241 lines
6.7 KiB
C
241 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
#include <ufs/ufshcd.h>
|
|
#include "ufshcd-crypto.h"
|
|
|
|
/* Blk-crypto modes supported by UFS crypto */
|
|
static const struct ufs_crypto_alg_entry {
|
|
enum ufs_crypto_alg ufs_alg;
|
|
enum ufs_crypto_key_size ufs_key_size;
|
|
} ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
|
|
[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
|
|
.ufs_alg = UFS_CRYPTO_ALG_AES_XTS,
|
|
.ufs_key_size = UFS_CRYPTO_KEY_SIZE_256,
|
|
},
|
|
};
|
|
|
|
static int ufshcd_program_key(struct ufs_hba *hba,
|
|
const union ufs_crypto_cfg_entry *cfg, int slot)
|
|
{
|
|
int i;
|
|
u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
|
|
int err = 0;
|
|
|
|
ufshcd_hold(hba, false);
|
|
|
|
if (hba->vops && hba->vops->program_key) {
|
|
err = hba->vops->program_key(hba, cfg, slot);
|
|
goto out;
|
|
}
|
|
|
|
/* Ensure that CFGE is cleared before programming the key */
|
|
ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
|
for (i = 0; i < 16; i++) {
|
|
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
|
|
slot_offset + i * sizeof(cfg->reg_val[0]));
|
|
}
|
|
/* Write dword 17 */
|
|
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
|
|
slot_offset + 17 * sizeof(cfg->reg_val[0]));
|
|
/* Dword 16 must be written last */
|
|
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
|
|
slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
|
out:
|
|
ufshcd_release(hba);
|
|
return err;
|
|
}
|
|
|
|
static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
unsigned int slot)
|
|
{
|
|
struct ufs_hba *hba =
|
|
container_of(profile, struct ufs_hba, crypto_profile);
|
|
const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
|
|
const struct ufs_crypto_alg_entry *alg =
|
|
&ufs_crypto_algs[key->crypto_cfg.crypto_mode];
|
|
u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
|
|
int i;
|
|
int cap_idx = -1;
|
|
union ufs_crypto_cfg_entry cfg = {};
|
|
int err;
|
|
|
|
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
|
|
for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
|
|
if (ccap_array[i].algorithm_id == alg->ufs_alg &&
|
|
ccap_array[i].key_size == alg->ufs_key_size &&
|
|
(ccap_array[i].sdus_mask & data_unit_mask)) {
|
|
cap_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON(cap_idx < 0))
|
|
return -EOPNOTSUPP;
|
|
|
|
cfg.data_unit_size = data_unit_mask;
|
|
cfg.crypto_cap_idx = cap_idx;
|
|
cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE;
|
|
|
|
if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) {
|
|
/* In XTS mode, the blk_crypto_key's size is already doubled */
|
|
memcpy(cfg.crypto_key, key->raw, key->size/2);
|
|
memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
|
|
key->raw + key->size/2, key->size/2);
|
|
} else {
|
|
memcpy(cfg.crypto_key, key->raw, key->size);
|
|
}
|
|
|
|
err = ufshcd_program_key(hba, &cfg, slot);
|
|
|
|
memzero_explicit(&cfg, sizeof(cfg));
|
|
return err;
|
|
}
|
|
|
|
static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
|
|
{
|
|
/*
|
|
* Clear the crypto cfg on the device. Clearing CFGE
|
|
* might not be sufficient, so just clear the entire cfg.
|
|
*/
|
|
union ufs_crypto_cfg_entry cfg = {};
|
|
|
|
return ufshcd_program_key(hba, &cfg, slot);
|
|
}
|
|
|
|
static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
unsigned int slot)
|
|
{
|
|
struct ufs_hba *hba =
|
|
container_of(profile, struct ufs_hba, crypto_profile);
|
|
|
|
return ufshcd_clear_keyslot(hba, slot);
|
|
}
|
|
|
|
bool ufshcd_crypto_enable(struct ufs_hba *hba)
|
|
{
|
|
if (!(hba->caps & UFSHCD_CAP_CRYPTO))
|
|
return false;
|
|
|
|
/* Reset might clear all keys, so reprogram all the keys. */
|
|
blk_crypto_reprogram_all_keys(&hba->crypto_profile);
|
|
return true;
|
|
}
|
|
|
|
static const struct blk_crypto_ll_ops ufshcd_crypto_ops = {
|
|
.keyslot_program = ufshcd_crypto_keyslot_program,
|
|
.keyslot_evict = ufshcd_crypto_keyslot_evict,
|
|
};
|
|
|
|
static enum blk_crypto_mode_num
|
|
ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) {
|
|
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
|
|
if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id &&
|
|
ufs_crypto_algs[i].ufs_key_size == cap.key_size) {
|
|
return i;
|
|
}
|
|
}
|
|
return BLK_ENCRYPTION_MODE_INVALID;
|
|
}
|
|
|
|
/**
|
|
* ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto
|
|
* fields in hba
|
|
* @hba: Per adapter instance
|
|
*
|
|
* Return: 0 if crypto was initialized or is not supported, else a -errno value.
|
|
*/
|
|
int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
|
|
{
|
|
int cap_idx;
|
|
int err = 0;
|
|
enum blk_crypto_mode_num blk_mode_num;
|
|
|
|
/*
|
|
* Don't use crypto if either the hardware doesn't advertise the
|
|
* standard crypto capability bit *or* if the vendor specific driver
|
|
* hasn't advertised that crypto is supported.
|
|
*/
|
|
if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
|
|
!(hba->caps & UFSHCD_CAP_CRYPTO))
|
|
goto out;
|
|
|
|
hba->crypto_capabilities.reg_val =
|
|
cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
|
|
hba->crypto_cfg_register =
|
|
(u32)hba->crypto_capabilities.config_array_ptr * 0x100;
|
|
hba->crypto_cap_array =
|
|
devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap,
|
|
sizeof(hba->crypto_cap_array[0]), GFP_KERNEL);
|
|
if (!hba->crypto_cap_array) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* The actual number of configurations supported is (CFGC+1) */
|
|
err = devm_blk_crypto_profile_init(
|
|
hba->dev, &hba->crypto_profile,
|
|
hba->crypto_capabilities.config_count + 1);
|
|
if (err)
|
|
goto out;
|
|
|
|
hba->crypto_profile.ll_ops = ufshcd_crypto_ops;
|
|
/* UFS only supports 8 bytes for any DUN */
|
|
hba->crypto_profile.max_dun_bytes_supported = 8;
|
|
hba->crypto_profile.dev = hba->dev;
|
|
|
|
/*
|
|
* Cache all the UFS crypto capabilities and advertise the supported
|
|
* crypto modes and data unit sizes to the block layer.
|
|
*/
|
|
for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
|
|
cap_idx++) {
|
|
hba->crypto_cap_array[cap_idx].reg_val =
|
|
cpu_to_le32(ufshcd_readl(hba,
|
|
REG_UFS_CRYPTOCAP +
|
|
cap_idx * sizeof(__le32)));
|
|
blk_mode_num = ufshcd_find_blk_crypto_mode(
|
|
hba->crypto_cap_array[cap_idx]);
|
|
if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID)
|
|
hba->crypto_profile.modes_supported[blk_mode_num] |=
|
|
hba->crypto_cap_array[cap_idx].sdus_mask * 512;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
/* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */
|
|
hba->caps &= ~UFSHCD_CAP_CRYPTO;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ufshcd_init_crypto - Initialize crypto hardware
|
|
* @hba: Per adapter instance
|
|
*/
|
|
void ufshcd_init_crypto(struct ufs_hba *hba)
|
|
{
|
|
int slot;
|
|
|
|
if (!(hba->caps & UFSHCD_CAP_CRYPTO))
|
|
return;
|
|
|
|
/* Clear all keyslots - the number of keyslots is (CFGC + 1) */
|
|
for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++)
|
|
ufshcd_clear_keyslot(hba, slot);
|
|
}
|
|
|
|
void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q)
|
|
{
|
|
if (hba->caps & UFSHCD_CAP_CRYPTO)
|
|
blk_crypto_register(&hba->crypto_profile, q);
|
|
}
|