id)
|
|
{
|
|
const struct btf *btf = env->btf;
|
|
struct resolve_vertex *v;
|
|
|
|
if (env->top_stack == MAX_RESOLVE_DEPTH)
|
|
return -E2BIG;
|
|
|
|
if (type_id < btf->start_id
|
|
|| env->visit_states[type_id - btf->start_id] != NOT_VISITED)
|
|
return -EEXIST;
|
|
|
|
env->visit_states[type_id - btf->start_id] = VISITED;
|
|
|
|
v = &env->stack[env->top_stack++];
|
|
v->t = t;
|
|
v->type_id = type_id;
|
|
v->next_member = 0;
|
|
|
|
if (env->resolve_mode == RESOLVE_TBD) {
|
|
if (btf_type_is_ptr(t))
|
|
env->resolve_mode = RESOLVE_PTR;
|
|
else if (btf_type_is_struct(t) || btf_type_is_array(t))
|
|
env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void env_stack_set_next_member(struct btf_verifier_env *env,
|
|
u16 next_member)
|
|
{
|
|
env->stack[env->top_stack - 1].next_member = next_member;
|
|
}
|
|
|
|
static void env_stack_pop_resolved(struct btf_verifier_env *env,
|
|
u32 resolved_type_id,
|
|
u32 resolved_size)
|
|
{
|
|
u32 type_id = env->stack[--(env->top_stack)].type_id;
|
|
struct btf *btf = env->btf;
|
|
|
|
type_id -= btf->start_id; /* adjust to local type id */
|
|
btf->resolved_sizes[type_id] = resolved_size;
|
|
btf->resolved_ids[type_id] = resolved_type_id;
|
|
env->visit_states[type_id] = RESOLVED;
|
|
}
|
|
|
|
static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
|
|
{
|
|
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
|
|
}
|
|
|
|
/* Resolve the size of a passed-in "type"
|
|
*
|
|
* type: is an array (e.g. u32 array[x][y])
|
|
* return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
|
|
* *type_size: (x * y * sizeof(u32)). Hence, *type_size always
|
|
* corresponds to the return type.
|
|
* *elem_type: u32
|
|
* *elem_id: id of u32
|
|
* *total_nelems: (x * y). Hence, individual elem size is
|
|
* (*type_size / *total_nelems)
|
|
* *type_id: id of type if it's changed within the function, 0 if not
|
|
*
|
|
* type: is not an array (e.g. const struct X)
|
|
* return type: type "struct X"
|
|
* *type_size: sizeof(struct X)
|
|
* *elem_type: same as return type ("struct X")
|
|
* *elem_id: 0
|
|
* *total_nelems: 1
|
|
* *type_id: id of type if it's changed within the function, 0 if not
|
|
*/
|
|
static const struct btf_type *
|
|
__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
|
|
u32 *type_size, const struct btf_type **elem_type,
|
|
u32 *elem_id, u32 *total_nelems, u32 *type_id)
|
|
{
|
|
const struct btf_type *array_type = NULL;
|
|
const struct btf_array *array = NULL;
|
|
u32 i, size, nelems = 1, id = 0;
|
|
|
|
for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
|
|
switch (BTF_INFO_KIND(type->info)) {
|
|
/* type->size can be used */
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_FLOAT:
|
|
case BTF_KIND_ENUM64:
|
|
size = type->size;
|
|
goto resolved;
|
|
|
|
case BTF_KIND_PTR:
|
|
size = sizeof(void *);
|
|
goto resolved;
|
|
|
|
/* Modifiers */
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_TYPE_TAG:
|
|
id = type->type;
|
|
type = btf_type_by_id(btf, type->type);
|
|
break;
|
|
|
|
case BTF_KIND_ARRAY:
|
|
if (!array_type)
|
|
array_type = type;
|
|
array = btf_type_array(type);
|
|
if (nelems && array->nelems > U32_MAX / nelems)
|
|
return ERR_PTR(-EINVAL);
|
|
nelems *= array->nelems;
|
|
type = btf_type_by_id(btf, array->type);
|
|
break;
|
|
|
|
/* type without size */
|
|
default:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
resolved:
|
|
if (nelems && size > U32_MAX / nelems)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
*type_size = nelems * size;
|
|
if (total_nelems)
|
|
*total_nelems = nelems;
|
|
if (elem_type)
|
|
*elem_type = type;
|
|
if (elem_id)
|
|
*elem_id = array ? array->type : 0;
|
|
if (type_id && id)
|
|
*type_id = id;
|
|
|
|
return array_type ? : type;
|
|
}
|
|
|
|
const struct btf_type *
|
|
btf_resolve_size(const struct btf *btf, const struct btf_type *type,
|
|
u32 *type_size)
|
|
{
|
|
return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
return btf->resolved_ids[type_id - btf->start_id];
|
|
}
|
|
|
|
/* The input param "type_id" must point to a needs_resolve type */
|
|
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
|
|
u32 *type_id)
|
|
{
|
|
*type_id = btf_resolved_type_id(btf, *type_id);
|
|
return btf_type_by_id(btf, *type_id);
|
|
}
|
|
|
|
static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
return btf->resolved_sizes[type_id - btf->start_id];
|
|
}
|
|
|
|
const struct btf_type *btf_type_id_size(const struct btf *btf,
|
|
u32 *type_id, u32 *ret_size)
|
|
{
|
|
const struct btf_type *size_type;
|
|
u32 size_type_id = *type_id;
|
|
u32 size = 0;
|
|
|
|
size_type = btf_type_by_id(btf, size_type_id);
|
|
if (btf_type_nosize_or_null(size_type))
|
|
return NULL;
|
|
|
|
if (btf_type_has_size(size_type)) {
|
|
size = size_type->size;
|
|
} else if (btf_type_is_array(size_type)) {
|
|
size = btf_resolved_type_size(btf, size_type_id);
|
|
} else if (btf_type_is_ptr(size_type)) {
|
|
size = sizeof(void *);
|
|
} else {
|
|
if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
|
|
!btf_type_is_var(size_type)))
|
|
return NULL;
|
|
|
|
size_type_id = btf_resolved_type_id(btf, size_type_id);
|
|
size_type = btf_type_by_id(btf, size_type_id);
|
|
if (btf_type_nosize_or_null(size_type))
|
|
return NULL;
|
|
else if (btf_type_has_size(size_type))
|
|
size = size_type->size;
|
|
else if (btf_type_is_array(size_type))
|
|
size = btf_resolved_type_size(btf, size_type_id);
|
|
else if (btf_type_is_ptr(size_type))
|
|
size = sizeof(void *);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
*type_id = size_type_id;
|
|
if (ret_size)
|
|
*ret_size = size;
|
|
|
|
return size_type;
|
|
}
|
|
|
|
static int btf_df_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
btf_verifier_log_basic(env, struct_type,
|
|
"Unsupported check_member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int btf_df_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
btf_verifier_log_basic(env, struct_type,
|
|
"Unsupported check_kflag_member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Used for ptr, array struct/union and float type members.
|
|
* int, enum and modifier types have their specific callback functions.
|
|
*/
|
|
static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* bitfield size is 0, so member->offset represents bit offset only.
|
|
* It is safe to call non kflag check_member variants.
|
|
*/
|
|
return btf_type_ops(member_type)->check_member(env, struct_type,
|
|
member,
|
|
member_type);
|
|
}
|
|
|
|
static int btf_df_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
btf_verifier_log_basic(env, v->t, "Unsupported resolve");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void btf_df_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offsets,
|
|
struct btf_show *show)
|
|
{
|
|
btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
|
|
}
|
|
|
|
static int btf_int_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 int_data = btf_type_int(member_type);
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size = struct_type->size;
|
|
u32 nr_copy_bits;
|
|
u32 bytes_offset;
|
|
|
|
if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"bits_offset exceeds U32_MAX");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_bits_off += BTF_INT_OFFSET(int_data);
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
nr_copy_bits = BTF_INT_BITS(int_data) +
|
|
BITS_PER_BYTE_MASKED(struct_bits_off);
|
|
|
|
if (nr_copy_bits > BITS_PER_U128) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"nr_copy_bits exceeds 128");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size < bytes_offset ||
|
|
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_int_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
|
|
u32 int_data = btf_type_int(member_type);
|
|
u32 struct_size = struct_type->size;
|
|
u32 nr_copy_bits;
|
|
|
|
/* a regular int type is required for the kflag int member */
|
|
if (!btf_type_int_is_regular(member_type)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member base type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check sanity of bitfield size */
|
|
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
|
|
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
|
|
nr_int_data_bits = BTF_INT_BITS(int_data);
|
|
if (!nr_bits) {
|
|
/* Not a bitfield member, member offset must be at byte
|
|
* boundary.
|
|
*/
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = nr_int_data_bits;
|
|
} else if (nr_bits > nr_int_data_bits) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
|
|
if (nr_copy_bits > BITS_PER_U128) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"nr_copy_bits exceeds 128");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size < bytes_offset ||
|
|
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_int_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 int_data, nr_bits, meta_needed = sizeof(int_data);
|
|
u16 encoding;
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
int_data = btf_type_int(t);
|
|
if (int_data & ~BTF_INT_MASK) {
|
|
btf_verifier_log_basic(env, t, "Invalid int_data:%x",
|
|
int_data);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
|
|
|
|
if (nr_bits > BITS_PER_U128) {
|
|
btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
|
|
BITS_PER_U128);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
|
|
btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Only one of the encoding bits is allowed and it
|
|
* should be sufficient for the pretty print purpose (i.e. decoding).
|
|
* Multiple bits can be allowed later if it is found
|
|
* to be insufficient.
|
|
*/
|
|
encoding = BTF_INT_ENCODING(int_data);
|
|
if (encoding &&
|
|
encoding != BTF_INT_SIGNED &&
|
|
encoding != BTF_INT_CHAR &&
|
|
encoding != BTF_INT_BOOL) {
|
|
btf_verifier_log_type(env, t, "Unsupported encoding");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_int_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
int int_data = btf_type_int(t);
|
|
|
|
btf_verifier_log(env,
|
|
"size=%u bits_offset=%u nr_bits=%u encoding=%s",
|
|
t->size, BTF_INT_OFFSET(int_data),
|
|
BTF_INT_BITS(int_data),
|
|
btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
|
|
}
|
|
|
|
static void btf_int128_print(struct btf_show *show, void *data)
|
|
{
|
|
/* data points to a __int128 number.
|
|
* Suppose
|
|
* int128_num = *(__int128 *)data;
|
|
* The below formulas shows what upper_num and lower_num represents:
|
|
* upper_num = int128_num >> 64;
|
|
* lower_num = int128_num & 0xffffffffFFFFFFFFULL;
|
|
*/
|
|
u64 upper_num, lower_num;
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
upper_num = *(u64 *)data;
|
|
lower_num = *(u64 *)(data + 8);
|
|
#else
|
|
upper_num = *(u64 *)(data + 8);
|
|
lower_num = *(u64 *)data;
|
|
#endif
|
|
if (upper_num == 0)
|
|
btf_show_type_value(show, "0x%llx", lower_num);
|
|
else
|
|
btf_show_type_values(show, "0x%llx%016llx", upper_num,
|
|
lower_num);
|
|
}
|
|
|
|
static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
|
|
u16 right_shift_bits)
|
|
{
|
|
u64 upper_num, lower_num;
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
upper_num = print_num[0];
|
|
lower_num = print_num[1];
|
|
#else
|
|
upper_num = print_num[1];
|
|
lower_num = print_num[0];
|
|
#endif
|
|
|
|
/* shake out un-needed bits by shift/or operations */
|
|
if (left_shift_bits >= 64) {
|
|
upper_num = lower_num << (left_shift_bits - 64);
|
|
lower_num = 0;
|
|
} else {
|
|
upper_num = (upper_num << left_shift_bits) |
|
|
(lower_num >> (64 - left_shift_bits));
|
|
lower_num = lower_num << left_shift_bits;
|
|
}
|
|
|
|
if (right_shift_bits >= 64) {
|
|
lower_num = upper_num >> (right_shift_bits - 64);
|
|
upper_num = 0;
|
|
} else {
|
|
lower_num = (lower_num >> right_shift_bits) |
|
|
(upper_num << (64 - right_shift_bits));
|
|
upper_num = upper_num >> right_shift_bits;
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
print_num[0] = upper_num;
|
|
print_num[1] = lower_num;
|
|
#else
|
|
print_num[0] = lower_num;
|
|
print_num[1] = upper_num;
|
|
#endif
|
|
}
|
|
|
|
static void btf_bitfield_show(void *data, u8 bits_offset,
|
|
u8 nr_bits, struct btf_show *show)
|
|
{
|
|
u16 left_shift_bits, right_shift_bits;
|
|
u8 nr_copy_bytes;
|
|
u8 nr_copy_bits;
|
|
u64 print_num[2] = {};
|
|
|
|
nr_copy_bits = nr_bits + bits_offset;
|
|
nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
|
|
|
|
memcpy(print_num, data, nr_copy_bytes);
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
left_shift_bits = bits_offset;
|
|
#else
|
|
left_shift_bits = BITS_PER_U128 - nr_copy_bits;
|
|
#endif
|
|
right_shift_bits = BITS_PER_U128 - nr_bits;
|
|
|
|
btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
|
|
btf_int128_print(show, print_num);
|
|
}
|
|
|
|
|
|
static void btf_int_bits_show(const struct btf *btf,
|
|
const struct btf_type *t,
|
|
void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
u32 int_data = btf_type_int(t);
|
|
u8 nr_bits = BTF_INT_BITS(int_data);
|
|
u8 total_bits_offset;
|
|
|
|
/*
|
|
* bits_offset is at most 7.
|
|
* BTF_INT_OFFSET() cannot exceed 128 bits.
|
|
*/
|
|
total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
|
|
data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
|
|
bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
|
|
btf_bitfield_show(data, bits_offset, nr_bits, show);
|
|
}
|
|
|
|
static void btf_int_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
u32 int_data = btf_type_int(t);
|
|
u8 encoding = BTF_INT_ENCODING(int_data);
|
|
bool sign = encoding & BTF_INT_SIGNED;
|
|
u8 nr_bits = BTF_INT_BITS(int_data);
|
|
void *safe_data;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
if (bits_offset || BTF_INT_OFFSET(int_data) ||
|
|
BITS_PER_BYTE_MASKED(nr_bits)) {
|
|
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
|
|
goto out;
|
|
}
|
|
|
|
switch (nr_bits) {
|
|
case 128:
|
|
btf_int128_print(show, safe_data);
|
|
break;
|
|
case 64:
|
|
if (sign)
|
|
btf_show_type_value(show, "%lld", *(s64 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%llu", *(u64 *)safe_data);
|
|
break;
|
|
case 32:
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s32 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u32 *)safe_data);
|
|
break;
|
|
case 16:
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s16 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u16 *)safe_data);
|
|
break;
|
|
case 8:
|
|
if (show->state.array_encoding == BTF_INT_CHAR) {
|
|
/* check for null terminator */
|
|
if (show->state.array_terminated)
|
|
break;
|
|
if (*(char *)data == '\0') {
|
|
show->state.array_terminated = 1;
|
|
break;
|
|
}
|
|
if (isprint(*(char *)data)) {
|
|
btf_show_type_value(show, "'%c'",
|
|
*(char *)safe_data);
|
|
break;
|
|
}
|
|
}
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s8 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u8 *)safe_data);
|
|
break;
|
|
default:
|
|
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
|
|
break;
|
|
}
|
|
out:
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations int_ops = {
|
|
.check_meta = btf_int_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_int_check_member,
|
|
.check_kflag_member = btf_int_check_kflag_member,
|
|
.log_details = btf_int_log,
|
|
.show = btf_int_show,
|
|
};
|
|
|
|
static int btf_modifier_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id = member->type;
|
|
struct btf_member resolved_member;
|
|
struct btf *btf = env->btf;
|
|
|
|
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
|
|
if (!resolved_type) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
resolved_member = *member;
|
|
resolved_member.type = resolved_type_id;
|
|
|
|
return btf_type_ops(resolved_type)->check_member(env, struct_type,
|
|
&resolved_member,
|
|
resolved_type);
|
|
}
|
|
|
|
static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id = member->type;
|
|
struct btf_member resolved_member;
|
|
struct btf *btf = env->btf;
|
|
|
|
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
|
|
if (!resolved_type) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
resolved_member = *member;
|
|
resolved_member.type = resolved_type_id;
|
|
|
|
return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
|
|
&resolved_member,
|
|
resolved_type);
|
|
}
|
|
|
|
static int btf_ptr_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_size, struct_bits_off, bytes_offset;
|
|
|
|
struct_size = struct_type->size;
|
|
struct_bits_off = member->offset;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size - bytes_offset < sizeof(void *)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_ref_type_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const char *value;
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!BTF_TYPE_ID_VALID(t->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* typedef/type_tag type must have a valid name, and other ref types,
|
|
* volatile, const, restrict, should have a null name.
|
|
*/
|
|
if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
|
|
value = btf_name_by_offset(env->btf, t->name_off);
|
|
if (!value || !value[0]) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_modifier_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *t = v->t;
|
|
const struct btf_type *next_type;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
/* Figure out the resolved next_type_id with size.
|
|
* They will be stored in the current modifier's
|
|
* resolved_ids and resolved_sizes such that it can
|
|
* save us a few type-following when we use it later (e.g. in
|
|
* pretty print).
|
|
*/
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
if (env_type_is_resolved(env, next_type_id))
|
|
next_type = btf_type_id_resolve(btf, &next_type_id);
|
|
|
|
/* "typedef void new_void", "const void"...etc */
|
|
if (!btf_type_is_void(next_type) &&
|
|
!btf_type_is_fwd(next_type) &&
|
|
!btf_type_is_func_proto(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_var_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
if (btf_type_is_modifier(next_type)) {
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id;
|
|
|
|
resolved_type_id = next_type_id;
|
|
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
|
|
|
|
if (btf_type_is_ptr(resolved_type) &&
|
|
!env_type_is_resolve_sink(env, resolved_type) &&
|
|
!env_type_is_resolved(env, resolved_type_id))
|
|
return env_stack_push(env, resolved_type,
|
|
resolved_type_id);
|
|
}
|
|
|
|
/* We must resolve to something concrete at this point, no
|
|
* forward types or similar that would resolve to size of
|
|
* zero is allowed.
|
|
*/
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_ptr_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
|
|
* the modifier may have stopped resolving when it was resolved
|
|
* to a ptr (last-resolved-ptr).
|
|
*
|
|
* We now need to continue from the last-resolved-ptr to
|
|
* ensure the last-resolved-ptr will not referring back to
|
|
* the current ptr (t).
|
|
*/
|
|
if (btf_type_is_modifier(next_type)) {
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id;
|
|
|
|
resolved_type_id = next_type_id;
|
|
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
|
|
|
|
if (btf_type_is_ptr(resolved_type) &&
|
|
!env_type_is_resolve_sink(env, resolved_type) &&
|
|
!env_type_is_resolved(env, resolved_type_id))
|
|
return env_stack_push(env, resolved_type,
|
|
resolved_type_id);
|
|
}
|
|
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
if (env_type_is_resolved(env, next_type_id))
|
|
next_type = btf_type_id_resolve(btf, &next_type_id);
|
|
|
|
if (!btf_type_is_void(next_type) &&
|
|
!btf_type_is_fwd(next_type) &&
|
|
!btf_type_is_func_proto(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_modifier_show(const struct btf *btf,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data,
|
|
u8 bits_offset, struct btf_show *show)
|
|
{
|
|
if (btf->resolved_ids)
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
else
|
|
t = btf_type_skip_modifiers(btf, type_id, NULL);
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static void btf_var_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
void *safe_data;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
|
|
if (show->flags & BTF_SHOW_PTR_RAW)
|
|
btf_show_type_value(show, "0x%px", *(void **)safe_data);
|
|
else
|
|
btf_show_type_value(show, "0x%p", *(void **)safe_data);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static void btf_ref_type_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "type_id=%u", t->type);
|
|
}
|
|
|
|
static struct btf_kind_operations modifier_ops = {
|
|
.check_meta = btf_ref_type_check_meta,
|
|
.resolve = btf_modifier_resolve,
|
|
.check_member = btf_modifier_check_member,
|
|
.check_kflag_member = btf_modifier_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_modifier_show,
|
|
};
|
|
|
|
static struct btf_kind_operations ptr_ops = {
|
|
.check_meta = btf_ref_type_check_meta,
|
|
.resolve = btf_ptr_resolve,
|
|
.check_member = btf_ptr_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_ptr_show,
|
|
};
|
|
|
|
static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->type) {
|
|
btf_verifier_log_type(env, t, "type != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* fwd type must have a valid name */
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_fwd_type_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
|
|
}
|
|
|
|
static struct btf_kind_operations fwd_ops = {
|
|
.check_meta = btf_fwd_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_fwd_type_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static int btf_array_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
u32 array_type_id, array_size;
|
|
struct btf *btf = env->btf;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
array_type_id = member->type;
|
|
btf_type_id_size(btf, &array_type_id, &array_size);
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < array_size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_array_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
u32 meta_needed = sizeof(*array);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* array type should not have a name */
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size) {
|
|
btf_verifier_log_type(env, t, "size != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Array elem type and index type cannot be in type void,
|
|
* so !array->type and !array->index_type are not allowed.
|
|
*/
|
|
if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_array_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_array *array = btf_type_array(v->t);
|
|
const struct btf_type *elem_type, *index_type;
|
|
u32 elem_type_id, index_type_id;
|
|
struct btf *btf = env->btf;
|
|
u32 elem_size;
|
|
|
|
/* Check array->index_type */
|
|
index_type_id = array->index_type;
|
|
index_type = btf_type_by_id(btf, index_type_id);
|
|
if (btf_type_nosize_or_null(index_type) ||
|
|
btf_type_is_resolve_source_only(index_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, index_type) &&
|
|
!env_type_is_resolved(env, index_type_id))
|
|
return env_stack_push(env, index_type, index_type_id);
|
|
|
|
index_type = btf_type_id_size(btf, &index_type_id, NULL);
|
|
if (!index_type || !btf_type_is_int(index_type) ||
|
|
!btf_type_int_is_regular(index_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check array->type */
|
|
elem_type_id = array->type;
|
|
elem_type = btf_type_by_id(btf, elem_type_id);
|
|
if (btf_type_nosize_or_null(elem_type) ||
|
|
btf_type_is_resolve_source_only(elem_type)) {
|
|
btf_verifier_log_type(env, v->t,
|
|
"Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, elem_type) &&
|
|
!env_type_is_resolved(env, elem_type_id))
|
|
return env_stack_push(env, elem_type, elem_type_id);
|
|
|
|
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
|
|
if (!elem_type) {
|
|
btf_verifier_log_type(env, v->t, "Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid array of int");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (array->nelems && elem_size > U32_MAX / array->nelems) {
|
|
btf_verifier_log_type(env, v->t,
|
|
"Array size overflows U32_MAX");
|
|
return -EINVAL;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_array_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
|
|
btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
|
|
array->type, array->index_type, array->nelems);
|
|
}
|
|
|
|
static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
const struct btf_kind_operations *elem_ops;
|
|
const struct btf_type *elem_type;
|
|
u32 i, elem_size = 0, elem_type_id;
|
|
u16 encoding = 0;
|
|
|
|
elem_type_id = array->type;
|
|
elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
|
|
if (elem_type && btf_type_has_size(elem_type))
|
|
elem_size = elem_type->size;
|
|
|
|
if (elem_type && btf_type_is_int(elem_type)) {
|
|
u32 int_type = btf_type_int(elem_type);
|
|
|
|
encoding = BTF_INT_ENCODING(int_type);
|
|
|
|
/*
|
|
* BTF_INT_CHAR encoding never seems to be set for
|
|
* char arrays, so if size is 1 and element is
|
|
* printable as a char, we'll do that.
|
|
*/
|
|
if (elem_size == 1)
|
|
encoding = BTF_INT_CHAR;
|
|
}
|
|
|
|
if (!btf_show_start_array_type(show, t, type_id, encoding, data))
|
|
return;
|
|
|
|
if (!elem_type)
|
|
goto out;
|
|
elem_ops = btf_type_ops(elem_type);
|
|
|
|
for (i = 0; i < array->nelems; i++) {
|
|
|
|
btf_show_start_array_member(show);
|
|
|
|
elem_ops->show(btf, elem_type, elem_type_id, data,
|
|
bits_offset, show);
|
|
data += elem_size;
|
|
|
|
btf_show_end_array_member(show);
|
|
|
|
if (show->state.array_terminated)
|
|
break;
|
|
}
|
|
out:
|
|
btf_show_end_array_type(show);
|
|
}
|
|
|
|
static void btf_array_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *m = show->state.member;
|
|
|
|
/*
|
|
* First check if any members would be shown (are non-zero).
|
|
* See comments above "struct btf_show" definition for more
|
|
* details on how this works at a high-level.
|
|
*/
|
|
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
|
|
if (!show->state.depth_check) {
|
|
show->state.depth_check = show->state.depth + 1;
|
|
show->state.depth_to_show = 0;
|
|
}
|
|
__btf_array_show(btf, t, type_id, data, bits_offset, show);
|
|
show->state.member = m;
|
|
|
|
if (show->state.depth_check != show->state.depth + 1)
|
|
return;
|
|
show->state.depth_check = 0;
|
|
|
|
if (show->state.depth_to_show <= show->state.depth)
|
|
return;
|
|
/*
|
|
* Reaching here indicates we have recursed and found
|
|
* non-zero array member(s).
|
|
*/
|
|
}
|
|
__btf_array_show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static struct btf_kind_operations array_ops = {
|
|
.check_meta = btf_array_check_meta,
|
|
.resolve = btf_array_resolve,
|
|
.check_member = btf_array_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_array_log,
|
|
.show = btf_array_show,
|
|
};
|
|
|
|
static int btf_struct_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < member_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_struct_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
|
|
const struct btf_member *member;
|
|
u32 meta_needed, last_offset;
|
|
struct btf *btf = env->btf;
|
|
u32 struct_size = t->size;
|
|
u32 offset;
|
|
u16 i;
|
|
|
|
meta_needed = btf_type_vlen(t) * sizeof(*member);
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* struct type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
last_offset = 0;
|
|
for_each_member(i, t, member) {
|
|
if (!btf_name_offset_valid(btf, member->name_off)) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member name_offset:%u",
|
|
member->name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* struct member either no name or a valid one */
|
|
if (member->name_off &&
|
|
!btf_name_valid_identifier(btf, member->name_off)) {
|
|
btf_verifier_log_member(env, t, member, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
/* A member cannot be in type void */
|
|
if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset = __btf_member_bit_offset(t, member);
|
|
if (is_union && offset) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member bits_offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* ">" instead of ">=" because the last member could be
|
|
* "char a[0];"
|
|
*/
|
|
if (last_offset > offset) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member bits_offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Member bits_offset exceeds its struct size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_member(env, t, member, NULL);
|
|
last_offset = offset;
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_struct_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_member *member;
|
|
int err;
|
|
u16 i;
|
|
|
|
/* Before continue resolving the next_member,
|
|
* ensure the last member is indeed resolved to a
|
|
* type with size info.
|
|
*/
|
|
if (v->next_member) {
|
|
const struct btf_type *last_member_type;
|
|
const struct btf_member *last_member;
|
|
u32 last_member_type_id;
|
|
|
|
last_member = btf_type_member(v->t) + v->next_member - 1;
|
|
last_member_type_id = last_member->type;
|
|
if (WARN_ON_ONCE(!env_type_is_resolved(env,
|
|
last_member_type_id)))
|
|
return -EINVAL;
|
|
|
|
last_member_type = btf_type_by_id(env->btf,
|
|
last_member_type_id);
|
|
if (btf_type_kflag(v->t))
|
|
err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
|
|
last_member,
|
|
last_member_type);
|
|
else
|
|
err = btf_type_ops(last_member_type)->check_member(env, v->t,
|
|
last_member,
|
|
last_member_type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for_each_member_from(i, v->next_member, v->t, member) {
|
|
u32 member_type_id = member->type;
|
|
const struct btf_type *member_type = btf_type_by_id(env->btf,
|
|
member_type_id);
|
|
|
|
if (btf_type_nosize_or_null(member_type) ||
|
|
btf_type_is_resolve_source_only(member_type)) {
|
|
btf_verifier_log_member(env, v->t, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, member_type) &&
|
|
!env_type_is_resolved(env, member_type_id)) {
|
|
env_stack_set_next_member(env, i + 1);
|
|
return env_stack_push(env, member_type, member_type_id);
|
|
}
|
|
|
|
if (btf_type_kflag(v->t))
|
|
err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
|
|
member,
|
|
member_type);
|
|
else
|
|
err = btf_type_ops(member_type)->check_member(env, v->t,
|
|
member,
|
|
member_type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_struct_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
enum btf_field_type {
|
|
BTF_FIELD_SPIN_LOCK,
|
|
BTF_FIELD_TIMER,
|
|
BTF_FIELD_KPTR,
|
|
};
|
|
|
|
enum {
|
|
BTF_FIELD_IGNORE = 0,
|
|
BTF_FIELD_FOUND = 1,
|
|
};
|
|
|
|
struct btf_field_info {
|
|
u32 type_id;
|
|
u32 off;
|
|
enum bpf_kptr_type type;
|
|
};
|
|
|
|
static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
|
|
u32 off, int sz, struct btf_field_info *info)
|
|
{
|
|
if (!__btf_type_is_struct(t))
|
|
return BTF_FIELD_IGNORE;
|
|
if (t->size != sz)
|
|
return BTF_FIELD_IGNORE;
|
|
info->off = off;
|
|
return BTF_FIELD_FOUND;
|
|
}
|
|
|
|
static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
|
|
u32 off, int sz, struct btf_field_info *info)
|
|
{
|
|
enum bpf_kptr_type type;
|
|
u32 res_id;
|
|
|
|
/* For PTR, sz is always == 8 */
|
|
if (!btf_type_is_ptr(t))
|
|
return BTF_FIELD_IGNORE;
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (!btf_type_is_type_tag(t))
|
|
return BTF_FIELD_IGNORE;
|
|
/* Reject extra tags */
|
|
if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
|
|
return -EINVAL;
|
|
if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_KPTR_UNREF;
|
|
else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_KPTR_REF;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* Get the base type */
|
|
t = btf_type_skip_modifiers(btf, t->type, &res_id);
|
|
/* Only pointer to struct is allowed */
|
|
if (!__btf_type_is_struct(t))
|
|
return -EINVAL;
|
|
|
|
info->type_id = res_id;
|
|
info->off = off;
|
|
info->type = type;
|
|
return BTF_FIELD_FOUND;
|
|
}
|
|
|
|
static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
|
|
const char *name, int sz, int align,
|
|
enum btf_field_type field_type,
|
|
struct btf_field_info *info, int info_cnt)
|
|
{
|
|
const struct btf_member *member;
|
|
struct btf_field_info tmp;
|
|
int ret, idx = 0;
|
|
u32 i, off;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_type *member_type = btf_type_by_id(btf,
|
|
member->type);
|
|
|
|
if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
|
|
continue;
|
|
|
|
off = __btf_member_bit_offset(t, member);
|
|
if (off % 8)
|
|
/* valid C code cannot generate such BTF */
|
|
return -EINVAL;
|
|
off /= 8;
|
|
if (off % align)
|
|
return -EINVAL;
|
|
|
|
switch (field_type) {
|
|
case BTF_FIELD_SPIN_LOCK:
|
|
case BTF_FIELD_TIMER:
|
|
ret = btf_find_struct(btf, member_type, off, sz,
|
|
idx < info_cnt ? &info[idx] : &tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case BTF_FIELD_KPTR:
|
|
ret = btf_find_kptr(btf, member_type, off, sz,
|
|
idx < info_cnt ? &info[idx] : &tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ret == BTF_FIELD_IGNORE)
|
|
continue;
|
|
if (idx >= info_cnt)
|
|
return -E2BIG;
|
|
++idx;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
|
|
const char *name, int sz, int align,
|
|
enum btf_field_type field_type,
|
|
struct btf_field_info *info, int info_cnt)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
struct btf_field_info tmp;
|
|
int ret, idx = 0;
|
|
u32 i, off;
|
|
|
|
for_each_vsi(i, t, vsi) {
|
|
const struct btf_type *var = btf_type_by_id(btf, vsi->type);
|
|
const struct btf_type *var_type = btf_type_by_id(btf, var->type);
|
|
|
|
off = vsi->offset;
|
|
|
|
if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
|
|
continue;
|
|
if (vsi->size != sz)
|
|
continue;
|
|
if (off % align)
|
|
return -EINVAL;
|
|
|
|
switch (field_type) {
|
|
case BTF_FIELD_SPIN_LOCK:
|
|
case BTF_FIELD_TIMER:
|
|
ret = btf_find_struct(btf, var_type, off, sz,
|
|
idx < info_cnt ? &info[idx] : &tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case BTF_FIELD_KPTR:
|
|
ret = btf_find_kptr(btf, var_type, off, sz,
|
|
idx < info_cnt ? &info[idx] : &tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ret == BTF_FIELD_IGNORE)
|
|
continue;
|
|
if (idx >= info_cnt)
|
|
return -E2BIG;
|
|
++idx;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int btf_find_field(const struct btf *btf, const struct btf_type *t,
|
|
enum btf_field_type field_type,
|
|
struct btf_field_info *info, int info_cnt)
|
|
{
|
|
const char *name;
|
|
int sz, align;
|
|
|
|
switch (field_type) {
|
|
case BTF_FIELD_SPIN_LOCK:
|
|
name = "bpf_spin_lock";
|
|
sz = sizeof(struct bpf_spin_lock);
|
|
align = __alignof__(struct bpf_spin_lock);
|
|
break;
|
|
case BTF_FIELD_TIMER:
|
|
name = "bpf_timer";
|
|
sz = sizeof(struct bpf_timer);
|
|
align = __alignof__(struct bpf_timer);
|
|
break;
|
|
case BTF_FIELD_KPTR:
|
|
name = NULL;
|
|
sz = sizeof(u64);
|
|
align = 8;
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (__btf_type_is_struct(t))
|
|
return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
|
|
else if (btf_type_is_datasec(t))
|
|
return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* find 'struct bpf_spin_lock' in map value.
|
|
* return >= 0 offset if found
|
|
* and < 0 in case of error
|
|
*/
|
|
int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
|
|
{
|
|
struct btf_field_info info;
|
|
int ret;
|
|
|
|
ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!ret)
|
|
return -ENOENT;
|
|
return info.off;
|
|
}
|
|
|
|
int btf_find_timer(const struct btf *btf, const struct btf_type *t)
|
|
{
|
|
struct btf_field_info info;
|
|
int ret;
|
|
|
|
ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!ret)
|
|
return -ENOENT;
|
|
return info.off;
|
|
}
|
|
|
|
struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
|
|
const struct btf_type *t)
|
|
{
|
|
struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
|
|
struct bpf_map_value_off *tab;
|
|
struct btf *kernel_btf = NULL;
|
|
struct module *mod = NULL;
|
|
int ret, i, nr_off;
|
|
|
|
ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
nr_off = ret;
|
|
tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!tab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < nr_off; i++) {
|
|
const struct btf_type *t;
|
|
s32 id;
|
|
|
|
/* Find type in map BTF, and use it to look up the matching type
|
|
* in vmlinux or module BTFs, by name and kind.
|
|
*/
|
|
t = btf_type_by_id(btf, info_arr[i].type_id);
|
|
id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
|
|
&kernel_btf);
|
|
if (id < 0) {
|
|
ret = id;
|
|
goto end;
|
|
}
|
|
|
|
/* Find and stash the function pointer for the destruction function that
|
|
* needs to be eventually invoked from the map free path.
|
|
*/
|
|
if (info_arr[i].type == BPF_KPTR_REF) {
|
|
const struct btf_type *dtor_func;
|
|
const char *dtor_func_name;
|
|
unsigned long addr;
|
|
s32 dtor_btf_id;
|
|
|
|
/* This call also serves as a whitelist of allowed objects that
|
|
* can be used as a referenced pointer and be stored in a map at
|
|
* the same time.
|
|
*/
|
|
dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
|
|
if (dtor_btf_id < 0) {
|
|
ret = dtor_btf_id;
|
|
goto end_btf;
|
|
}
|
|
|
|
dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
|
|
if (!dtor_func) {
|
|
ret = -ENOENT;
|
|
goto end_btf;
|
|
}
|
|
|
|
if (btf_is_module(kernel_btf)) {
|
|
mod = btf_try_get_module(kernel_btf);
|
|
if (!mod) {
|
|
ret = -ENXIO;
|
|
goto end_btf;
|
|
}
|
|
}
|
|
|
|
/* We already verified dtor_func to be btf_type_is_func
|
|
* in register_btf_id_dtor_kfuncs.
|
|
*/
|
|
dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
|
|
addr = kallsyms_lookup_name(dtor_func_name);
|
|
if (!addr) {
|
|
ret = -EINVAL;
|
|
goto end_mod;
|
|
}
|
|
tab->off[i].kptr.dtor = (void *)addr;
|
|
}
|
|
|
|
tab->off[i].offset = info_arr[i].off;
|
|
tab->off[i].type = info_arr[i].type;
|
|
tab->off[i].kptr.btf_id = id;
|
|
tab->off[i].kptr.btf = kernel_btf;
|
|
tab->off[i].kptr.module = mod;
|
|
}
|
|
tab->nr_off = nr_off;
|
|
return tab;
|
|
end_mod:
|
|
module_put(mod);
|
|
end_btf:
|
|
btf_put(kernel_btf);
|
|
end:
|
|
while (i--) {
|
|
btf_put(tab->off[i].kptr.btf);
|
|
if (tab->off[i].kptr.module)
|
|
module_put(tab->off[i].kptr.module);
|
|
}
|
|
kfree(tab);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *member;
|
|
void *safe_data;
|
|
u32 i;
|
|
|
|
safe_data = btf_show_start_struct_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_type *member_type = btf_type_by_id(btf,
|
|
member->type);
|
|
const struct btf_kind_operations *ops;
|
|
u32 member_offset, bitfield_size;
|
|
u32 bytes_offset;
|
|
u8 bits8_offset;
|
|
|
|
btf_show_start_member(show, member);
|
|
|
|
member_offset = __btf_member_bit_offset(t, member);
|
|
bitfield_size = __btf_member_bitfield_size(t, member);
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
|
|
bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
|
|
if (bitfield_size) {
|
|
safe_data = btf_show_start_type(show, member_type,
|
|
member->type,
|
|
data + bytes_offset);
|
|
if (safe_data)
|
|
btf_bitfield_show(safe_data,
|
|
bits8_offset,
|
|
bitfield_size, show);
|
|
btf_show_end_type(show);
|
|
} else {
|
|
ops = btf_type_ops(member_type);
|
|
ops->show(btf, member_type, member->type,
|
|
data + bytes_offset, bits8_offset, show);
|
|
}
|
|
|
|
btf_show_end_member(show);
|
|
}
|
|
|
|
btf_show_end_struct_type(show);
|
|
}
|
|
|
|
static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *m = show->state.member;
|
|
|
|
/*
|
|
* First check if any members would be shown (are non-zero).
|
|
* See comments above "struct btf_show" definition for more
|
|
* details on how this works at a high-level.
|
|
*/
|
|
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
|
|
if (!show->state.depth_check) {
|
|
show->state.depth_check = show->state.depth + 1;
|
|
show->state.depth_to_show = 0;
|
|
}
|
|
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
|
|
/* Restore saved member data here */
|
|
show->state.member = m;
|
|
if (show->state.depth_check != show->state.depth + 1)
|
|
return;
|
|
show->state.depth_check = 0;
|
|
|
|
if (show->state.depth_to_show <= show->state.depth)
|
|
return;
|
|
/*
|
|
* Reaching here indicates we have recursed and found
|
|
* non-zero child values.
|
|
*/
|
|
}
|
|
|
|
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static struct btf_kind_operations struct_ops = {
|
|
.check_meta = btf_struct_check_meta,
|
|
.resolve = btf_struct_resolve,
|
|
.check_member = btf_struct_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_struct_log,
|
|
.show = btf_struct_show,
|
|
};
|
|
|
|
static int btf_enum_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < member_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off, nr_bits, bytes_end, struct_size;
|
|
u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
|
|
|
|
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
|
|
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
|
|
if (!nr_bits) {
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = int_bitsize;
|
|
} else if (nr_bits > int_bitsize) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
|
|
if (struct_size < bytes_end) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_enum_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_enum *enums = btf_type_enum(t);
|
|
struct btf *btf = env->btf;
|
|
const char *fmt_str;
|
|
u16 i, nr_enums;
|
|
u32 meta_needed;
|
|
|
|
nr_enums = btf_type_vlen(t);
|
|
meta_needed = nr_enums * sizeof(*enums);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size > 8 || !is_power_of_2(t->size)) {
|
|
btf_verifier_log_type(env, t, "Unexpected size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
|
|
btf_verifier_log(env, "\tInvalid name_offset:%u",
|
|
enums[i].name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum member must have a valid name */
|
|
if (!enums[i].name_off ||
|
|
!btf_name_valid_identifier(btf, enums[i].name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->log.level == BPF_LOG_KERNEL)
|
|
continue;
|
|
fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
|
|
btf_verifier_log(env, fmt_str,
|
|
__btf_name_by_offset(btf, enums[i].name_off),
|
|
enums[i].val);
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_enum_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_enum *enums = btf_type_enum(t);
|
|
u32 i, nr_enums = btf_type_vlen(t);
|
|
void *safe_data;
|
|
int v;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
v = *(int *)safe_data;
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (v != enums[i].val)
|
|
continue;
|
|
|
|
btf_show_type_value(show, "%s",
|
|
__btf_name_by_offset(btf,
|
|
enums[i].name_off));
|
|
|
|
btf_show_end_type(show);
|
|
return;
|
|
}
|
|
|
|
if (btf_type_kflag(t))
|
|
btf_show_type_value(show, "%d", v);
|
|
else
|
|
btf_show_type_value(show, "%u", v);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static struct btf_kind_operations enum_ops = {
|
|
.check_meta = btf_enum_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_enum_check_member,
|
|
.check_kflag_member = btf_enum_check_kflag_member,
|
|
.log_details = btf_enum_log,
|
|
.show = btf_enum_show,
|
|
};
|
|
|
|
static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_enum64 *enums = btf_type_enum64(t);
|
|
struct btf *btf = env->btf;
|
|
const char *fmt_str;
|
|
u16 i, nr_enums;
|
|
u32 meta_needed;
|
|
|
|
nr_enums = btf_type_vlen(t);
|
|
meta_needed = nr_enums * sizeof(*enums);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size > 8 || !is_power_of_2(t->size)) {
|
|
btf_verifier_log_type(env, t, "Unexpected size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
|
|
btf_verifier_log(env, "\tInvalid name_offset:%u",
|
|
enums[i].name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum member must have a valid name */
|
|
if (!enums[i].name_off ||
|
|
!btf_name_valid_identifier(btf, enums[i].name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->log.level == BPF_LOG_KERNEL)
|
|
continue;
|
|
|
|
fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
|
|
btf_verifier_log(env, fmt_str,
|
|
__btf_name_by_offset(btf, enums[i].name_off),
|
|
btf_enum64_value(enums + i));
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_enum64 *enums = btf_type_enum64(t);
|
|
u32 i, nr_enums = btf_type_vlen(t);
|
|
void *safe_data;
|
|
s64 v;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
v = *(u64 *)safe_data;
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (v != btf_enum64_value(enums + i))
|
|
continue;
|
|
|
|
btf_show_type_value(show, "%s",
|
|
__btf_name_by_offset(btf,
|
|
enums[i].name_off));
|
|
|
|
btf_show_end_type(show);
|
|
return;
|
|
}
|
|
|
|
if (btf_type_kflag(t))
|
|
btf_show_type_value(show, "%lld", v);
|
|
else
|
|
btf_show_type_value(show, "%llu", v);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static struct btf_kind_operations enum64_ops = {
|
|
.check_meta = btf_enum64_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_enum_check_member,
|
|
.check_kflag_member = btf_enum_check_kflag_member,
|
|
.log_details = btf_enum_log,
|
|
.show = btf_enum64_show,
|
|
};
|
|
|
|
static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_func_proto_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_param *args = (const struct btf_param *)(t + 1);
|
|
u16 nr_args = btf_type_vlen(t), i;
|
|
|
|
btf_verifier_log(env, "return=%u args=(", t->type);
|
|
if (!nr_args) {
|
|
btf_verifier_log(env, "void");
|
|
goto done;
|
|
}
|
|
|
|
if (nr_args == 1 && !args[0].type) {
|
|
/* Only one vararg */
|
|
btf_verifier_log(env, "vararg");
|
|
goto done;
|
|
}
|
|
|
|
btf_verifier_log(env, "%u %s", args[0].type,
|
|
__btf_name_by_offset(env->btf,
|
|
args[0].name_off));
|
|
for (i = 1; i < nr_args - 1; i++)
|
|
btf_verifier_log(env, ", %u %s", args[i].type,
|
|
__btf_name_by_offset(env->btf,
|
|
args[i].name_off));
|
|
|
|
if (nr_args > 1) {
|
|
const struct btf_param *last_arg = &args[nr_args - 1];
|
|
|
|
if (last_arg->type)
|
|
btf_verifier_log(env, ", %u %s", last_arg->type,
|
|
__btf_name_by_offset(env->btf,
|
|
last_arg->name_off));
|
|
else
|
|
btf_verifier_log(env, ", vararg");
|
|
}
|
|
|
|
done:
|
|
btf_verifier_log(env, ")");
|
|
}
|
|
|
|
static struct btf_kind_operations func_proto_ops = {
|
|
.check_meta = btf_func_proto_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
/*
|
|
* BTF_KIND_FUNC_PROTO cannot be directly referred by
|
|
* a struct's member.
|
|
*
|
|
* It should be a function pointer instead.
|
|
* (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
|
|
*
|
|
* Hence, there is no btf_func_check_member().
|
|
*/
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_func_proto_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_func_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
|
|
btf_verifier_log_type(env, t, "Invalid func linkage");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_func_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
int err;
|
|
|
|
err = btf_func_check(env, t);
|
|
if (err)
|
|
return err;
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
return 0;
|
|
}
|
|
|
|
static struct btf_kind_operations func_ops = {
|
|
.check_meta = btf_func_check_meta,
|
|
.resolve = btf_func_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_var_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_var *var;
|
|
u32 meta_needed = sizeof(*var);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->name_off ||
|
|
!__btf_name_valid(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* A var cannot be in type void */
|
|
if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
var = btf_type_var(t);
|
|
if (var->linkage != BTF_VAR_STATIC &&
|
|
var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
|
|
btf_verifier_log_type(env, t, "Linkage not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
|
|
{
|
|
const struct btf_var *var = btf_type_var(t);
|
|
|
|
btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
|
|
}
|
|
|
|
static const struct btf_kind_operations var_ops = {
|
|
.check_meta = btf_var_check_meta,
|
|
.resolve = btf_var_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_var_log,
|
|
.show = btf_var_show,
|
|
};
|
|
|
|
static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
u64 last_vsi_end_off = 0, sum = 0;
|
|
u32 i, meta_needed;
|
|
|
|
meta_needed = btf_type_vlen(t) * sizeof(*vsi);
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->size) {
|
|
btf_verifier_log_type(env, t, "size == 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->name_off ||
|
|
!btf_name_valid_section(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for_each_vsi(i, t, vsi) {
|
|
/* A var cannot be in type void */
|
|
if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!vsi->size || vsi->size > t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
last_vsi_end_off = vsi->offset + vsi->size;
|
|
if (last_vsi_end_off > t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid offset+size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_vsi(env, t, vsi, NULL);
|
|
sum += vsi->size;
|
|
}
|
|
|
|
if (t->size < sum) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_datasec_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
struct btf *btf = env->btf;
|
|
u16 i;
|
|
|
|
env->resolve_mode = RESOLVE_TBD;
|
|
for_each_vsi_from(i, v->next_member, v->t, vsi) {
|
|
u32 var_type_id = vsi->type, type_id, type_size = 0;
|
|
const struct btf_type *var_type = btf_type_by_id(env->btf,
|
|
var_type_id);
|
|
if (!var_type || !btf_type_is_var(var_type)) {
|
|
btf_verifier_log_vsi(env, v->t, vsi,
|
|
"Not a VAR kind member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, var_type) &&
|
|
!env_type_is_resolved(env, var_type_id)) {
|
|
env_stack_set_next_member(env, i + 1);
|
|
return env_stack_push(env, var_type, var_type_id);
|
|
}
|
|
|
|
type_id = var_type->type;
|
|
if (!btf_type_id_size(btf, &type_id, &type_size)) {
|
|
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vsi->size < type_size) {
|
|
btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void btf_datasec_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
static void btf_datasec_show(const struct btf *btf,
|
|
const struct btf_type *t, u32 type_id,
|
|
void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
const struct btf_type *var;
|
|
u32 i;
|
|
|
|
if (!btf_show_start_type(show, t, type_id, data))
|
|
return;
|
|
|
|
btf_show_type_value(show, "section (\"%s\") = {",
|
|
__btf_name_by_offset(btf, t->name_off));
|
|
for_each_vsi(i, t, vsi) {
|
|
var = btf_type_by_id(btf, vsi->type);
|
|
if (i)
|
|
btf_show(show, ",");
|
|
btf_type_ops(var)->show(btf, var, vsi->type,
|
|
data + vsi->offset, bits_offset, show);
|
|
}
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations datasec_ops = {
|
|
.check_meta = btf_datasec_check_meta,
|
|
.resolve = btf_datasec_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_datasec_log,
|
|
.show = btf_datasec_show,
|
|
};
|
|
|
|
static s32 btf_float_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
|
|
t->size != 16) {
|
|
btf_verifier_log_type(env, t, "Invalid type_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_float_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u64 start_offset_bytes;
|
|
u64 end_offset_bytes;
|
|
u64 misalign_bits;
|
|
u64 align_bytes;
|
|
u64 align_bits;
|
|
|
|
/* Different architectures have different alignment requirements, so
|
|
* here we check only for the reasonable minimum. This way we ensure
|
|
* that types after CO-RE can pass the kernel BTF verifier.
|
|
*/
|
|
align_bytes = min_t(u64, sizeof(void *), member_type->size);
|
|
align_bits = align_bytes * BITS_PER_BYTE;
|
|
div64_u64_rem(member->offset, align_bits, &misalign_bits);
|
|
if (misalign_bits) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not properly aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
start_offset_bytes = member->offset / BITS_PER_BYTE;
|
|
end_offset_bytes = start_offset_bytes + member_type->size;
|
|
if (end_offset_bytes > struct_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_float_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u", t->size);
|
|
}
|
|
|
|
static const struct btf_kind_operations float_ops = {
|
|
.check_meta = btf_float_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_float_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_float_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_decl_tag *tag;
|
|
u32 meta_needed = sizeof(*tag);
|
|
s32 component_idx;
|
|
const char *value;
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
value = btf_name_by_offset(env->btf, t->name_off);
|
|
if (!value || !value[0]) {
|
|
btf_verifier_log_type(env, t, "Invalid value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
component_idx = btf_type_decl_tag(t)->component_idx;
|
|
if (component_idx < -1) {
|
|
btf_verifier_log_type(env, t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_decl_tag_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
s32 component_idx;
|
|
u32 vlen;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
component_idx = btf_type_decl_tag(t)->component_idx;
|
|
if (component_idx != -1) {
|
|
if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_struct(next_type)) {
|
|
vlen = btf_type_vlen(next_type);
|
|
} else {
|
|
/* next_type should be a function */
|
|
next_type = btf_type_by_id(btf, next_type->type);
|
|
vlen = btf_type_vlen(next_type);
|
|
}
|
|
|
|
if ((u32)component_idx >= vlen) {
|
|
btf_verifier_log_type(env, v->t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "type=%u component_idx=%d", t->type,
|
|
btf_type_decl_tag(t)->component_idx);
|
|
}
|
|
|
|
static const struct btf_kind_operations decl_tag_ops = {
|
|
.check_meta = btf_decl_tag_check_meta,
|
|
.resolve = btf_decl_tag_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_decl_tag_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static int btf_func_proto_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_type *ret_type;
|
|
const struct btf_param *args;
|
|
const struct btf *btf;
|
|
u16 nr_args, i;
|
|
int err;
|
|
|
|
btf = env->btf;
|
|
args = (const struct btf_param *)(t + 1);
|
|
nr_args = btf_type_vlen(t);
|
|
|
|
/* Check func return type which could be "void" (t->type == 0) */
|
|
if (t->type) {
|
|
u32 ret_type_id = t->type;
|
|
|
|
ret_type = btf_type_by_id(btf, ret_type_id);
|
|
if (!ret_type) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_resolve_source_only(ret_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_needs_resolve(ret_type) &&
|
|
!env_type_is_resolved(env, ret_type_id)) {
|
|
err = btf_resolve(env, ret_type, ret_type_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Ensure the return type is a type that has a size */
|
|
if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (!nr_args)
|
|
return 0;
|
|
|
|
/* Last func arg type_id could be 0 if it is a vararg */
|
|
if (!args[nr_args - 1].type) {
|
|
if (args[nr_args - 1].name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u",
|
|
nr_args);
|
|
return -EINVAL;
|
|
}
|
|
nr_args--;
|
|
}
|
|
|
|
err = 0;
|
|
for (i = 0; i < nr_args; i++) {
|
|
const struct btf_type *arg_type;
|
|
u32 arg_type_id;
|
|
|
|
arg_type_id = args[i].type;
|
|
arg_type = btf_type_by_id(btf, arg_type_id);
|
|
if (!arg_type) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (btf_type_is_resolve_source_only(arg_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (args[i].name_off &&
|
|
(!btf_name_offset_valid(btf, args[i].name_off) ||
|
|
!btf_name_valid_identifier(btf, args[i].name_off))) {
|
|
btf_verifier_log_type(env, t,
|
|
"Invalid arg#%u", i + 1);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (btf_type_needs_resolve(arg_type) &&
|
|
!env_type_is_resolved(env, arg_type_id)) {
|
|
err = btf_resolve(env, arg_type, arg_type_id);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int btf_func_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_type *proto_type;
|
|
const struct btf_param *args;
|
|
const struct btf *btf;
|
|
u16 nr_args, i;
|
|
|
|
btf = env->btf;
|
|
proto_type = btf_type_by_id(btf, t->type);
|
|
|
|
if (!proto_type || !btf_type_is_func_proto(proto_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
args = (const struct btf_param *)(proto_type + 1);
|
|
nr_args = btf_type_vlen(proto_type);
|
|
for (i = 0; i < nr_args; i++) {
|
|
if (!args[i].name_off && args[i].type) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
|
|
[BTF_KIND_INT] = &int_ops,
|
|
[BTF_KIND_PTR] = &ptr_ops,
|
|
[BTF_KIND_ARRAY] = &array_ops,
|
|
[BTF_KIND_STRUCT] = &struct_ops,
|
|
[BTF_KIND_UNION] = &struct_ops,
|
|
[BTF_KIND_ENUM] = &enum_ops,
|
|
[BTF_KIND_FWD] = &fwd_ops,
|
|
[BTF_KIND_TYPEDEF] = &modifier_ops,
|
|
[BTF_KIND_VOLATILE] = &modifier_ops,
|
|
[BTF_KIND_CONST] = &modifier_ops,
|
|
[BTF_KIND_RESTRICT] = &modifier_ops,
|
|
[BTF_KIND_FUNC] = &func_ops,
|
|
[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
|
|
[BTF_KIND_VAR] = &var_ops,
|
|
[BTF_KIND_DATASEC] = &datasec_ops,
|
|
[BTF_KIND_FLOAT] = &float_ops,
|
|
[BTF_KIND_DECL_TAG] = &decl_tag_ops,
|
|
[BTF_KIND_TYPE_TAG] = &modifier_ops,
|
|
[BTF_KIND_ENUM64] = &enum64_ops,
|
|
};
|
|
|
|
static s32 btf_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 saved_meta_left = meta_left;
|
|
s32 var_meta_size;
|
|
|
|
if (meta_left < sizeof(*t)) {
|
|
btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
|
|
env->log_type_id, meta_left, sizeof(*t));
|
|
return -EINVAL;
|
|
}
|
|
meta_left -= sizeof(*t);
|
|
|
|
if (t->info & ~BTF_INFO_MASK) {
|
|
btf_verifier_log(env, "[%u] Invalid btf_info:%x",
|
|
env->log_type_id, t->info);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
|
|
BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
|
|
btf_verifier_log(env, "[%u] Invalid kind:%u",
|
|
env->log_type_id, BTF_INFO_KIND(t->info));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!btf_name_offset_valid(env->btf, t->name_off)) {
|
|
btf_verifier_log(env, "[%u] Invalid name_offset:%u",
|
|
env->log_type_id, t->name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
|
|
if (var_meta_size < 0)
|
|
return var_meta_size;
|
|
|
|
meta_left -= var_meta_size;
|
|
|
|
return saved_meta_left - meta_left;
|
|
}
|
|
|
|
static int btf_check_all_metas(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
struct btf_header *hdr;
|
|
void *cur, *end;
|
|
|
|
hdr = &btf->hdr;
|
|
cur = btf->nohdr_data + hdr->type_off;
|
|
end = cur + hdr->type_len;
|
|
|
|
env->log_type_id = btf->base_btf ? btf->start_id : 1;
|
|
while (cur < end) {
|
|
struct btf_type *t = cur;
|
|
s32 meta_size;
|
|
|
|
meta_size = btf_check_meta(env, t, end - cur);
|
|
if (meta_size < 0)
|
|
return meta_size;
|
|
|
|
btf_add_type(env, t);
|
|
cur += meta_size;
|
|
env->log_type_id++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool btf_resolve_valid(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 type_id)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
|
|
if (!env_type_is_resolved(env, type_id))
|
|
return false;
|
|
|
|
if (btf_type_is_struct(t) || btf_type_is_datasec(t))
|
|
return !btf_resolved_type_id(btf, type_id) &&
|
|
!btf_resolved_type_size(btf, type_id);
|
|
|
|
if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
|
|
return btf_resolved_type_id(btf, type_id) &&
|
|
!btf_resolved_type_size(btf, type_id);
|
|
|
|
if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
|
|
btf_type_is_var(t)) {
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
return t &&
|
|
!btf_type_is_modifier(t) &&
|
|
!btf_type_is_var(t) &&
|
|
!btf_type_is_datasec(t);
|
|
}
|
|
|
|
if (btf_type_is_array(t)) {
|
|
const struct btf_array *array = btf_type_array(t);
|
|
const struct btf_type *elem_type;
|
|
u32 elem_type_id = array->type;
|
|
u32 elem_size;
|
|
|
|
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
|
|
return elem_type && !btf_type_is_modifier(elem_type) &&
|
|
(array->nelems * elem_size ==
|
|
btf_resolved_type_size(btf, type_id));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int btf_resolve(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id)
|
|
{
|
|
u32 save_log_type_id = env->log_type_id;
|
|
const struct resolve_vertex *v;
|
|
int err = 0;
|
|
|
|
env->resolve_mode = RESOLVE_TBD;
|
|
env_stack_push(env, t, type_id);
|
|
while (!err && (v = env_stack_peak(env))) {
|
|
env->log_type_id = v->type_id;
|
|
err = btf_type_ops(v->t)->resolve(env, v);
|
|
}
|
|
|
|
env->log_type_id = type_id;
|
|
if (err == -E2BIG) {
|
|
btf_verifier_log_type(env, t,
|
|
"Exceeded max resolving depth:%u",
|
|
MAX_RESOLVE_DEPTH);
|
|
} else if (err == -EEXIST) {
|
|
btf_verifier_log_type(env, t, "Loop detected");
|
|
}
|
|
|
|
/* Final sanity check */
|
|
if (!err && !btf_resolve_valid(env, t, type_id)) {
|
|
btf_verifier_log_type(env, t, "Invalid resolve state");
|
|
err = -EINVAL;
|
|
}
|
|
|
|
env->log_type_id = save_log_type_id;
|
|
return err;
|
|
}
|
|
|
|
static int btf_check_all_types(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
const struct btf_type *t;
|
|
u32 type_id, i;
|
|
int err;
|
|
|
|
err = env_resolve_init(env);
|
|
if (err)
|
|
return err;
|
|
|
|
env->phase++;
|
|
for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
|
|
type_id = btf->start_id + i;
|
|
t = btf_type_by_id(btf, type_id);
|
|
|
|
env->log_type_id = type_id;
|
|
if (btf_type_needs_resolve(t) &&
|
|
!env_type_is_resolved(env, type_id)) {
|
|
err = btf_resolve(env, t, type_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (btf_type_is_func_proto(t)) {
|
|
err = btf_func_proto_check(env, t);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_type_sec(struct btf_verifier_env *env)
|
|
{
|
|
const struct btf_header *hdr = &env->btf->hdr;
|
|
int err;
|
|
|
|
/* Type section must align to 4 bytes */
|
|
if (hdr->type_off & (sizeof(u32) - 1)) {
|
|
btf_verifier_log(env, "Unaligned type_off");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env->btf->base_btf && !hdr->type_len) {
|
|
btf_verifier_log(env, "No type found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
return err;
|
|
|
|
return btf_check_all_types(env);
|
|
}
|
|
|
|
static int btf_parse_str_sec(struct btf_verifier_env *env)
|
|
{
|
|
const struct btf_header *hdr;
|
|
struct btf *btf = env->btf;
|
|
const char *start, *end;
|
|
|
|
hdr = &btf->hdr;
|
|
start = btf->nohdr_data + hdr->str_off;
|
|
end = start + hdr->str_len;
|
|
|
|
if (end != btf->data + btf->data_size) {
|
|
btf_verifier_log(env, "String section is not at the end");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf->strings = start;
|
|
|
|
if (btf->base_btf && !hdr->str_len)
|
|
return 0;
|
|
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
|
|
btf_verifier_log(env, "Invalid string section");
|
|
return -EINVAL;
|
|
}
|
|
if (!btf->base_btf && start[0]) {
|
|
btf_verifier_log(env, "Invalid string section");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const size_t btf_sec_info_offset[] = {
|
|
offsetof(struct btf_header, type_off),
|
|
offsetof(struct btf_header, str_off),
|
|
};
|
|
|
|
static int btf_sec_info_cmp(const void *a, const void *b)
|
|
{
|
|
const struct btf_sec_info *x = a;
|
|
const struct btf_sec_info *y = b;
|
|
|
|
return (int)(x->off - y->off) ? : (int)(x->len - y->len);
|
|
}
|
|
|
|
static int btf_check_sec_info(struct btf_verifier_env *env,
|
|
u32 btf_data_size)
|
|
{
|
|
struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
|
|
u32 total, expected_total, i;
|
|
const struct btf_header *hdr;
|
|
const struct btf *btf;
|
|
|
|
btf = env->btf;
|
|
hdr = &btf->hdr;
|
|
|
|
/* Populate the secs from hdr */
|
|
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
|
|
secs[i] = *(struct btf_sec_info *)((void *)hdr +
|
|
btf_sec_info_offset[i]);
|
|
|
|
sort(secs, ARRAY_SIZE(btf_sec_info_offset),
|
|
sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
|
|
|
|
/* Check for gaps and overlap among sections */
|
|
total = 0;
|
|
expected_total = btf_data_size - hdr->hdr_len;
|
|
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
|
|
if (expected_total < secs[i].off) {
|
|
btf_verifier_log(env, "Invalid section offset");
|
|
return -EINVAL;
|
|
}
|
|
if (total < secs[i].off) {
|
|
/* gap */
|
|
btf_verifier_log(env, "Unsupported section found");
|
|
return -EINVAL;
|
|
}
|
|
if (total > secs[i].off) {
|
|
btf_verifier_log(env, "Section overlap found");
|
|
return -EINVAL;
|
|
}
|
|
if (expected_total - total < secs[i].len) {
|
|
btf_verifier_log(env,
|
|
"Total section length too long");
|
|
return -EINVAL;
|
|
}
|
|
total += secs[i].len;
|
|
}
|
|
|
|
/* There is data other than hdr and known sections */
|
|
if (expected_total != total) {
|
|
btf_verifier_log(env, "Unsupported section found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_hdr(struct btf_verifier_env *env)
|
|
{
|
|
u32 hdr_len, hdr_copy, btf_data_size;
|
|
const struct btf_header *hdr;
|
|
struct btf *btf;
|
|
|
|
btf = env->btf;
|
|
btf_data_size = btf->data_size;
|
|
|
|
if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
|
|
btf_verifier_log(env, "hdr_len not found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hdr = btf->data;
|
|
hdr_len = hdr->hdr_len;
|
|
if (btf_data_size < hdr_len) {
|
|
btf_verifier_log(env, "btf_header not found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure the unsupported header fields are zero */
|
|
if (hdr_len > sizeof(btf->hdr)) {
|
|
u8 *expected_zero = btf->data + sizeof(btf->hdr);
|
|
u8 *end = btf->data + hdr_len;
|
|
|
|
for (; expected_zero < end; expected_zero++) {
|
|
if (*expected_zero) {
|
|
btf_verifier_log(env, "Unsupported btf_header");
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
}
|
|
|
|
hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
|
|
memcpy(&btf->hdr, btf->data, hdr_copy);
|
|
|
|
hdr = &btf->hdr;
|
|
|
|
btf_verifier_log_hdr(env, btf_data_size);
|
|
|
|
if (hdr->magic != BTF_MAGIC) {
|
|
btf_verifier_log(env, "Invalid magic");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->version != BTF_VERSION) {
|
|
btf_verifier_log(env, "Unsupported version");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (hdr->flags) {
|
|
btf_verifier_log(env, "Unsupported flags");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
|
|
btf_verifier_log(env, "No data");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return btf_check_sec_info(env, btf_data_size);
|
|
}
|
|
|
|
static int btf_check_type_tags(struct btf_verifier_env *env,
|
|
struct btf *btf, int start_id)
|
|
{
|
|
int i, n, good_id = start_id - 1;
|
|
bool in_tags;
|
|
|
|
n = btf_nr_types(btf);
|
|
for (i = start_id; i < n; i++) {
|
|
const struct btf_type *t;
|
|
int chain_limit = 32;
|
|
u32 cur_id = i;
|
|
|
|
t = btf_type_by_id(btf, i);
|
|
if (!t)
|
|
return -EINVAL;
|
|
if (!btf_type_is_modifier(t))
|
|
continue;
|
|
|
|
cond_resched();
|
|
|
|
in_tags = btf_type_is_type_tag(t);
|
|
while (btf_type_is_modifier(t)) {
|
|
if (!chain_limit--) {
|
|
btf_verifier_log(env, "Max chain length or cycle detected");
|
|
return -ELOOP;
|
|
}
|
|
if (btf_type_is_type_tag(t)) {
|
|
if (!in_tags) {
|
|
btf_verifier_log(env, "Type tags don't precede modifiers");
|
|
return -EINVAL;
|
|
}
|
|
} else if (in_tags) {
|
|
in_tags = false;
|
|
}
|
|
if (cur_id <= good_id)
|
|
break;
|
|
/* Move to next type */
|
|
cur_id = t->type;
|
|
t = btf_type_by_id(btf, cur_id);
|
|
if (!t)
|
|
return -EINVAL;
|
|
}
|
|
good_id = i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
|
|
u32 log_level, char __user *log_ubuf, u32 log_size)
|
|
{
|
|
struct btf_verifier_env *env = NULL;
|
|
struct bpf_verifier_log *log;
|
|
struct btf *btf = NULL;
|
|
u8 *data;
|
|
int err;
|
|
|
|
if (btf_data_size > BTF_MAX_SIZE)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
log = &env->log;
|
|
if (log_level || log_ubuf || log_size) {
|
|
/* user requested verbose verifier output
|
|
* and supplied buffer to store the verification trace
|
|
*/
|
|
log->level = log_level;
|
|
log->ubuf = log_ubuf;
|
|
log->len_total = log_size;
|
|
|
|
/* log attributes have to be sane */
|
|
if (!bpf_verifier_log_attr_valid(log)) {
|
|
err = -EINVAL;
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!data) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
|
|
btf->data = data;
|
|
btf->data_size = btf_data_size;
|
|
|
|
if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
|
|
err = -EFAULT;
|
|
goto errout;
|
|
}
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_parse_type_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, 1);
|
|
if (err)
|
|
goto errout;
|
|
|
|
if (log->level && bpf_verifier_log_full(log)) {
|
|
err = -ENOSPC;
|
|
goto errout;
|
|
}
|
|
|
|
btf_verifier_env_free(env);
|
|
refcount_set(&btf->refcnt, 1);
|
|
return btf;
|
|
|
|
errout:
|
|
btf_verifier_env_free(env);
|
|
if (btf)
|
|
btf_free(btf);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
extern char __weak __start_BTF[];
|
|
extern char __weak __stop_BTF[];
|
|
extern struct btf *btf_vmlinux;
|
|
|
|
#define BPF_MAP_TYPE(_id, _ops)
|
|
#define BPF_LINK_TYPE(_id, _name)
|
|
static union {
|
|
struct bpf_ctx_convert {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
prog_ctx_type _id##_prog; \
|
|
kern_ctx_type _id##_kern;
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
} *__t;
|
|
/* 't' is written once under lock. Read many times. */
|
|
const struct btf_type *t;
|
|
} bpf_ctx_convert;
|
|
enum {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
__ctx_convert##_id,
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
__ctx_convert_unused, /* to avoid empty enum in extreme .config */
|
|
};
|
|
static u8 bpf_ctx_convert_map[] = {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
[_id] = __ctx_convert##_id,
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
0, /* avoid empty array */
|
|
};
|
|
#undef BPF_MAP_TYPE
|
|
#undef BPF_LINK_TYPE
|
|
|
|
static const struct btf_member *
|
|
btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, enum bpf_prog_type prog_type,
|
|
int arg)
|
|
{
|
|
const struct btf_type *conv_struct;
|
|
const struct btf_type *ctx_struct;
|
|
const struct btf_member *ctx_type;
|
|
const char *tname, *ctx_tname;
|
|
|
|
conv_struct = bpf_ctx_convert.t;
|
|
if (!conv_struct) {
|
|
bpf_log(log, "btf_vmlinux is malformed\n");
|
|
return NULL;
|
|
}
|
|
t = btf_type_by_id(btf, t->type);
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_struct(t)) {
|
|
/* Only pointer to struct is supported for now.
|
|
* That means that BPF_PROG_TYPE_TRACEPOINT with BTF
|
|
* is not supported yet.
|
|
* BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
|
|
*/
|
|
return NULL;
|
|
}
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!tname) {
|
|
bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
|
|
return NULL;
|
|
}
|
|
/* prog_type is valid bpf program type. No need for bounds check. */
|
|
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
|
|
/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
|
|
* Like 'struct __sk_buff'
|
|
*/
|
|
ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
|
|
if (!ctx_struct)
|
|
/* should not happen */
|
|
return NULL;
|
|
again:
|
|
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
|
|
if (!ctx_tname) {
|
|
/* should not happen */
|
|
bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
|
|
return NULL;
|
|
}
|
|
/* only compare that prog's ctx type name is the same as
|
|
* kernel expects. No need to compare field by field.
|
|
* It's ok for bpf prog to do:
|
|
* struct __sk_buff {};
|
|
* int socket_filter_bpf_prog(struct __sk_buff *skb)
|
|
* { // no fields of skb are ever used }
|
|
*/
|
|
if (strcmp(ctx_tname, tname)) {
|
|
/* bpf_user_pt_regs_t is a typedef, so resolve it to
|
|
* underlying struct and check name again
|
|
*/
|
|
if (!btf_type_is_modifier(ctx_struct))
|
|
return NULL;
|
|
while (btf_type_is_modifier(ctx_struct))
|
|
ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
|
|
goto again;
|
|
}
|
|
return ctx_type;
|
|
}
|
|
|
|
static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
|
|
struct btf *btf,
|
|
const struct btf_type *t,
|
|
enum bpf_prog_type prog_type,
|
|
int arg)
|
|
{
|
|
const struct btf_member *prog_ctx_type, *kern_ctx_type;
|
|
|
|
prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
|
|
if (!prog_ctx_type)
|
|
return -ENOENT;
|
|
kern_ctx_type = prog_ctx_type + 1;
|
|
return kern_ctx_type->type;
|
|
}
|
|
|
|
BTF_ID_LIST(bpf_ctx_convert_btf_id)
|
|
BTF_ID(struct, bpf_ctx_convert)
|
|
|
|
struct btf *btf_parse_vmlinux(void)
|
|
{
|
|
struct btf_verifier_env *env = NULL;
|
|
struct bpf_verifier_log *log;
|
|
struct btf *btf = NULL;
|
|
int err;
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
log = &env->log;
|
|
log->level = BPF_LOG_KERNEL;
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
btf->data = __start_BTF;
|
|
btf->data_size = __stop_BTF - __start_BTF;
|
|
btf->kernel_btf = true;
|
|
snprintf(btf->name, sizeof(btf->name), "vmlinux");
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, 1);
|
|
if (err)
|
|
goto errout;
|
|
|
|
/* btf_parse_vmlinux() runs under bpf_verifier_lock */
|
|
bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
|
|
|
|
bpf_struct_ops_init(btf, log);
|
|
|
|
refcount_set(&btf->refcnt, 1);
|
|
|
|
err = btf_alloc_id(btf);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf_verifier_env_free(env);
|
|
return btf;
|
|
|
|
errout:
|
|
btf_verifier_env_free(env);
|
|
if (btf) {
|
|
kvfree(btf->types);
|
|
kfree(btf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
|
|
static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
|
|
{
|
|
struct btf_verifier_env *env = NULL;
|
|
struct bpf_verifier_log *log;
|
|
struct btf *btf = NULL, *base_btf;
|
|
int err;
|
|
|
|
base_btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(base_btf))
|
|
return base_btf;
|
|
if (!base_btf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
log = &env->log;
|
|
log->level = BPF_LOG_KERNEL;
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
btf->base_btf = base_btf;
|
|
btf->start_id = base_btf->nr_types;
|
|
btf->start_str_off = base_btf->hdr.str_len;
|
|
btf->kernel_btf = true;
|
|
snprintf(btf->name, sizeof(btf->name), "%s", module_name);
|
|
|
|
btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf->data) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy(btf->data, data, data_size);
|
|
btf->data_size = data_size;
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf_verifier_env_free(env);
|
|
refcount_set(&btf->refcnt, 1);
|
|
return btf;
|
|
|
|
errout:
|
|
btf_verifier_env_free(env);
|
|
if (btf) {
|
|
kvfree(btf->data);
|
|
kvfree(btf->types);
|
|
kfree(btf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
|
|
|
|
struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
|
|
|
|
if (tgt_prog)
|
|
return tgt_prog->aux->btf;
|
|
else
|
|
return prog->aux->attach_btf;
|
|
}
|
|
|
|
static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
|
|
{
|
|
/* skip modifiers */
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
|
|
return btf_type_is_int(t);
|
|
}
|
|
|
|
static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
|
|
int off)
|
|
{
|
|
const struct btf_param *args;
|
|
const struct btf_type *t;
|
|
u32 offset = 0, nr_args;
|
|
int i;
|
|
|
|
if (!func_proto)
|
|
return off / 8;
|
|
|
|
nr_args = btf_type_vlen(func_proto);
|
|
args = (const struct btf_param *)(func_proto + 1);
|
|
for (i = 0; i < nr_args; i++) {
|
|
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
|
|
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
|
|
if (off < offset)
|
|
return i;
|
|
}
|
|
|
|
t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
|
|
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
|
|
if (off < offset)
|
|
return nr_args;
|
|
|
|
return nr_args + 1;
|
|
}
|
|
|
|
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
const struct btf_type *t = prog->aux->attach_func_proto;
|
|
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
|
|
struct btf *btf = bpf_prog_get_target_btf(prog);
|
|
const char *tname = prog->aux->attach_func_name;
|
|
struct bpf_verifier_log *log = info->log;
|
|
const struct btf_param *args;
|
|
const char *tag_value;
|
|
u32 nr_args, arg;
|
|
int i, ret;
|
|
|
|
if (off % 8) {
|
|
bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
|
|
tname, off);
|
|
return false;
|
|
}
|
|
arg = get_ctx_arg_idx(btf, t, off);
|
|
args = (const struct btf_param *)(t + 1);
|
|
/* if (t == NULL) Fall back to default BPF prog with
|
|
* MAX_BPF_FUNC_REG_ARGS u64 arguments.
|
|
*/
|
|
nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
|
|
if (prog->aux->attach_btf_trace) {
|
|
/* skip first 'void *__data' argument in btf_trace_##name typedef */
|
|
args++;
|
|
nr_args--;
|
|
}
|
|
|
|
if (arg > nr_args) {
|
|
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
|
|
tname, arg + 1);
|
|
return false;
|
|
}
|
|
|
|
if (arg == nr_args) {
|
|
switch (prog->expected_attach_type) {
|
|
case BPF_LSM_CGROUP:
|
|
case BPF_LSM_MAC:
|
|
case BPF_TRACE_FEXIT:
|
|
/* When LSM programs are attached to void LSM hooks
|
|
* they use FEXIT trampolines and when attached to
|
|
* int LSM hooks, they use MODIFY_RETURN trampolines.
|
|
*
|
|
* While the LSM programs are BPF_MODIFY_RETURN-like
|
|
* the check:
|
|
*
|
|
* if (ret_type != 'int')
|
|
* return -EINVAL;
|
|
*
|
|
* is _not_ done here. This is still safe as LSM hooks
|
|
* have only void and int return types.
|
|
*/
|
|
if (!t)
|
|
return true;
|
|
t = btf_type_by_id(btf, t->type);
|
|
break;
|
|
case BPF_MODIFY_RETURN:
|
|
/* For now the BPF_MODIFY_RETURN can only be attached to
|
|
* functions that return an int.
|
|
*/
|
|
if (!t)
|
|
return false;
|
|
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
if (!btf_type_is_small_int(t)) {
|
|
bpf_log(log,
|
|
"ret type %s not allowed for fmod_ret\n",
|
|
btf_type_str(t));
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
|
|
tname, arg + 1);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!t)
|
|
/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
|
|
return true;
|
|
t = btf_type_by_id(btf, args[arg].type);
|
|
}
|
|
|
|
/* skip modifiers */
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
|
|
/* accessing a scalar */
|
|
return true;
|
|
if (!btf_type_is_ptr(t)) {
|
|
bpf_log(log,
|
|
"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
|
|
tname, arg,
|
|
__btf_name_by_offset(btf, t->name_off),
|
|
btf_type_str(t));
|
|
return false;
|
|
}
|
|
|
|
/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
|
|
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
|
|
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
|
|
u32 type, flag;
|
|
|
|
type = base_type(ctx_arg_info->reg_type);
|
|
flag = type_flag(ctx_arg_info->reg_type);
|
|
if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
|
|
(flag & PTR_MAYBE_NULL)) {
|
|
info->reg_type = ctx_arg_info->reg_type;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (t->type == 0)
|
|
/* This is a pointer to void.
|
|
* It is the same as scalar from the verifier safety pov.
|
|
* No further pointer walking is allowed.
|
|
*/
|
|
return true;
|
|
|
|
if (is_int_ptr(btf, t))
|
|
return true;
|
|
|
|
/* this is a pointer to another type */
|
|
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
|
|
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
|
|
|
|
if (ctx_arg_info->offset == off) {
|
|
if (!ctx_arg_info->btf_id) {
|
|
bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
|
|
return false;
|
|
}
|
|
|
|
info->reg_type = ctx_arg_info->reg_type;
|
|
info->btf = btf_vmlinux;
|
|
info->btf_id = ctx_arg_info->btf_id;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
info->reg_type = PTR_TO_BTF_ID;
|
|
if (tgt_prog) {
|
|
enum bpf_prog_type tgt_type;
|
|
|
|
if (tgt_prog->type == BPF_PROG_TYPE_EXT)
|
|
tgt_type = tgt_prog->aux->saved_dst_prog_type;
|
|
else
|
|
tgt_type = tgt_prog->type;
|
|
|
|
ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
|
|
if (ret > 0) {
|
|
info->btf = btf_vmlinux;
|
|
info->btf_id = ret;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
info->btf = btf;
|
|
info->btf_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (btf_type_is_type_tag(t)) {
|
|
tag_value = __btf_name_by_offset(btf, t->name_off);
|
|
if (strcmp(tag_value, "user") == 0)
|
|
info->reg_type |= MEM_USER;
|
|
if (strcmp(tag_value, "percpu") == 0)
|
|
info->reg_type |= MEM_PERCPU;
|
|
}
|
|
|
|
/* skip modifiers */
|
|
while (btf_type_is_modifier(t)) {
|
|
info->btf_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
if (!btf_type_is_struct(t)) {
|
|
bpf_log(log,
|
|
"func '%s' arg%d type %s is not a struct\n",
|
|
tname, arg, btf_type_str(t));
|
|
return false;
|
|
}
|
|
bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
|
|
tname, arg, info->btf_id, btf_type_str(t),
|
|
__btf_name_by_offset(btf, t->name_off));
|
|
return true;
|
|
}
|
|
|
|
enum bpf_struct_walk_result {
|
|
/* < 0 error */
|
|
WALK_SCALAR = 0,
|
|
WALK_PTR,
|
|
WALK_STRUCT,
|
|
};
|
|
|
|
static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, int off, int size,
|
|
u32 *next_btf_id, enum bpf_type_flag *flag)
|
|
{
|
|
u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
|
|
const struct btf_type *mtype, *elem_type = NULL;
|
|
const struct btf_member *member;
|
|
const char *tname, *mname, *tag_value;
|
|
u32 vlen, elem_id, mid;
|
|
|
|
again:
|
|
tname = __btf_name_by_offset(btf, t->name_off);
|
|
if (!btf_type_is_struct(t)) {
|
|
bpf_log(log, "Type '%s' is not a struct\n", tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vlen = btf_type_vlen(t);
|
|
if (off + size > t->size) {
|
|
/* If the last element is a variable size array, we may
|
|
* need to relax the rule.
|
|
*/
|
|
struct btf_array *array_elem;
|
|
|
|
if (vlen == 0)
|
|
goto error;
|
|
|
|
member = btf_type_member(t) + vlen - 1;
|
|
mtype = btf_type_skip_modifiers(btf, member->type,
|
|
NULL);
|
|
if (!btf_type_is_array(mtype))
|
|
goto error;
|
|
|
|
array_elem = (struct btf_array *)(mtype + 1);
|
|
if (array_elem->nelems != 0)
|
|
goto error;
|
|
|
|
moff = __btf_member_bit_offset(t, member) / 8;
|
|
if (off < moff)
|
|
goto error;
|
|
|
|
/* Only allow structure for now, can be relaxed for
|
|
* other types later.
|
|
*/
|
|
t = btf_type_skip_modifiers(btf, array_elem->type,
|
|
NULL);
|
|
if (!btf_type_is_struct(t))
|
|
goto error;
|
|
|
|
off = (off - moff) % t->size;
|
|
goto again;
|
|
|
|
error:
|
|
bpf_log(log, "access beyond struct %s at off %u size %u\n",
|
|
tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
for_each_member(i, t, member) {
|
|
/* offset of the field in bytes */
|
|
moff = __btf_member_bit_offset(t, member) / 8;
|
|
if (off + size <= moff)
|
|
/* won't find anything, field is already too far */
|
|
break;
|
|
|
|
if (__btf_member_bitfield_size(t, member)) {
|
|
u32 end_bit = __btf_member_bit_offset(t, member) +
|
|
__btf_member_bitfield_size(t, member);
|
|
|
|
/* off <= moff instead of off == moff because clang
|
|
* does not generate a BTF member for anonymous
|
|
* bitfield like the ":16" here:
|
|
* struct {
|
|
* int :16;
|
|
* int x:8;
|
|
* };
|
|
*/
|
|
if (off <= moff &&
|
|
BITS_ROUNDUP_BYTES(end_bit) <= off + size)
|
|
return WALK_SCALAR;
|
|
|
|
/* off may be accessing a following member
|
|
*
|
|
* or
|
|
*
|
|
* Doing partial access at either end of this
|
|
* bitfield. Continue on this case also to
|
|
* treat it as not accessing this bitfield
|
|
* and eventually error out as field not
|
|
* found to keep it simple.
|
|
* It could be relaxed if there was a legit
|
|
* partial access case later.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/* In case of "off" is pointing to holes of a struct */
|
|
if (off < moff)
|
|
break;
|
|
|
|
/* type of the field */
|
|
mid = member->type;
|
|
mtype = btf_type_by_id(btf, member->type);
|
|
mname = __btf_name_by_offset(btf, member->name_off);
|
|
|
|
mtype = __btf_resolve_size(btf, mtype, &msize,
|
|
&elem_type, &elem_id, &total_nelems,
|
|
&mid);
|
|
if (IS_ERR(mtype)) {
|
|
bpf_log(log, "field %s doesn't have size\n", mname);
|
|
return -EFAULT;
|
|
}
|
|
|
|
mtrue_end = moff + msize;
|
|
if (off >= mtrue_end)
|
|
/* no overlap with member, keep iterating */
|
|
continue;
|
|
|
|
if (btf_type_is_array(mtype)) {
|
|
u32 elem_idx;
|
|
|
|
/* __btf_resolve_size() above helps to
|
|
* linearize a multi-dimensional array.
|
|
*
|
|
* The logic here is treating an array
|
|
* in a struct as the following way:
|
|
*
|
|
* struct outer {
|
|
* struct inner array[2][2];
|
|
* };
|
|
*
|
|
* looks like:
|
|
*
|
|
* struct outer {
|
|
* struct inner array_elem0;
|
|
* struct inner array_elem1;
|
|
* struct inner array_elem2;
|
|
* struct inner array_elem3;
|
|
* };
|
|
*
|
|
* When accessing outer->array[1][0], it moves
|
|
* moff to "array_elem2", set mtype to
|
|
* "struct inner", and msize also becomes
|
|
* sizeof(struct inner). Then most of the
|
|
* remaining logic will fall through without
|
|
* caring the current member is an array or
|
|
* not.
|
|
*
|
|
* Unlike mtype/msize/moff, mtrue_end does not
|
|
* change. The naming difference ("_true") tells
|
|
* that it is not always corresponding to
|
|
* the current mtype/msize/moff.
|
|
* It is the true end of the current
|
|
* member (i.e. array in this case). That
|
|
* will allow an int array to be accessed like
|
|
* a scratch space,
|
|
* i.e. allow access beyond the size of
|
|
* the array's element as long as it is
|
|
* within the mtrue_end boundary.
|
|
*/
|
|
|
|
/* skip empty array */
|
|
if (moff == mtrue_end)
|
|
continue;
|
|
|
|
msize /= total_nelems;
|
|
elem_idx = (off - moff) / msize;
|
|
moff += elem_idx * msize;
|
|
mtype = elem_type;
|
|
mid = elem_id;
|
|
}
|
|
|
|
/* the 'off' we're looking for is either equal to start
|
|
* of this field or inside of this struct
|
|
*/
|
|
if (btf_type_is_struct(mtype)) {
|
|
/* our field must be inside that union or struct */
|
|
t = mtype;
|
|
|
|
/* return if the offset matches the member offset */
|
|
if (off == moff) {
|
|
*next_btf_id = mid;
|
|
return WALK_STRUCT;
|
|
}
|
|
|
|
/* adjust offset we're looking for */
|
|
off -= moff;
|
|
goto again;
|
|
}
|
|
|
|
if (btf_type_is_ptr(mtype)) {
|
|
const struct btf_type *stype, *t;
|
|
enum bpf_type_flag tmp_flag = 0;
|
|
u32 id;
|
|
|
|
if (msize != size || off != moff) {
|
|
bpf_log(log,
|
|
"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
|
|
mname, moff, tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check type tag */
|
|
t = btf_type_by_id(btf, mtype->type);
|
|
if (btf_type_is_type_tag(t)) {
|
|
tag_value = __btf_name_by_offset(btf, t->name_off);
|
|
/* check __user tag */
|
|
if (strcmp(tag_value, "user") == 0)
|
|
tmp_flag = MEM_USER;
|
|
/* check __percpu tag */
|
|
if (strcmp(tag_value, "percpu") == 0)
|
|
tmp_flag = MEM_PERCPU;
|
|
}
|
|
|
|
stype = btf_type_skip_modifiers(btf, mtype->type, &id);
|
|
if (btf_type_is_struct(stype)) {
|
|
*next_btf_id = id;
|
|
*flag = tmp_flag;
|
|
return WALK_PTR;
|
|
}
|
|
}
|
|
|
|
/* Allow more flexible access within an int as long as
|
|
* it is within mtrue_end.
|
|
* Since mtrue_end could be the end of an array,
|
|
* that also allows using an array of int as a scratch
|
|
* space. e.g. skb->cb[].
|
|
*/
|
|
if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
|
|
bpf_log(log,
|
|
"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
|
|
mname, mtrue_end, tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
return WALK_SCALAR;
|
|
}
|
|
bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, int off, int size,
|
|
enum bpf_access_type atype __maybe_unused,
|
|
u32 *next_btf_id, enum bpf_type_flag *flag)
|
|
{
|
|
enum bpf_type_flag tmp_flag = 0;
|
|
int err;
|
|
u32 id;
|
|
|
|
do {
|
|
err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
|
|
|
|
switch (err) {
|
|
case WALK_PTR:
|
|
/* If we found the pointer or scalar on t+off,
|
|
* we're done.
|
|
*/
|
|
*next_btf_id = id;
|
|
*flag = tmp_flag;
|
|
return PTR_TO_BTF_ID;
|
|
case WALK_SCALAR:
|
|
return SCALAR_VALUE;
|
|
case WALK_STRUCT:
|
|
/* We found nested struct, so continue the search
|
|
* by diving in it. At this point the offset is
|
|
* aligned with the new type, so set it to 0.
|
|
*/
|
|
t = btf_type_by_id(btf, id);
|
|
off = 0;
|
|
break;
|
|
default:
|
|
/* It's either error or unknown return value..
|
|
* scream and leave.
|
|
*/
|
|
if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
|
|
return -EINVAL;
|
|
return err;
|
|
}
|
|
} while (t);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check that two BTF types, each specified as an BTF object + id, are exactly
|
|
* the same. Trivial ID check is not enough due to module BTFs, because we can
|
|
* end up with two different module BTFs, but IDs point to the common type in
|
|
* vmlinux BTF.
|
|
*/
|
|
static bool btf_types_are_same(const struct btf *btf1, u32 id1,
|
|
const struct btf *btf2, u32 id2)
|
|
{
|
|
if (id1 != id2)
|
|
return false;
|
|
if (btf1 == btf2)
|
|
return true;
|
|
return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
|
|
}
|
|
|
|
bool btf_struct_ids_match(struct bpf_verifier_log *log,
|
|
const struct btf *btf, u32 id, int off,
|
|
const struct btf *need_btf, u32 need_type_id,
|
|
bool strict)
|
|
{
|
|
const struct btf_type *type;
|
|
enum bpf_type_flag flag;
|
|
int err;
|
|
|
|
/* Are we already done? */
|
|
if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
|
|
return true;
|
|
/* In case of strict type match, we do not walk struct, the top level
|
|
* type match must succeed. When strict is true, off should have already
|
|
* been 0.
|
|
*/
|
|
if (strict)
|
|
return false;
|
|
again:
|
|
type = btf_type_by_id(btf, id);
|
|
if (!type)
|
|
return false;
|
|
err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
|
|
if (err != WALK_STRUCT)
|
|
return false;
|
|
|
|
/* We found nested struct object. If it matches
|
|
* the requested ID, we're done. Otherwise let's
|
|
* continue the search with offset 0 in the new
|
|
* type.
|
|
*/
|
|
if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
|
|
off = 0;
|
|
goto again;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __get_type_size(struct btf *btf, u32 btf_id,
|
|
const struct btf_type **ret_type)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
*ret_type = btf_type_by_id(btf, 0);
|
|
if (!btf_id)
|
|
/* void */
|
|
return 0;
|
|
t = btf_type_by_id(btf, btf_id);
|
|
while (t && btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!t)
|
|
return -EINVAL;
|
|
*ret_type = t;
|
|
if (btf_type_is_ptr(t))
|
|
/* kernel size of pointer. Not BPF's size of pointer*/
|
|
return sizeof(void *);
|
|
if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
|
|
return t->size;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int btf_distill_func_proto(struct bpf_verifier_log *log,
|
|
struct btf *btf,
|
|
const struct btf_type *func,
|
|
const char *tname,
|
|
struct btf_func_model *m)
|
|
{
|
|
const struct btf_param *args;
|
|
const struct btf_type *t;
|
|
u32 i, nargs;
|
|
int ret;
|
|
|
|
if (!func) {
|
|
/* BTF function prototype doesn't match the verifier types.
|
|
* Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
|
|
*/
|
|
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
|
|
m->arg_size[i] = 8;
|
|
m->arg_flags[i] = 0;
|
|
}
|
|
m->ret_size = 8;
|
|
m->nr_args = MAX_BPF_FUNC_REG_ARGS;
|
|
return 0;
|
|
}
|
|
args = (const struct btf_param *)(func + 1);
|
|
nargs = btf_type_vlen(func);
|
|
if (nargs > MAX_BPF_FUNC_ARGS) {
|
|
bpf_log(log,
|
|
"The function %s has %d arguments. Too many.\n",
|
|
tname, nargs);
|
|
return -EINVAL;
|
|
}
|
|
ret = __get_type_size(btf, func->type, &t);
|
|
if (ret < 0 || __btf_type_is_struct(t)) {
|
|
bpf_log(log,
|
|
"The function %s return type %s is unsupported.\n",
|
|
tname, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
m->ret_size = ret;
|
|
|
|
for (i = 0; i < nargs; i++) {
|
|
if (i == nargs - 1 && args[i].type == 0) {
|
|
bpf_log(log,
|
|
"The function %s with variable args is unsupported.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
ret = __get_type_size(btf, args[i].type, &t);
|
|
|
|
/* No support of struct argument size greater than 16 bytes */
|
|
if (ret < 0 || ret > 16) {
|
|
bpf_log(log,
|
|
"The function %s arg%d type %s is unsupported.\n",
|
|
tname, i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
if (ret == 0) {
|
|
bpf_log(log,
|
|
"The function %s has malformed void argument.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
m->arg_size[i] = ret;
|
|
m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
|
|
}
|
|
m->nr_args = nargs;
|
|
return 0;
|
|
}
|
|
|
|
/* Compare BTFs of two functions assuming only scalars and pointers to context.
|
|
* t1 points to BTF_KIND_FUNC in btf1
|
|
* t2 points to BTF_KIND_FUNC in btf2
|
|
* Returns:
|
|
* EINVAL - function prototype mismatch
|
|
* EFAULT - verifier bug
|
|
* 0 - 99% match. The last 1% is validated by the verifier.
|
|
*/
|
|
static int btf_check_func_type_match(struct bpf_verifier_log *log,
|
|
struct btf *btf1, const struct btf_type *t1,
|
|
struct btf *btf2, const struct btf_type *t2)
|
|
{
|
|
const struct btf_param *args1, *args2;
|
|
const char *fn1, *fn2, *s1, *s2;
|
|
u32 nargs1, nargs2, i;
|
|
|
|
fn1 = btf_name_by_offset(btf1, t1->name_off);
|
|
fn2 = btf_name_by_offset(btf2, t2->name_off);
|
|
|
|
if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
|
|
bpf_log(log, "%s() is not a global function\n", fn1);
|
|
return -EINVAL;
|
|
}
|
|
if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
|
|
bpf_log(log, "%s() is not a global function\n", fn2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t1 = btf_type_by_id(btf1, t1->type);
|
|
if (!t1 || !btf_type_is_func_proto(t1))
|
|
return -EFAULT;
|
|
t2 = btf_type_by_id(btf2, t2->type);
|
|
if (!t2 || !btf_type_is_func_proto(t2))
|
|
return -EFAULT;
|
|
|
|
args1 = (const struct btf_param *)(t1 + 1);
|
|
nargs1 = btf_type_vlen(t1);
|
|
args2 = (const struct btf_param *)(t2 + 1);
|
|
nargs2 = btf_type_vlen(t2);
|
|
|
|
if (nargs1 != nargs2) {
|
|
bpf_log(log, "%s() has %d args while %s() has %d args\n",
|
|
fn1, nargs1, fn2, nargs2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
|
|
if (t1->info != t2->info) {
|
|
bpf_log(log,
|
|
"Return type %s of %s() doesn't match type %s of %s()\n",
|
|
btf_type_str(t1), fn1,
|
|
btf_type_str(t2), fn2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < nargs1; i++) {
|
|
t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
|
|
|
|
if (t1->info != t2->info) {
|
|
bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
|
|
i, fn1, btf_type_str(t1),
|
|
fn2, btf_type_str(t2));
|
|
return -EINVAL;
|
|
}
|
|
if (btf_type_has_size(t1) && t1->size != t2->size) {
|
|
bpf_log(log,
|
|
"arg%d in %s() has size %d while %s() has %d\n",
|
|
i, fn1, t1->size,
|
|
fn2, t2->size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* global functions are validated with scalars and pointers
|
|
* to context only. And only global functions can be replaced.
|
|
* Hence type check only those types.
|
|
*/
|
|
if (btf_type_is_int(t1) || btf_is_any_enum(t1))
|
|
continue;
|
|
if (!btf_type_is_ptr(t1)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() has unrecognized type\n",
|
|
i, fn1);
|
|
return -EINVAL;
|
|
}
|
|
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
|
|
if (!btf_type_is_struct(t1)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() is not a pointer to context\n",
|
|
i, fn1);
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_type_is_struct(t2)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() is not a pointer to context\n",
|
|
i, fn2);
|
|
return -EINVAL;
|
|
}
|
|
/* This is an optional check to make program writing easier.
|
|
* Compare names of structs and report an error to the user.
|
|
* btf_prepare_func_args() already checked that t2 struct
|
|
* is a context type. btf_prepare_func_args() will check
|
|
* later that t1 struct is a context type as well.
|
|
*/
|
|
s1 = btf_name_by_offset(btf1, t1->name_off);
|
|
s2 = btf_name_by_offset(btf2, t2->name_off);
|
|
if (strcmp(s1, s2)) {
|
|
bpf_log(log,
|
|
"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
|
|
i, fn1, s1, fn2, s2);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compare BTFs of given program with BTF of target program */
|
|
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
|
|
struct btf *btf2, const struct btf_type *t2)
|
|
{
|
|
struct btf *btf1 = prog->aux->btf;
|
|
const struct btf_type *t1;
|
|
u32 btf_id = 0;
|
|
|
|
if (!prog->aux->func_info) {
|
|
bpf_log(log, "Program extension requires BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_id = prog->aux->func_info[0].type_id;
|
|
if (!btf_id)
|
|
return -EFAULT;
|
|
|
|
t1 = btf_type_by_id(btf1, btf_id);
|
|
if (!t1 || !btf_type_is_func(t1))
|
|
return -EFAULT;
|
|
|
|
return btf_check_func_type_match(log, btf1, t1, btf2, t2);
|
|
}
|
|
|
|
static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
|
|
#ifdef CONFIG_NET
|
|
[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
|
|
[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
|
|
[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
|
|
#endif
|
|
};
|
|
|
|
/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
|
|
static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
|
|
const struct btf *btf,
|
|
const struct btf_type *t, int rec)
|
|
{
|
|
const struct btf_type *member_type;
|
|
const struct btf_member *member;
|
|
u32 i;
|
|
|
|
if (!btf_type_is_struct(t))
|
|
return false;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_array *array;
|
|
|
|
member_type = btf_type_skip_modifiers(btf, member->type, NULL);
|
|
if (btf_type_is_struct(member_type)) {
|
|
if (rec >= 3) {
|
|
bpf_log(log, "max struct nesting depth exceeded\n");
|
|
return false;
|
|
}
|
|
if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (btf_type_is_array(member_type)) {
|
|
array = btf_type_array(member_type);
|
|
if (!array->nelems)
|
|
return false;
|
|
member_type = btf_type_skip_modifiers(btf, array->type, NULL);
|
|
if (!btf_type_is_scalar(member_type))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (!btf_type_is_scalar(member_type))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool is_kfunc_arg_mem_size(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
int len, sfx_len = sizeof("__sz") - 1;
|
|
const struct btf_type *t;
|
|
const char *param_name;
|
|
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
|
|
return false;
|
|
|
|
/* In the future, this can be ported to use BTF tagging */
|
|
param_name = btf_name_by_offset(btf, arg->name_off);
|
|
if (str_is_empty(param_name))
|
|
return false;
|
|
len = strlen(param_name);
|
|
if (len < sfx_len)
|
|
return false;
|
|
param_name += len - sfx_len;
|
|
if (strncmp(param_name, "__sz", sfx_len))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const struct bpf_reg_state *reg,
|
|
const char *name)
|
|
{
|
|
int len, target_len = strlen(name);
|
|
const struct btf_type *t;
|
|
const char *param_name;
|
|
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
|
|
return false;
|
|
|
|
param_name = btf_name_by_offset(btf, arg->name_off);
|
|
if (str_is_empty(param_name))
|
|
return false;
|
|
len = strlen(param_name);
|
|
if (len != target_len)
|
|
return false;
|
|
if (strcmp(param_name, name))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int btf_check_func_arg_match(struct bpf_verifier_env *env,
|
|
const struct btf *btf, u32 func_id,
|
|
struct bpf_reg_state *regs,
|
|
bool ptr_to_mem_ok,
|
|
struct bpf_kfunc_arg_meta *kfunc_meta,
|
|
bool processing_call)
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
|
|
bool rel = false, kptr_get = false, trusted_args = false;
|
|
bool sleepable = false;
|
|
struct bpf_verifier_log *log = &env->log;
|
|
u32 i, nargs, ref_id, ref_obj_id = 0;
|
|
bool is_kfunc = btf_is_kernel(btf);
|
|
const char *func_name, *ref_tname;
|
|
const struct btf_type *t, *ref_t;
|
|
const struct btf_param *args;
|
|
int ref_regno = 0, ret;
|
|
|
|
t = btf_type_by_id(btf, func_id);
|
|
if (!t || !btf_type_is_func(t)) {
|
|
/* These checks were already done by the verifier while loading
|
|
* struct bpf_func_info or in add_kfunc_call().
|
|
*/
|
|
bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
|
|
func_id);
|
|
return -EFAULT;
|
|
}
|
|
func_name = btf_name_by_offset(btf, t->name_off);
|
|
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!t || !btf_type_is_func_proto(t)) {
|
|
bpf_log(log, "Invalid BTF of func %s\n", func_name);
|
|
return -EFAULT;
|
|
}
|
|
args = (const struct btf_param *)(t + 1);
|
|
nargs = btf_type_vlen(t);
|
|
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
|
|
bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
|
|
MAX_BPF_FUNC_REG_ARGS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_kfunc && kfunc_meta) {
|
|
/* Only kfunc can be release func */
|
|
rel = kfunc_meta->flags & KF_RELEASE;
|
|
kptr_get = kfunc_meta->flags & KF_KPTR_GET;
|
|
trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS;
|
|
sleepable = kfunc_meta->flags & KF_SLEEPABLE;
|
|
}
|
|
|
|
/* check that BTF function arguments match actual types that the
|
|
* verifier sees.
|
|
*/
|
|
for (i = 0; i < nargs; i++) {
|
|
enum bpf_arg_type arg_type = ARG_DONTCARE;
|
|
u32 regno = i + 1;
|
|
struct bpf_reg_state *reg = ®s[regno];
|
|
bool obj_ptr = false;
|
|
|
|
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
|
|
if (btf_type_is_scalar(t)) {
|
|
if (is_kfunc && kfunc_meta) {
|
|
bool is_buf_size = false;
|
|
|
|
/* check for any const scalar parameter of name "rdonly_buf_size"
|
|
* or "rdwr_buf_size"
|
|
*/
|
|
if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
|
|
"rdonly_buf_size")) {
|
|
kfunc_meta->r0_rdonly = true;
|
|
is_buf_size = true;
|
|
} else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
|
|
"rdwr_buf_size"))
|
|
is_buf_size = true;
|
|
|
|
if (is_buf_size) {
|
|
if (kfunc_meta->r0_size) {
|
|
bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
bpf_log(log, "R%d is not a const\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kfunc_meta->r0_size = reg->var_off.value;
|
|
ret = mark_chain_precision(env, regno);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (reg->type == SCALAR_VALUE)
|
|
continue;
|
|
bpf_log(log, "R%d is not a scalar\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!btf_type_is_ptr(t)) {
|
|
bpf_log(log, "Unrecognized arg#%d type %s\n",
|
|
i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* These register types have special constraints wrt ref_obj_id
|
|
* and offset checks. The rest of trusted args don't.
|
|
*/
|
|
obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID ||
|
|
reg2btf_ids[base_type(reg->type)];
|
|
|
|
/* Check if argument must be a referenced pointer, args + i has
|
|
* been verified to be a pointer (after skipping modifiers).
|
|
* PTR_TO_CTX is ok without having non-zero ref_obj_id.
|
|
*/
|
|
if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) {
|
|
bpf_log(log, "R%d must be referenced\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
|
|
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
|
|
|
|
/* Trusted args have the same offset checks as release arguments */
|
|
if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id))
|
|
arg_type |= OBJ_RELEASE;
|
|
ret = check_func_arg_reg_off(env, reg, regno, arg_type);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (is_kfunc && reg->ref_obj_id) {
|
|
/* Ensure only one argument is referenced PTR_TO_BTF_ID */
|
|
if (ref_obj_id) {
|
|
bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
|
|
regno, reg->ref_obj_id, ref_obj_id);
|
|
return -EFAULT;
|
|
}
|
|
ref_regno = regno;
|
|
ref_obj_id = reg->ref_obj_id;
|
|
}
|
|
|
|
/* kptr_get is only true for kfunc */
|
|
if (i == 0 && kptr_get) {
|
|
struct bpf_map_value_off_desc *off_desc;
|
|
|
|
if (reg->type != PTR_TO_MAP_VALUE) {
|
|
bpf_log(log, "arg#0 expected pointer to map value\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check_func_arg_reg_off allows var_off for
|
|
* PTR_TO_MAP_VALUE, but we need fixed offset to find
|
|
* off_desc.
|
|
*/
|
|
if (!tnum_is_const(reg->var_off)) {
|
|
bpf_log(log, "arg#0 must have constant offset\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
|
|
if (!off_desc || off_desc->type != BPF_KPTR_REF) {
|
|
bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
|
|
reg->off + reg->var_off.value);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!btf_type_is_ptr(ref_t)) {
|
|
bpf_log(log, "arg#0 BTF type must be a double pointer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
|
|
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
|
|
|
|
if (!btf_type_is_struct(ref_t)) {
|
|
bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
|
|
func_name, i, btf_type_str(ref_t), ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
|
|
off_desc->kptr.btf_id, true)) {
|
|
bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
|
|
func_name, i, btf_type_str(ref_t), ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
/* rest of the arguments can be anything, like normal kfunc */
|
|
} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
|
|
/* If function expects ctx type in BTF check that caller
|
|
* is passing PTR_TO_CTX.
|
|
*/
|
|
if (reg->type != PTR_TO_CTX) {
|
|
bpf_log(log,
|
|
"arg#%d expected pointer to ctx, but got %s\n",
|
|
i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
|
|
(reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
|
|
const struct btf_type *reg_ref_t;
|
|
const struct btf *reg_btf;
|
|
const char *reg_ref_tname;
|
|
u32 reg_ref_id;
|
|
|
|
if (!btf_type_is_struct(ref_t)) {
|
|
bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
|
|
func_name, i, btf_type_str(ref_t),
|
|
ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reg->type == PTR_TO_BTF_ID) {
|
|
reg_btf = reg->btf;
|
|
reg_ref_id = reg->btf_id;
|
|
} else {
|
|
reg_btf = btf_vmlinux;
|
|
reg_ref_id = *reg2btf_ids[base_type(reg->type)];
|
|
}
|
|
|
|
reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
|
|
®_ref_id);
|
|
reg_ref_tname = btf_name_by_offset(reg_btf,
|
|
reg_ref_t->name_off);
|
|
if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
|
|
reg->off, btf, ref_id,
|
|
trusted_args || (rel && reg->ref_obj_id))) {
|
|
bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
|
|
func_name, i,
|
|
btf_type_str(ref_t), ref_tname,
|
|
regno, btf_type_str(reg_ref_t),
|
|
reg_ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
} else if (ptr_to_mem_ok && processing_call) {
|
|
const struct btf_type *resolve_ret;
|
|
u32 type_size;
|
|
|
|
if (is_kfunc) {
|
|
bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], ®s[regno + 1]);
|
|
bool arg_dynptr = btf_type_is_struct(ref_t) &&
|
|
!strcmp(ref_tname,
|
|
stringify_struct(bpf_dynptr_kern));
|
|
|
|
/* Permit pointer to mem, but only when argument
|
|
* type is pointer to scalar, or struct composed
|
|
* (recursively) of scalars.
|
|
* When arg_mem_size is true, the pointer can be
|
|
* void *.
|
|
* Also permit initialized local dynamic pointers.
|
|
*/
|
|
if (!btf_type_is_scalar(ref_t) &&
|
|
!__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
|
|
!arg_dynptr &&
|
|
(arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
|
|
bpf_log(log,
|
|
"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
|
|
i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (arg_dynptr) {
|
|
if (reg->type != PTR_TO_STACK) {
|
|
bpf_log(log, "arg#%d pointer type %s %s not to stack\n",
|
|
i, btf_type_str(ref_t),
|
|
ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_dynptr_reg_valid_init(env, reg)) {
|
|
bpf_log(log,
|
|
"arg#%d pointer type %s %s must be valid and initialized\n",
|
|
i, btf_type_str(ref_t),
|
|
ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_dynptr_type_expected(env, reg,
|
|
ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
|
|
bpf_log(log,
|
|
"arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
|
|
i, btf_type_str(ref_t),
|
|
ref_tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Check for mem, len pair */
|
|
if (arg_mem_size) {
|
|
if (check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1)) {
|
|
bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
|
|
i, i + 1);
|
|
return -EINVAL;
|
|
}
|
|
i++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
|
|
if (IS_ERR(resolve_ret)) {
|
|
bpf_log(log,
|
|
"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
|
|
i, btf_type_str(ref_t), ref_tname,
|
|
PTR_ERR(resolve_ret));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (check_mem_reg(env, reg, regno, type_size))
|
|
return -EINVAL;
|
|
} else {
|
|
bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
|
|
is_kfunc ? "kernel " : "", func_name, func_id);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Either both are set, or neither */
|
|
WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
|
|
/* We already made sure ref_obj_id is set only for one argument. We do
|
|
* allow (!rel && ref_obj_id), so that passing such referenced
|
|
* PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
|
|
* is_kfunc is true.
|
|
*/
|
|
if (rel && !ref_obj_id) {
|
|
bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
|
|
func_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sleepable && !env->prog->aux->sleepable) {
|
|
bpf_log(log, "kernel function %s is sleepable but the program is not\n",
|
|
func_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (kfunc_meta && ref_obj_id)
|
|
kfunc_meta->ref_obj_id = ref_obj_id;
|
|
|
|
/* returns argument register number > 0 in case of reference release kfunc */
|
|
return rel ? ref_regno : 0;
|
|
}
|
|
|
|
/* Compare BTF of a function declaration with given bpf_reg_state.
|
|
* Returns:
|
|
* EFAULT - there is a verifier bug. Abort verification.
|
|
* EINVAL - there is a type mismatch or BTF is not available.
|
|
* 0 - BTF matches with what bpf_reg_state expects.
|
|
* Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
|
|
*/
|
|
int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
struct btf *btf = prog->aux->btf;
|
|
bool is_global;
|
|
u32 btf_id;
|
|
int err;
|
|
|
|
if (!prog->aux->func_info)
|
|
return -EINVAL;
|
|
|
|
btf_id = prog->aux->func_info[subprog].type_id;
|
|
if (!btf_id)
|
|
return -EFAULT;
|
|
|
|
if (prog->aux->func_info_aux[subprog].unreliable)
|
|
return -EINVAL;
|
|
|
|
is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
|
|
err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
|
|
|
|
/* Compiler optimizations can remove arguments from static functions
|
|
* or mismatched type can be passed into a global function.
|
|
* In such cases mark the function as unreliable from BTF point of view.
|
|
*/
|
|
if (err)
|
|
prog->aux->func_info_aux[subprog].unreliable = true;
|
|
return err;
|
|
}
|
|
|
|
/* Compare BTF of a function call with given bpf_reg_state.
|
|
* Returns:
|
|
* EFAULT - there is a verifier bug. Abort verification.
|
|
* EINVAL - there is a type mismatch or BTF is not available.
|
|
* 0 - BTF matches with what bpf_reg_state expects.
|
|
* Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
|
|
*
|
|
* NOTE: the code is duplicated from btf_check_subprog_arg_match()
|
|
* because btf_check_func_arg_match() is still doing both. Once that
|
|
* function is split in 2, we can call from here btf_check_subprog_arg_match()
|
|
* first, and then treat the calling part in a new code path.
|
|
*/
|
|
int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
struct bpf_prog *prog = env->prog;
|
|
struct btf *btf = prog->aux->btf;
|
|
bool is_global;
|
|
u32 btf_id;
|
|
int err;
|
|
|
|
if (!prog->aux->func_info)
|
|
return -EINVAL;
|
|
|
|
btf_id = prog->aux->func_info[subprog].type_id;
|
|
if (!btf_id)
|
|
return -EFAULT;
|
|
|
|
if (prog->aux->func_info_aux[subprog].unreliable)
|
|
return -EINVAL;
|
|
|
|
is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
|
|
err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
|
|
|
|
/* Compiler optimizations can remove arguments from static functions
|
|
* or mismatched type can be passed into a global function.
|
|
* In such cases mark the function as unreliable from BTF point of view.
|
|
*/
|
|
if (err)
|
|
prog->aux->func_info_aux[subprog].unreliable = true;
|
|
return err;
|
|
}
|
|
|
|
int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
|
|
const struct btf *btf, u32 func_id,
|
|
struct bpf_reg_state *regs,
|
|
struct bpf_kfunc_arg_meta *meta)
|
|
{
|
|
return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
|
|
}
|
|
|
|
/* Convert BTF of a function into bpf_reg_state if possible
|
|
* Returns:
|
|
* EFAULT - there is a verifier bug. Abort verification.
|
|
* EINVAL - cannot convert BTF.
|
|
* 0 - Successfully converted BTF into bpf_reg_state
|
|
* (either PTR_TO_CTX or SCALAR_VALUE).
|
|
*/
|
|
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
|
|
struct bpf_reg_state *regs)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct bpf_prog *prog = env->prog;
|
|
enum bpf_prog_type prog_type = prog->type;
|
|
struct btf *btf = prog->aux->btf;
|
|
const struct btf_param *args;
|
|
const struct btf_type *t, *ref_t;
|
|
u32 i, nargs, btf_id;
|
|
const char *tname;
|
|
|
|
if (!prog->aux->func_info ||
|
|
prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
|
|
bpf_log(log, "Verifier bug\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
btf_id = prog->aux->func_info[subprog].type_id;
|
|
if (!btf_id) {
|
|
bpf_log(log, "Global functions need valid BTF\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
t = btf_type_by_id(btf, btf_id);
|
|
if (!t || !btf_type_is_func(t)) {
|
|
/* These checks were already done by the verifier while loading
|
|
* struct bpf_func_info
|
|
*/
|
|
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
|
|
subprog);
|
|
return -EFAULT;
|
|
}
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
|
|
if (log->level & BPF_LOG_LEVEL)
|
|
bpf_log(log, "Validating %s() func#%d...\n",
|
|
tname, subprog);
|
|
|
|
if (prog->aux->func_info_aux[subprog].unreliable) {
|
|
bpf_log(log, "Verifier bug in function %s()\n", tname);
|
|
return -EFAULT;
|
|
}
|
|
if (prog_type == BPF_PROG_TYPE_EXT)
|
|
prog_type = prog->aux->dst_prog->type;
|
|
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!t || !btf_type_is_func_proto(t)) {
|
|
bpf_log(log, "Invalid type of function %s()\n", tname);
|
|
return -EFAULT;
|
|
}
|
|
args = (const struct btf_param *)(t + 1);
|
|
nargs = btf_type_vlen(t);
|
|
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
|
|
bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
|
|
tname, nargs, MAX_BPF_FUNC_REG_ARGS);
|
|
return -EINVAL;
|
|
}
|
|
/* check that function returns int */
|
|
t = btf_type_by_id(btf, t->type);
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
|
|
bpf_log(log,
|
|
"Global function %s() doesn't return scalar. Only those are supported.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
/* Convert BTF function arguments into verifier types.
|
|
* Only PTR_TO_CTX and SCALAR are supported atm.
|
|
*/
|
|
for (i = 0; i < nargs; i++) {
|
|
struct bpf_reg_state *reg = ®s[i + 1];
|
|
|
|
t = btf_type_by_id(btf, args[i].type);
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (btf_type_is_int(t) || btf_is_any_enum(t)) {
|
|
reg->type = SCALAR_VALUE;
|
|
continue;
|
|
}
|
|
if (btf_type_is_ptr(t)) {
|
|
if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
|
|
reg->type = PTR_TO_CTX;
|
|
continue;
|
|
}
|
|
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
|
|
ref_t = btf_resolve_size(btf, t, ®->mem_size);
|
|
if (IS_ERR(ref_t)) {
|
|
bpf_log(log,
|
|
"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
|
|
i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
|
|
PTR_ERR(ref_t));
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
|
|
reg->id = ++env->id_gen;
|
|
|
|
continue;
|
|
}
|
|
bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
|
|
i, btf_type_str(t), tname);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, type_id);
|
|
|
|
show->btf = btf;
|
|
memset(&show->state, 0, sizeof(show->state));
|
|
memset(&show->obj, 0, sizeof(show->obj));
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
|
|
}
|
|
|
|
static void btf_seq_show(struct btf_show *show, const char *fmt,
|
|
va_list args)
|
|
{
|
|
seq_vprintf((struct seq_file *)show->target, fmt, args);
|
|
}
|
|
|
|
int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
|
|
void *obj, struct seq_file *m, u64 flags)
|
|
{
|
|
struct btf_show sseq;
|
|
|
|
sseq.target = m;
|
|
sseq.showfn = btf_seq_show;
|
|
sseq.flags = flags;
|
|
|
|
btf_type_show(btf, type_id, obj, &sseq);
|
|
|
|
return sseq.state.status;
|
|
}
|
|
|
|
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
|
|
struct seq_file *m)
|
|
{
|
|
(void) btf_type_seq_show_flags(btf, type_id, obj, m,
|
|
BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
|
|
BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
|
|
}
|
|
|
|
struct btf_show_snprintf {
|
|
struct btf_show show;
|
|
int len_left; /* space left in string */
|
|
int len; /* length we would have written */
|
|
};
|
|
|
|
static void btf_snprintf_show(struct btf_show *show, const char *fmt,
|
|
va_list args)
|
|
{
|
|
struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
|
|
int len;
|
|
|
|
len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
|
|
|
|
if (len < 0) {
|
|
ssnprintf->len_left = 0;
|
|
ssnprintf->len = len;
|
|
} else if (len >= ssnprintf->len_left) {
|
|
/* no space, drive on to get length we would have written */
|
|
ssnprintf->len_left = 0;
|
|
ssnprintf->len += len;
|
|
} else {
|
|
ssnprintf->len_left -= len;
|
|
ssnprintf->len += len;
|
|
show->target += len;
|
|
}
|
|
}
|
|
|
|
int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
|
|
char *buf, int len, u64 flags)
|
|
{
|
|
struct btf_show_snprintf ssnprintf;
|
|
|
|
ssnprintf.show.target = buf;
|
|
ssnprintf.show.flags = flags;
|
|
ssnprintf.show.showfn = btf_snprintf_show;
|
|
ssnprintf.len_left = len;
|
|
ssnprintf.len = 0;
|
|
|
|
btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
|
|
|
|
/* If we encountered an error, return it. */
|
|
if (ssnprintf.show.state.status)
|
|
return ssnprintf.show.state.status;
|
|
|
|
/* Otherwise return length we would have written */
|
|
return ssnprintf.len;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
|
|
{
|
|
const struct btf *btf = filp->private_data;
|
|
|
|
seq_printf(m, "btf_id:\t%u\n", btf->id);
|
|
}
|
|
#endif
|
|
|
|
static int btf_release(struct inode *inode, struct file *filp)
|
|
{
|
|
btf_put(filp->private_data);
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations btf_fops = {
|
|
#ifdef CONFIG_PROC_FS
|
|
.show_fdinfo = bpf_btf_show_fdinfo,
|
|
#endif
|
|
.release = btf_release,
|
|
};
|
|
|
|
static int __btf_new_fd(struct btf *btf)
|
|
{
|
|
return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
|
|
}
|
|
|
|
int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
|
|
{
|
|
struct btf *btf;
|
|
int ret;
|
|
|
|
btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
|
|
attr->btf_size, attr->btf_log_level,
|
|
u64_to_user_ptr(attr->btf_log_buf),
|
|
attr->btf_log_size);
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
ret = btf_alloc_id(btf);
|
|
if (ret) {
|
|
btf_free(btf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The BTF ID is published to the userspace.
|
|
* All BTF free must go through call_rcu() from
|
|
* now on (i.e. free by calling btf_put()).
|
|
*/
|
|
|
|
ret = __btf_new_fd(btf);
|
|
if (ret < 0)
|
|
btf_put(btf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btf *btf_get_by_fd(int fd)
|
|
{
|
|
struct btf *btf;
|
|
struct fd f;
|
|
|
|
f = fdget(fd);
|
|
|
|
if (!f.file)
|
|
return ERR_PTR(-EBADF);
|
|
|
|
if (f.file->f_op != &btf_fops) {
|
|
fdput(f);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
btf = f.file->private_data;
|
|
refcount_inc(&btf->refcnt);
|
|
fdput(f);
|
|
|
|
return btf;
|
|
}
|
|
|
|
int btf_get_info_by_fd(const struct btf *btf,
|
|
const union bpf_attr *attr,
|
|
union bpf_attr __user *uattr)
|
|
{
|
|
struct bpf_btf_info __user *uinfo;
|
|
struct bpf_btf_info info;
|
|
u32 info_copy, btf_copy;
|
|
void __user *ubtf;
|
|
char __user *uname;
|
|
u32 uinfo_len, uname_len, name_len;
|
|
int ret = 0;
|
|
|
|
uinfo = u64_to_user_ptr(attr->info.info);
|
|
uinfo_len = attr->info.info_len;
|
|
|
|
info_copy = min_t(u32, uinfo_len, sizeof(info));
|
|
memset(&info, 0, sizeof(info));
|
|
if (copy_from_user(&info, uinfo, info_copy))
|
|
return -EFAULT;
|
|
|
|
info.id = btf->id;
|
|
ubtf = u64_to_user_ptr(info.btf);
|
|
btf_copy = min_t(u32, btf->data_size, info.btf_size);
|
|
if (copy_to_user(ubtf, btf->data, btf_copy))
|
|
return -EFAULT;
|
|
info.btf_size = btf->data_size;
|
|
|
|
info.kernel_btf = btf->kernel_btf;
|
|
|
|
uname = u64_to_user_ptr(info.name);
|
|
uname_len = info.name_len;
|
|
if (!uname ^ !uname_len)
|
|
return -EINVAL;
|
|
|
|
name_len = strlen(btf->name);
|
|
info.name_len = name_len;
|
|
|
|
if (uname) {
|
|
if (uname_len >= name_len + 1) {
|
|
if (copy_to_user(uname, btf->name, name_len + 1))
|
|
return -EFAULT;
|
|
} else {
|
|
char zero = '\0';
|
|
|
|
if (copy_to_user(uname, btf->name, uname_len - 1))
|
|
return -EFAULT;
|
|
if (put_user(zero, uname + uname_len - 1))
|
|
return -EFAULT;
|
|
/* let user-space know about too short buffer */
|
|
ret = -ENOSPC;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(uinfo, &info, info_copy) ||
|
|
put_user(info_copy, &uattr->info.info_len))
|
|
return -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btf_get_fd_by_id(u32 id)
|
|
{
|
|
struct btf *btf;
|
|
int fd;
|
|
|
|
rcu_read_lock();
|
|
btf = idr_find(&btf_idr, id);
|
|
if (!btf || !refcount_inc_not_zero(&btf->refcnt))
|
|
btf = ERR_PTR(-ENOENT);
|
|
rcu_read_unlock();
|
|
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
fd = __btf_new_fd(btf);
|
|
if (fd < 0)
|
|
btf_put(btf);
|
|
|
|
return fd;
|
|
}
|
|
|
|
u32 btf_obj_id(const struct btf *btf)
|
|
{
|
|
return btf->id;
|
|
}
|
|
|
|
bool btf_is_kernel(const struct btf *btf)
|
|
{
|
|
return btf->kernel_btf;
|
|
}
|
|
|
|
bool btf_is_module(const struct btf *btf)
|
|
{
|
|
return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
|
|
}
|
|
|
|
static int btf_id_cmp_func(const void *a, const void *b)
|
|
{
|
|
const int *pa = a, *pb = b;
|
|
|
|
return *pa - *pb;
|
|
}
|
|
|
|
bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
|
|
{
|
|
return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
|
|
}
|
|
|
|
static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
|
|
{
|
|
return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
|
|
}
|
|
|
|
enum {
|
|
BTF_MODULE_F_LIVE = (1 << 0),
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module {
|
|
struct list_head list;
|
|
struct module *module;
|
|
struct btf *btf;
|
|
struct bin_attribute *sysfs_attr;
|
|
int flags;
|
|
};
|
|
|
|
static LIST_HEAD(btf_modules);
|
|
static DEFINE_MUTEX(btf_module_mutex);
|
|
|
|
static ssize_t
|
|
btf_module_read(struct file *file, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t len)
|
|
{
|
|
const struct btf *btf = bin_attr->private;
|
|
|
|
memcpy(buf, btf->data + off, len);
|
|
return len;
|
|
}
|
|
|
|
static void purge_cand_cache(struct btf *btf);
|
|
|
|
static int btf_module_notify(struct notifier_block *nb, unsigned long op,
|
|
void *module)
|
|
{
|
|
struct btf_module *btf_mod, *tmp;
|
|
struct module *mod = module;
|
|
struct btf *btf;
|
|
int err = 0;
|
|
|
|
if (mod->btf_data_size == 0 ||
|
|
(op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
|
|
op != MODULE_STATE_GOING))
|
|
goto out;
|
|
|
|
switch (op) {
|
|
case MODULE_STATE_COMING:
|
|
btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
|
|
if (!btf_mod) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
|
|
if (IS_ERR(btf)) {
|
|
pr_warn("failed to validate module [%s] BTF: %ld\n",
|
|
mod->name, PTR_ERR(btf));
|
|
kfree(btf_mod);
|
|
if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
|
|
err = PTR_ERR(btf);
|
|
goto out;
|
|
}
|
|
err = btf_alloc_id(btf);
|
|
if (err) {
|
|
btf_free(btf);
|
|
kfree(btf_mod);
|
|
goto out;
|
|
}
|
|
|
|
purge_cand_cache(NULL);
|
|
mutex_lock(&btf_module_mutex);
|
|
btf_mod->module = module;
|
|
btf_mod->btf = btf;
|
|
list_add(&btf_mod->list, &btf_modules);
|
|
mutex_unlock(&btf_module_mutex);
|
|
|
|
if (IS_ENABLED(CONFIG_SYSFS)) {
|
|
struct bin_attribute *attr;
|
|
|
|
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
|
|
if (!attr)
|
|
goto out;
|
|
|
|
sysfs_bin_attr_init(attr);
|
|
attr->attr.name = btf->name;
|
|
attr->attr.mode = 0444;
|
|
attr->size = btf->data_size;
|
|
attr->private = btf;
|
|
attr->read = btf_module_read;
|
|
|
|
err = sysfs_create_bin_file(btf_kobj, attr);
|
|
if (err) {
|
|
pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
|
|
mod->name, err);
|
|
kfree(attr);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
btf_mod->sysfs_attr = attr;
|
|
}
|
|
|
|
break;
|
|
case MODULE_STATE_LIVE:
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
btf_mod->flags |= BTF_MODULE_F_LIVE;
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
list_del(&btf_mod->list);
|
|
if (btf_mod->sysfs_attr)
|
|
sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
|
|
purge_cand_cache(btf_mod->btf);
|
|
btf_put(btf_mod->btf);
|
|
kfree(btf_mod->sysfs_attr);
|
|
kfree(btf_mod);
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
break;
|
|
}
|
|
out:
|
|
return notifier_from_errno(err);
|
|
}
|
|
|
|
static struct notifier_block btf_module_nb = {
|
|
.notifier_call = btf_module_notify,
|
|
};
|
|
|
|
static int __init btf_module_init(void)
|
|
{
|
|
register_module_notifier(&btf_module_nb);
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(btf_module_init);
|
|
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
|
|
|
|
struct module *btf_try_get_module(const struct btf *btf)
|
|
{
|
|
struct module *res = NULL;
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module *btf_mod, *tmp;
|
|
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->btf != btf)
|
|
continue;
|
|
|
|
/* We must only consider module whose __init routine has
|
|
* finished, hence we must check for BTF_MODULE_F_LIVE flag,
|
|
* which is set from the notifier callback for
|
|
* MODULE_STATE_LIVE.
|
|
*/
|
|
if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
|
|
res = btf_mod->module;
|
|
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns struct btf corresponding to the struct module.
|
|
* This function can return NULL or ERR_PTR.
|
|
*/
|
|
static struct btf *btf_get_module_btf(const struct module *module)
|
|
{
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module *btf_mod, *tmp;
|
|
#endif
|
|
struct btf *btf = NULL;
|
|
|
|
if (!module) {
|
|
btf = bpf_get_btf_vmlinux();
|
|
if (!IS_ERR_OR_NULL(btf))
|
|
btf_get(btf);
|
|
return btf;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
btf_get(btf_mod->btf);
|
|
btf = btf_mod->btf;
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
#endif
|
|
|
|
return btf;
|
|
}
|
|
|
|
BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
|
|
{
|
|
struct btf *btf = NULL;
|
|
int btf_obj_fd = 0;
|
|
long ret;
|
|
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
if (name_sz <= 1 || name[name_sz - 1])
|
|
return -EINVAL;
|
|
|
|
ret = bpf_find_btf_id(name, kind, &btf);
|
|
if (ret > 0 && btf_is_module(btf)) {
|
|
btf_obj_fd = __btf_new_fd(btf);
|
|
if (btf_obj_fd < 0) {
|
|
btf_put(btf);
|
|
return btf_obj_fd;
|
|
}
|
|
return ret | (((u64)btf_obj_fd) << 32);
|
|
}
|
|
if (ret > 0)
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
|
|
.func = bpf_btf_find_by_name_kind,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
|
|
#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
|
|
BTF_TRACING_TYPE_xxx
|
|
#undef BTF_TRACING_TYPE
|
|
|
|
/* Kernel Function (kfunc) BTF ID set registration API */
|
|
|
|
static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
|
|
struct btf_id_set8 *add_set)
|
|
{
|
|
bool vmlinux_set = !btf_is_module(btf);
|
|
struct btf_kfunc_set_tab *tab;
|
|
struct btf_id_set8 *set;
|
|
u32 set_cnt;
|
|
int ret;
|
|
|
|
if (hook >= BTF_KFUNC_HOOK_MAX) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
if (!add_set->cnt)
|
|
return 0;
|
|
|
|
tab = btf->kfunc_set_tab;
|
|
if (!tab) {
|
|
tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!tab)
|
|
return -ENOMEM;
|
|
btf->kfunc_set_tab = tab;
|
|
}
|
|
|
|
set = tab->sets[hook];
|
|
/* Warn when register_btf_kfunc_id_set is called twice for the same hook
|
|
* for module sets.
|
|
*/
|
|
if (WARN_ON_ONCE(set && !vmlinux_set)) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
/* We don't need to allocate, concatenate, and sort module sets, because
|
|
* only one is allowed per hook. Hence, we can directly assign the
|
|
* pointer and return.
|
|
*/
|
|
if (!vmlinux_set) {
|
|
tab->sets[hook] = add_set;
|
|
return 0;
|
|
}
|
|
|
|
/* In case of vmlinux sets, there may be more than one set being
|
|
* registered per hook. To create a unified set, we allocate a new set
|
|
* and concatenate all individual sets being registered. While each set
|
|
* is individually sorted, they may become unsorted when concatenated,
|
|
* hence re-sorting the final set again is required to make binary
|
|
* searching the set using btf_id_set8_contains function work.
|
|
*/
|
|
set_cnt = set ? set->cnt : 0;
|
|
|
|
if (set_cnt > U32_MAX - add_set->cnt) {
|
|
ret = -EOVERFLOW;
|
|
goto end;
|
|
}
|
|
|
|
if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
/* Grow set */
|
|
set = krealloc(tab->sets[hook],
|
|
offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!set) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
/* For newly allocated set, initialize set->cnt to 0 */
|
|
if (!tab->sets[hook])
|
|
set->cnt = 0;
|
|
tab->sets[hook] = set;
|
|
|
|
/* Concatenate the two sets */
|
|
memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
|
|
set->cnt += add_set->cnt;
|
|
|
|
sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
|
|
|
|
return 0;
|
|
end:
|
|
btf_free_kfunc_set_tab(btf);
|
|
return ret;
|
|
}
|
|
|
|
static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
|
|
enum btf_kfunc_hook hook,
|
|
u32 kfunc_btf_id)
|
|
{
|
|
struct btf_id_set8 *set;
|
|
u32 *id;
|
|
|
|
if (hook >= BTF_KFUNC_HOOK_MAX)
|
|
return NULL;
|
|
if (!btf->kfunc_set_tab)
|
|
return NULL;
|
|
set = btf->kfunc_set_tab->sets[hook];
|
|
if (!set)
|
|
return NULL;
|
|
id = btf_id_set8_contains(set, kfunc_btf_id);
|
|
if (!id)
|
|
return NULL;
|
|
/* The flags for BTF ID are located next to it */
|
|
return id + 1;
|
|
}
|
|
|
|
static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
|
|
{
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_XDP:
|
|
return BTF_KFUNC_HOOK_XDP;
|
|
case BPF_PROG_TYPE_SCHED_CLS:
|
|
return BTF_KFUNC_HOOK_TC;
|
|
case BPF_PROG_TYPE_STRUCT_OPS:
|
|
return BTF_KFUNC_HOOK_STRUCT_OPS;
|
|
case BPF_PROG_TYPE_TRACING:
|
|
case BPF_PROG_TYPE_LSM:
|
|
return BTF_KFUNC_HOOK_TRACING;
|
|
case BPF_PROG_TYPE_SYSCALL:
|
|
return BTF_KFUNC_HOOK_SYSCALL;
|
|
default:
|
|
return BTF_KFUNC_HOOK_MAX;
|
|
}
|
|
}
|
|
|
|
/* Caution:
|
|
* Reference to the module (obtained using btf_try_get_module) corresponding to
|
|
* the struct btf *MUST* be held when calling this function from verifier
|
|
* context. This is usually true as we stash references in prog's kfunc_btf_tab;
|
|
* keeping the reference for the duration of the call provides the necessary
|
|
* protection for looking up a well-formed btf->kfunc_set_tab.
|
|
*/
|
|
u32 *btf_kfunc_id_set_contains(const struct btf *btf,
|
|
enum bpf_prog_type prog_type,
|
|
u32 kfunc_btf_id)
|
|
{
|
|
enum btf_kfunc_hook hook;
|
|
|
|
hook = bpf_prog_type_to_kfunc_hook(prog_type);
|
|
return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
|
|
}
|
|
|
|
/* This function must be invoked only from initcalls/module init functions */
|
|
int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
|
|
const struct btf_kfunc_id_set *kset)
|
|
{
|
|
enum btf_kfunc_hook hook;
|
|
struct btf *btf;
|
|
int ret;
|
|
|
|
btf = btf_get_module_btf(kset->owner);
|
|
if (!btf) {
|
|
if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
|
|
pr_err("missing vmlinux BTF, cannot register kfuncs\n");
|
|
return -ENOENT;
|
|
}
|
|
if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
|
|
pr_warn("missing module BTF, cannot register kfuncs\n");
|
|
return 0;
|
|
}
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
hook = bpf_prog_type_to_kfunc_hook(prog_type);
|
|
ret = btf_populate_kfunc_set(btf, hook, kset->set);
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
|
|
|
|
s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
|
|
struct btf_id_dtor_kfunc *dtor;
|
|
|
|
if (!tab)
|
|
return -ENOENT;
|
|
/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
|
|
* to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
|
|
dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
|
|
if (!dtor)
|
|
return -ENOENT;
|
|
return dtor->kfunc_btf_id;
|
|
}
|
|
|
|
static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
|
|
{
|
|
const struct btf_type *dtor_func, *dtor_func_proto, *t;
|
|
const struct btf_param *args;
|
|
s32 dtor_btf_id;
|
|
u32 nr_args, i;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
dtor_btf_id = dtors[i].kfunc_btf_id;
|
|
|
|
dtor_func = btf_type_by_id(btf, dtor_btf_id);
|
|
if (!dtor_func || !btf_type_is_func(dtor_func))
|
|
return -EINVAL;
|
|
|
|
dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
|
|
if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
|
|
return -EINVAL;
|
|
|
|
/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
|
|
t = btf_type_by_id(btf, dtor_func_proto->type);
|
|
if (!t || !btf_type_is_void(t))
|
|
return -EINVAL;
|
|
|
|
nr_args = btf_type_vlen(dtor_func_proto);
|
|
if (nr_args != 1)
|
|
return -EINVAL;
|
|
args = btf_params(dtor_func_proto);
|
|
t = btf_type_by_id(btf, args[0].type);
|
|
/* Allow any pointer type, as width on targets Linux supports
|
|
* will be same for all pointer types (i.e. sizeof(void *))
|
|
*/
|
|
if (!t || !btf_type_is_ptr(t))
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function must be invoked only from initcalls/module init functions */
|
|
int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
|
|
struct module *owner)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab;
|
|
struct btf *btf;
|
|
u32 tab_cnt;
|
|
int ret;
|
|
|
|
btf = btf_get_module_btf(owner);
|
|
if (!btf) {
|
|
if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
|
|
pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
|
|
return -ENOENT;
|
|
}
|
|
if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
|
|
pr_err("missing module BTF, cannot register dtor kfuncs\n");
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
|
|
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
/* Ensure that the prototype of dtor kfuncs being registered is sane */
|
|
ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
|
|
if (ret < 0)
|
|
goto end;
|
|
|
|
tab = btf->dtor_kfunc_tab;
|
|
/* Only one call allowed for modules */
|
|
if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
tab_cnt = tab ? tab->cnt : 0;
|
|
if (tab_cnt > U32_MAX - add_cnt) {
|
|
ret = -EOVERFLOW;
|
|
goto end;
|
|
}
|
|
if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
|
|
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
tab = krealloc(btf->dtor_kfunc_tab,
|
|
offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!tab) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
if (!btf->dtor_kfunc_tab)
|
|
tab->cnt = 0;
|
|
btf->dtor_kfunc_tab = tab;
|
|
|
|
memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
|
|
tab->cnt += add_cnt;
|
|
|
|
sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
|
|
|
|
end:
|
|
if (ret)
|
|
btf_free_dtor_kfunc_tab(btf);
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
|
|
|
|
#define MAX_TYPES_ARE_COMPAT_DEPTH 2
|
|
|
|
/* Check local and target types for compatibility. This check is used for
|
|
* type-based CO-RE relocations and follow slightly different rules than
|
|
* field-based relocations. This function assumes that root types were already
|
|
* checked for name match. Beyond that initial root-level name check, names
|
|
* are completely ignored. Compatibility rules are as follows:
|
|
* - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
|
|
* kind should match for local and target types (i.e., STRUCT is not
|
|
* compatible with UNION);
|
|
* - for ENUMs/ENUM64s, the size is ignored;
|
|
* - for INT, size and signedness are ignored;
|
|
* - for ARRAY, dimensionality is ignored, element types are checked for
|
|
* compatibility recursively;
|
|
* - CONST/VOLATILE/RESTRICT modifiers are ignored;
|
|
* - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
|
|
* - FUNC_PROTOs are compatible if they have compatible signature: same
|
|
* number of input args and compatible return and argument types.
|
|
* These rules are not set in stone and probably will be adjusted as we get
|
|
* more experience with using BPF CO-RE relocations.
|
|
*/
|
|
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
|
|
const struct btf *targ_btf, __u32 targ_id)
|
|
{
|
|
return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
|
|
MAX_TYPES_ARE_COMPAT_DEPTH);
|
|
}
|
|
|
|
#define MAX_TYPES_MATCH_DEPTH 2
|
|
|
|
int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
|
|
const struct btf *targ_btf, u32 targ_id)
|
|
{
|
|
return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
|
|
MAX_TYPES_MATCH_DEPTH);
|
|
}
|
|
|
|
static bool bpf_core_is_flavor_sep(const char *s)
|
|
{
|
|
/* check X___Y name pattern, where X and Y are not underscores */
|
|
return s[0] != '_' && /* X */
|
|
s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
|
|
s[4] != '_'; /* Y */
|
|
}
|
|
|
|
size_t bpf_core_essential_name_len(const char *name)
|
|
{
|
|
size_t n = strlen(name);
|
|
int i;
|
|
|
|
for (i = n - 5; i >= 0; i--) {
|
|
if (bpf_core_is_flavor_sep(name + i))
|
|
return i + 1;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
struct bpf_cand_cache {
|
|
const char *name;
|
|
u32 name_len;
|
|
u16 kind;
|
|
u16 cnt;
|
|
struct {
|
|
const struct btf *btf;
|
|
u32 id;
|
|
} cands[];
|
|
};
|
|
|
|
static void bpf_free_cands(struct bpf_cand_cache *cands)
|
|
{
|
|
if (!cands->cnt)
|
|
/* empty candidate array was allocated on stack */
|
|
return;
|
|
kfree(cands);
|
|
}
|
|
|
|
static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
|
|
{
|
|
kfree(cands->name);
|
|
kfree(cands);
|
|
}
|
|
|
|
#define VMLINUX_CAND_CACHE_SIZE 31
|
|
static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
|
|
|
|
#define MODULE_CAND_CACHE_SIZE 31
|
|
static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
|
|
|
|
static DEFINE_MUTEX(cand_cache_mutex);
|
|
|
|
static void __print_cand_cache(struct bpf_verifier_log *log,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc;
|
|
int i, j;
|
|
|
|
for (i = 0; i < cache_size; i++) {
|
|
cc = cache[i];
|
|
if (!cc)
|
|
continue;
|
|
bpf_log(log, "[%d]%s(", i, cc->name);
|
|
for (j = 0; j < cc->cnt; j++) {
|
|
bpf_log(log, "%d", cc->cands[j].id);
|
|
if (j < cc->cnt - 1)
|
|
bpf_log(log, " ");
|
|
}
|
|
bpf_log(log, "), ");
|
|
}
|
|
}
|
|
|
|
static void print_cand_cache(struct bpf_verifier_log *log)
|
|
{
|
|
mutex_lock(&cand_cache_mutex);
|
|
bpf_log(log, "vmlinux_cand_cache:");
|
|
__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
bpf_log(log, "\nmodule_cand_cache:");
|
|
__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
bpf_log(log, "\n");
|
|
mutex_unlock(&cand_cache_mutex);
|
|
}
|
|
|
|
static u32 hash_cands(struct bpf_cand_cache *cands)
|
|
{
|
|
return jhash(cands->name, cands->name_len, 0);
|
|
}
|
|
|
|
static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
|
|
|
|
if (cc && cc->name_len == cands->name_len &&
|
|
!strncmp(cc->name, cands->name, cands->name_len))
|
|
return cc;
|
|
return NULL;
|
|
}
|
|
|
|
static size_t sizeof_cands(int cnt)
|
|
{
|
|
return offsetof(struct bpf_cand_cache, cands[cnt]);
|
|
}
|
|
|
|
static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
|
|
|
|
if (*cc) {
|
|
bpf_free_cands_from_cache(*cc);
|
|
*cc = NULL;
|
|
}
|
|
new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
|
|
if (!new_cands) {
|
|
bpf_free_cands(cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
/* strdup the name, since it will stay in cache.
|
|
* the cands->name points to strings in prog's BTF and the prog can be unloaded.
|
|
*/
|
|
new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
|
|
bpf_free_cands(cands);
|
|
if (!new_cands->name) {
|
|
kfree(new_cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
*cc = new_cands;
|
|
return new_cands;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc;
|
|
int i, j;
|
|
|
|
for (i = 0; i < cache_size; i++) {
|
|
cc = cache[i];
|
|
if (!cc)
|
|
continue;
|
|
if (!btf) {
|
|
/* when new module is loaded purge all of module_cand_cache,
|
|
* since new module might have candidates with the name
|
|
* that matches cached cands.
|
|
*/
|
|
bpf_free_cands_from_cache(cc);
|
|
cache[i] = NULL;
|
|
continue;
|
|
}
|
|
/* when module is unloaded purge cache entries
|
|
* that match module's btf
|
|
*/
|
|
for (j = 0; j < cc->cnt; j++)
|
|
if (cc->cands[j].btf == btf) {
|
|
bpf_free_cands_from_cache(cc);
|
|
cache[i] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void purge_cand_cache(struct btf *btf)
|
|
{
|
|
mutex_lock(&cand_cache_mutex);
|
|
__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
mutex_unlock(&cand_cache_mutex);
|
|
}
|
|
#endif
|
|
|
|
static struct bpf_cand_cache *
|
|
bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
|
|
int targ_start_id)
|
|
{
|
|
struct bpf_cand_cache *new_cands;
|
|
const struct btf_type *t;
|
|
const char *targ_name;
|
|
size_t targ_essent_len;
|
|
int n, i;
|
|
|
|
n = btf_nr_types(targ_btf);
|
|
for (i = targ_start_id; i < n; i++) {
|
|
t = btf_type_by_id(targ_btf, i);
|
|
if (btf_kind(t) != cands->kind)
|
|
continue;
|
|
|
|
targ_name = btf_name_by_offset(targ_btf, t->name_off);
|
|
if (!targ_name)
|
|
continue;
|
|
|
|
/* the resched point is before strncmp to make sure that search
|
|
* for non-existing name will have a chance to schedule().
|
|
*/
|
|
cond_resched();
|
|
|
|
if (strncmp(cands->name, targ_name, cands->name_len) != 0)
|
|
continue;
|
|
|
|
targ_essent_len = bpf_core_essential_name_len(targ_name);
|
|
if (targ_essent_len != cands->name_len)
|
|
continue;
|
|
|
|
/* most of the time there is only one candidate for a given kind+name pair */
|
|
new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
|
|
if (!new_cands) {
|
|
bpf_free_cands(cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
memcpy(new_cands, cands, sizeof_cands(cands->cnt));
|
|
bpf_free_cands(cands);
|
|
cands = new_cands;
|
|
cands->cands[cands->cnt].btf = targ_btf;
|
|
cands->cands[cands->cnt].id = i;
|
|
cands->cnt++;
|
|
}
|
|
return cands;
|
|
}
|
|
|
|
static struct bpf_cand_cache *
|
|
bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
|
|
{
|
|
struct bpf_cand_cache *cands, *cc, local_cand = {};
|
|
const struct btf *local_btf = ctx->btf;
|
|
const struct btf_type *local_type;
|
|
const struct btf *main_btf;
|
|
size_t local_essent_len;
|
|
struct btf *mod_btf;
|
|
const char *name;
|
|
int id;
|
|
|
|
main_btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(main_btf))
|
|
return ERR_CAST(main_btf);
|
|
if (!main_btf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
local_type = btf_type_by_id(local_btf, local_type_id);
|
|
if (!local_type)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
name = btf_name_by_offset(local_btf, local_type->name_off);
|
|
if (str_is_empty(name))
|
|
return ERR_PTR(-EINVAL);
|
|
local_essent_len = bpf_core_essential_name_len(name);
|
|
|
|
cands = &local_cand;
|
|
cands->name = name;
|
|
cands->kind = btf_kind(local_type);
|
|
cands->name_len = local_essent_len;
|
|
|
|
cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
/* cands is a pointer to stack here */
|
|
if (cc) {
|
|
if (cc->cnt)
|
|
return cc;
|
|
goto check_modules;
|
|
}
|
|
|
|
/* Attempt to find target candidates in vmlinux BTF first */
|
|
cands = bpf_core_add_cands(cands, main_btf, 1);
|
|
if (IS_ERR(cands))
|
|
return ERR_CAST(cands);
|
|
|
|
/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
|
|
|
|
/* populate cache even when cands->cnt == 0 */
|
|
cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
if (IS_ERR(cc))
|
|
return ERR_CAST(cc);
|
|
|
|
/* if vmlinux BTF has any candidate, don't go for module BTFs */
|
|
if (cc->cnt)
|
|
return cc;
|
|
|
|
check_modules:
|
|
/* cands is a pointer to stack here and cands->cnt == 0 */
|
|
cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
if (cc)
|
|
/* if cache has it return it even if cc->cnt == 0 */
|
|
return cc;
|
|
|
|
/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
|
|
spin_lock_bh(&btf_idr_lock);
|
|
idr_for_each_entry(&btf_idr, mod_btf, id) {
|
|
if (!btf_is_module(mod_btf))
|
|
continue;
|
|
/* linear search could be slow hence unlock/lock
|
|
* the IDR to avoiding holding it for too long
|
|
*/
|
|
btf_get(mod_btf);
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
|
|
btf_put(mod_btf);
|
|
if (IS_ERR(cands))
|
|
return ERR_CAST(cands);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
}
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
/* cands is a pointer to kmalloced memory here if cands->cnt > 0
|
|
* or pointer to stack if cands->cnd == 0.
|
|
* Copy it into the cache even when cands->cnt == 0 and
|
|
* return the result.
|
|
*/
|
|
return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
}
|
|
|
|
int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
|
|
int relo_idx, void *insn)
|
|
{
|
|
bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
|
|
struct bpf_core_cand_list cands = {};
|
|
struct bpf_core_relo_res targ_res;
|
|
struct bpf_core_spec *specs;
|
|
int err;
|
|
|
|
/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
|
|
* into arrays of btf_ids of struct fields and array indices.
|
|
*/
|
|
specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
|
|
if (!specs)
|
|
return -ENOMEM;
|
|
|
|
if (need_cands) {
|
|
struct bpf_cand_cache *cc;
|
|
int i;
|
|
|
|
mutex_lock(&cand_cache_mutex);
|
|
cc = bpf_core_find_cands(ctx, relo->type_id);
|
|
if (IS_ERR(cc)) {
|
|
bpf_log(ctx->log, "target candidate search failed for %d\n",
|
|
relo->type_id);
|
|
err = PTR_ERR(cc);
|
|
goto out;
|
|
}
|
|
if (cc->cnt) {
|
|
cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
|
|
if (!cands.cands) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
for (i = 0; i < cc->cnt; i++) {
|
|
bpf_log(ctx->log,
|
|
"CO-RE relocating %s %s: found target candidate [%d]\n",
|
|
btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
|
|
cands.cands[i].btf = cc->cands[i].btf;
|
|
cands.cands[i].id = cc->cands[i].id;
|
|
}
|
|
cands.len = cc->cnt;
|
|
/* cand_cache_mutex needs to span the cache lookup and
|
|
* copy of btf pointer into bpf_core_cand_list,
|
|
* since module can be unloaded while bpf_core_calc_relo_insn
|
|
* is working with module's btf.
|
|
*/
|
|
}
|
|
|
|
err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
|
|
&targ_res);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
|
|
&targ_res);
|
|
|
|
out:
|
|
kfree(specs);
|
|
if (need_cands) {
|
|
kfree(cands.cands);
|
|
mutex_unlock(&cand_cache_mutex);
|
|
if (ctx->log->level & BPF_LOG_LEVEL2)
|
|
print_cand_cache(ctx->log);
|
|
}
|
|
return err;
|
|
}
|