1351 lines
34 KiB
C
1351 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (C) 2018 Spreadtrum Communications Inc.
|
|
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/iio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nvmem-consumer.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/power_supply.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* PMIC global control registers definition */
|
|
#define SC27XX_MODULE_EN0 0xc08
|
|
#define SC27XX_CLK_EN0 0xc18
|
|
#define SC27XX_FGU_EN BIT(7)
|
|
#define SC27XX_FGU_RTC_EN BIT(6)
|
|
|
|
/* FGU registers definition */
|
|
#define SC27XX_FGU_START 0x0
|
|
#define SC27XX_FGU_CONFIG 0x4
|
|
#define SC27XX_FGU_ADC_CONFIG 0x8
|
|
#define SC27XX_FGU_STATUS 0xc
|
|
#define SC27XX_FGU_INT_EN 0x10
|
|
#define SC27XX_FGU_INT_CLR 0x14
|
|
#define SC27XX_FGU_INT_STS 0x1c
|
|
#define SC27XX_FGU_VOLTAGE 0x20
|
|
#define SC27XX_FGU_OCV 0x24
|
|
#define SC27XX_FGU_POCV 0x28
|
|
#define SC27XX_FGU_CURRENT 0x2c
|
|
#define SC27XX_FGU_LOW_OVERLOAD 0x34
|
|
#define SC27XX_FGU_CLBCNT_SETH 0x50
|
|
#define SC27XX_FGU_CLBCNT_SETL 0x54
|
|
#define SC27XX_FGU_CLBCNT_DELTH 0x58
|
|
#define SC27XX_FGU_CLBCNT_DELTL 0x5c
|
|
#define SC27XX_FGU_CLBCNT_VALH 0x68
|
|
#define SC27XX_FGU_CLBCNT_VALL 0x6c
|
|
#define SC27XX_FGU_CLBCNT_QMAXL 0x74
|
|
#define SC27XX_FGU_USER_AREA_SET 0xa0
|
|
#define SC27XX_FGU_USER_AREA_CLEAR 0xa4
|
|
#define SC27XX_FGU_USER_AREA_STATUS 0xa8
|
|
#define SC27XX_FGU_VOLTAGE_BUF 0xd0
|
|
#define SC27XX_FGU_CURRENT_BUF 0xf0
|
|
|
|
#define SC27XX_WRITE_SELCLB_EN BIT(0)
|
|
#define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
|
|
#define SC27XX_FGU_CLBCNT_SHIFT 16
|
|
#define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
|
|
|
|
#define SC27XX_FGU_INT_MASK GENMASK(9, 0)
|
|
#define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
|
|
#define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
|
|
|
|
#define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
|
|
#define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
|
|
#define SC27XX_FGU_MODE_AREA_SHIFT 12
|
|
|
|
#define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
|
|
#define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
|
|
#define SC27XX_FGU_NORMAIL_POWERTON 0x5
|
|
|
|
#define SC27XX_FGU_CUR_BASIC_ADC 8192
|
|
#define SC27XX_FGU_SAMPLE_HZ 2
|
|
/* micro Ohms */
|
|
#define SC27XX_FGU_IDEAL_RESISTANCE 20000
|
|
|
|
/*
|
|
* struct sc27xx_fgu_data: describe the FGU device
|
|
* @regmap: regmap for register access
|
|
* @dev: platform device
|
|
* @battery: battery power supply
|
|
* @base: the base offset for the controller
|
|
* @lock: protect the structure
|
|
* @gpiod: GPIO for battery detection
|
|
* @channel: IIO channel to get battery temperature
|
|
* @charge_chan: IIO channel to get charge voltage
|
|
* @internal_resist: the battery internal resistance in mOhm
|
|
* @total_cap: the total capacity of the battery in mAh
|
|
* @init_cap: the initial capacity of the battery in mAh
|
|
* @alarm_cap: the alarm capacity
|
|
* @init_clbcnt: the initial coulomb counter
|
|
* @max_volt: the maximum constant input voltage in millivolt
|
|
* @min_volt: the minimum drained battery voltage in microvolt
|
|
* @boot_volt: the voltage measured during boot in microvolt
|
|
* @table_len: the capacity table length
|
|
* @resist_table_len: the resistance table length
|
|
* @cur_1000ma_adc: ADC value corresponding to 1000 mA
|
|
* @vol_1000mv_adc: ADC value corresponding to 1000 mV
|
|
* @calib_resist: the real resistance of coulomb counter chip in uOhm
|
|
* @cap_table: capacity table with corresponding ocv
|
|
* @resist_table: resistance percent table with corresponding temperature
|
|
*/
|
|
struct sc27xx_fgu_data {
|
|
struct regmap *regmap;
|
|
struct device *dev;
|
|
struct power_supply *battery;
|
|
u32 base;
|
|
struct mutex lock;
|
|
struct gpio_desc *gpiod;
|
|
struct iio_channel *channel;
|
|
struct iio_channel *charge_chan;
|
|
bool bat_present;
|
|
int internal_resist;
|
|
int total_cap;
|
|
int init_cap;
|
|
int alarm_cap;
|
|
int init_clbcnt;
|
|
int max_volt;
|
|
int min_volt;
|
|
int boot_volt;
|
|
int table_len;
|
|
int resist_table_len;
|
|
int cur_1000ma_adc;
|
|
int vol_1000mv_adc;
|
|
int calib_resist;
|
|
struct power_supply_battery_ocv_table *cap_table;
|
|
struct power_supply_resistance_temp_table *resist_table;
|
|
};
|
|
|
|
static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
|
|
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
|
|
int cap, bool int_mode);
|
|
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
|
|
static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
|
|
|
|
static const char * const sc27xx_charger_supply_name[] = {
|
|
"sc2731_charger",
|
|
"sc2720_charger",
|
|
"sc2721_charger",
|
|
"sc2723_charger",
|
|
};
|
|
|
|
static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
|
|
{
|
|
return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
|
|
}
|
|
|
|
static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
|
|
{
|
|
return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
|
|
}
|
|
|
|
static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
|
|
{
|
|
return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
|
|
}
|
|
|
|
static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
|
|
{
|
|
int ret, status, cap, mode;
|
|
|
|
ret = regmap_read(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
|
|
if (ret)
|
|
return false;
|
|
|
|
/*
|
|
* We use low 4 bits to save the last battery capacity and high 12 bits
|
|
* to save the system boot mode.
|
|
*/
|
|
mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
|
|
cap = status & SC27XX_FGU_CAP_AREA_MASK;
|
|
|
|
/*
|
|
* When FGU has been powered down, the user area registers became
|
|
* default value (0xffff), which can be used to valid if the system is
|
|
* first power on or not.
|
|
*/
|
|
if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
|
|
int boot_mode)
|
|
{
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_CLEAR,
|
|
SC27XX_FGU_MODE_AREA_MASK,
|
|
SC27XX_FGU_MODE_AREA_MASK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Since the user area registers are put on power always-on region,
|
|
* then these registers changing time will be a little long. Thus
|
|
* here we should delay 200us to wait until values are updated
|
|
* successfully according to the datasheet.
|
|
*/
|
|
udelay(200);
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_SET,
|
|
SC27XX_FGU_MODE_AREA_MASK,
|
|
boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Since the user area registers are put on power always-on region,
|
|
* then these registers changing time will be a little long. Thus
|
|
* here we should delay 200us to wait until values are updated
|
|
* successfully according to the datasheet.
|
|
*/
|
|
udelay(200);
|
|
|
|
/*
|
|
* According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
|
|
* make the user area data available, otherwise we can not save the user
|
|
* area data.
|
|
*/
|
|
return regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_CLEAR,
|
|
SC27XX_FGU_MODE_AREA_MASK, 0);
|
|
}
|
|
|
|
static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
|
|
{
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_CLEAR,
|
|
SC27XX_FGU_CAP_AREA_MASK,
|
|
SC27XX_FGU_CAP_AREA_MASK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Since the user area registers are put on power always-on region,
|
|
* then these registers changing time will be a little long. Thus
|
|
* here we should delay 200us to wait until values are updated
|
|
* successfully according to the datasheet.
|
|
*/
|
|
udelay(200);
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_SET,
|
|
SC27XX_FGU_CAP_AREA_MASK, cap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Since the user area registers are put on power always-on region,
|
|
* then these registers changing time will be a little long. Thus
|
|
* here we should delay 200us to wait until values are updated
|
|
* successfully according to the datasheet.
|
|
*/
|
|
udelay(200);
|
|
|
|
/*
|
|
* According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
|
|
* make the user area data available, otherwise we can not save the user
|
|
* area data.
|
|
*/
|
|
return regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_CLEAR,
|
|
SC27XX_FGU_CAP_AREA_MASK, 0);
|
|
}
|
|
|
|
static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
|
|
{
|
|
int ret, value;
|
|
|
|
ret = regmap_read(data->regmap,
|
|
data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*cap = value & SC27XX_FGU_CAP_AREA_MASK;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When system boots on, we can not read battery capacity from coulomb
|
|
* registers, since now the coulomb registers are invalid. So we should
|
|
* calculate the battery open circuit voltage, and get current battery
|
|
* capacity according to the capacity table.
|
|
*/
|
|
static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
|
|
{
|
|
int volt, cur, oci, ocv, ret;
|
|
bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
|
|
|
|
/*
|
|
* If system is not the first power on, we should use the last saved
|
|
* battery capacity as the initial battery capacity. Otherwise we should
|
|
* re-calculate the initial battery capacity.
|
|
*/
|
|
if (!is_first_poweron) {
|
|
ret = sc27xx_fgu_read_last_cap(data, cap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
|
|
}
|
|
|
|
/*
|
|
* After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
|
|
* the first sampled open circuit current.
|
|
*/
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
|
|
&cur);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cur <<= 1;
|
|
oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
|
|
|
|
/*
|
|
* Should get the OCV from SC27XX_FGU_POCV register at the system
|
|
* beginning. It is ADC values reading from registers which need to
|
|
* convert the corresponding voltage.
|
|
*/
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
volt = sc27xx_fgu_adc_to_voltage(data, volt);
|
|
ocv = volt * 1000 - oci * data->internal_resist;
|
|
data->boot_volt = ocv;
|
|
|
|
/*
|
|
* Parse the capacity table to look up the correct capacity percent
|
|
* according to current battery's corresponding OCV values.
|
|
*/
|
|
*cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
|
|
ocv);
|
|
|
|
ret = sc27xx_fgu_save_last_cap(data, *cap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
|
|
}
|
|
|
|
static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
|
|
{
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_CLBCNT_SETL,
|
|
SC27XX_FGU_CLBCNT_MASK, clbcnt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_CLBCNT_SETH,
|
|
SC27XX_FGU_CLBCNT_MASK,
|
|
clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
|
|
SC27XX_WRITE_SELCLB_EN,
|
|
SC27XX_WRITE_SELCLB_EN);
|
|
}
|
|
|
|
static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
|
|
{
|
|
int ccl, cch, ret;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
|
|
&ccl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
|
|
&cch);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
|
|
*clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int ret;
|
|
u32 vol;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
|
|
&vol);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* It is ADC values reading from registers which need to convert to
|
|
* corresponding voltage values.
|
|
*/
|
|
*val = sc27xx_fgu_adc_to_voltage(data, vol);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int ret;
|
|
u32 cur;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
|
|
&cur);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* It is ADC values reading from registers which need to convert to
|
|
* corresponding current values.
|
|
*/
|
|
*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
|
|
{
|
|
int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
|
|
|
|
/* Get current coulomb counters firstly */
|
|
ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
delta_clbcnt = cur_clbcnt - data->init_clbcnt;
|
|
|
|
/*
|
|
* Convert coulomb counter to delta capacity (mAh), and set multiplier
|
|
* as 10 to improve the precision.
|
|
*/
|
|
temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
|
|
temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
|
|
|
|
/*
|
|
* Convert to capacity percent of the battery total capacity,
|
|
* and multiplier is 100 too.
|
|
*/
|
|
delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
|
|
*cap = delta_cap + data->init_cap;
|
|
|
|
/* Calibrate the battery capacity in a normal range. */
|
|
sc27xx_fgu_capacity_calibration(data, *cap, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int ret, vol;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* It is ADC values reading from registers which need to convert to
|
|
* corresponding voltage values.
|
|
*/
|
|
*val = sc27xx_fgu_adc_to_voltage(data, vol);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int ret, cur;
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* It is ADC values reading from registers which need to convert to
|
|
* corresponding current values.
|
|
*/
|
|
*val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int vol, cur, ret, temp, resistance;
|
|
|
|
ret = sc27xx_fgu_get_vbat_vol(data, &vol);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sc27xx_fgu_get_current(data, &cur);
|
|
if (ret)
|
|
return ret;
|
|
|
|
resistance = data->internal_resist;
|
|
if (data->resist_table_len > 0) {
|
|
ret = sc27xx_fgu_get_temp(data, &temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
resistance = power_supply_temp2resist_simple(data->resist_table,
|
|
data->resist_table_len, temp);
|
|
resistance = data->internal_resist * resistance / 100;
|
|
}
|
|
|
|
/* Return the battery OCV in micro volts. */
|
|
*val = vol * 1000 - cur * resistance;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
|
|
{
|
|
int ret, vol;
|
|
|
|
ret = iio_read_channel_processed(data->charge_chan, &vol);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*val = vol * 1000;
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
|
|
{
|
|
return iio_read_channel_processed(data->channel, temp);
|
|
}
|
|
|
|
static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
|
|
{
|
|
int ret, vol;
|
|
|
|
ret = sc27xx_fgu_get_vbat_vol(data, &vol);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vol > data->max_volt)
|
|
*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
|
|
else
|
|
*health = POWER_SUPPLY_HEALTH_GOOD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
|
|
{
|
|
union power_supply_propval val;
|
|
struct power_supply *psy;
|
|
int i, ret = -EINVAL;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
|
|
psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
|
|
if (!psy)
|
|
continue;
|
|
|
|
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
|
|
&val);
|
|
power_supply_put(psy);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*status = val.intval;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sc27xx_fgu_get_property(struct power_supply *psy,
|
|
enum power_supply_property psp,
|
|
union power_supply_propval *val)
|
|
{
|
|
struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
|
|
int ret = 0;
|
|
int value;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_STATUS:
|
|
ret = sc27xx_fgu_get_status(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_HEALTH:
|
|
ret = sc27xx_fgu_get_health(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_PRESENT:
|
|
val->intval = data->bat_present;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_TEMP:
|
|
ret = sc27xx_fgu_get_temp(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_TECHNOLOGY:
|
|
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CAPACITY:
|
|
ret = sc27xx_fgu_get_capacity(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
|
|
ret = sc27xx_fgu_get_vbat_vol(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value * 1000;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
|
|
ret = sc27xx_fgu_get_vbat_ocv(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
|
|
ret = sc27xx_fgu_get_charge_vol(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CURRENT_AVG:
|
|
ret = sc27xx_fgu_get_current(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value * 1000;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
|
|
val->intval = data->total_cap * 1000;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CHARGE_NOW:
|
|
ret = sc27xx_fgu_get_clbcnt(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
value = DIV_ROUND_CLOSEST(value * 10,
|
|
36 * SC27XX_FGU_SAMPLE_HZ);
|
|
val->intval = sc27xx_fgu_adc_to_current(data, value);
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
|
|
ret = sc27xx_fgu_get_vol_now(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value * 1000;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CURRENT_NOW:
|
|
ret = sc27xx_fgu_get_cur_now(data, &value);
|
|
if (ret)
|
|
goto error;
|
|
|
|
val->intval = value * 1000;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
|
|
val->intval = data->boot_volt;
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
error:
|
|
mutex_unlock(&data->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int sc27xx_fgu_set_property(struct power_supply *psy,
|
|
enum power_supply_property psp,
|
|
const union power_supply_propval *val)
|
|
{
|
|
struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
|
|
int ret;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_CAPACITY:
|
|
ret = sc27xx_fgu_save_last_cap(data, val->intval);
|
|
if (ret < 0)
|
|
dev_err(data->dev, "failed to save battery capacity\n");
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CALIBRATE:
|
|
sc27xx_fgu_adjust_cap(data, val->intval);
|
|
ret = 0;
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
|
|
data->total_cap = val->intval / 1000;
|
|
ret = 0;
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
|
|
enum power_supply_property psp)
|
|
{
|
|
return psp == POWER_SUPPLY_PROP_CAPACITY ||
|
|
psp == POWER_SUPPLY_PROP_CALIBRATE ||
|
|
psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
|
|
}
|
|
|
|
static enum power_supply_property sc27xx_fgu_props[] = {
|
|
POWER_SUPPLY_PROP_STATUS,
|
|
POWER_SUPPLY_PROP_HEALTH,
|
|
POWER_SUPPLY_PROP_PRESENT,
|
|
POWER_SUPPLY_PROP_TEMP,
|
|
POWER_SUPPLY_PROP_TECHNOLOGY,
|
|
POWER_SUPPLY_PROP_CAPACITY,
|
|
POWER_SUPPLY_PROP_VOLTAGE_NOW,
|
|
POWER_SUPPLY_PROP_VOLTAGE_OCV,
|
|
POWER_SUPPLY_PROP_VOLTAGE_AVG,
|
|
POWER_SUPPLY_PROP_VOLTAGE_BOOT,
|
|
POWER_SUPPLY_PROP_CURRENT_NOW,
|
|
POWER_SUPPLY_PROP_CURRENT_AVG,
|
|
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
|
|
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
|
|
POWER_SUPPLY_PROP_CALIBRATE,
|
|
POWER_SUPPLY_PROP_CHARGE_NOW
|
|
};
|
|
|
|
static const struct power_supply_desc sc27xx_fgu_desc = {
|
|
.name = "sc27xx-fgu",
|
|
.type = POWER_SUPPLY_TYPE_BATTERY,
|
|
.properties = sc27xx_fgu_props,
|
|
.num_properties = ARRAY_SIZE(sc27xx_fgu_props),
|
|
.get_property = sc27xx_fgu_get_property,
|
|
.set_property = sc27xx_fgu_set_property,
|
|
.external_power_changed = power_supply_changed,
|
|
.property_is_writeable = sc27xx_fgu_property_is_writeable,
|
|
.no_thermal = true,
|
|
};
|
|
|
|
static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
|
|
{
|
|
int ret;
|
|
|
|
data->init_cap = cap;
|
|
ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
|
|
if (ret)
|
|
dev_err(data->dev, "failed to get init coulomb counter\n");
|
|
}
|
|
|
|
static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
|
|
int cap, bool int_mode)
|
|
{
|
|
int ret, ocv, chg_sts, adc;
|
|
|
|
ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
|
|
if (ret) {
|
|
dev_err(data->dev, "get battery ocv error.\n");
|
|
return;
|
|
}
|
|
|
|
ret = sc27xx_fgu_get_status(data, &chg_sts);
|
|
if (ret) {
|
|
dev_err(data->dev, "get charger status error.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we are in charging mode, then we do not need to calibrate the
|
|
* lower capacity.
|
|
*/
|
|
if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
|
|
return;
|
|
|
|
if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
|
|
/*
|
|
* If current OCV value is larger than the max OCV value in
|
|
* OCV table, or the current capacity is larger than 100,
|
|
* we should force the inititial capacity to 100.
|
|
*/
|
|
sc27xx_fgu_adjust_cap(data, 100);
|
|
} else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
|
|
/*
|
|
* If current OCV value is leass than the minimum OCV value in
|
|
* OCV table, we should force the inititial capacity to 0.
|
|
*/
|
|
sc27xx_fgu_adjust_cap(data, 0);
|
|
} else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
|
|
(ocv > data->min_volt && cap <= data->alarm_cap)) {
|
|
/*
|
|
* If current OCV value is not matchable with current capacity,
|
|
* we should re-calculate current capacity by looking up the
|
|
* OCV table.
|
|
*/
|
|
int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
|
|
data->table_len, ocv);
|
|
|
|
sc27xx_fgu_adjust_cap(data, cur_cap);
|
|
} else if (ocv <= data->min_volt) {
|
|
/*
|
|
* If current OCV value is less than the low alarm voltage, but
|
|
* current capacity is larger than the alarm capacity, we should
|
|
* adjust the inititial capacity to alarm capacity.
|
|
*/
|
|
if (cap > data->alarm_cap) {
|
|
sc27xx_fgu_adjust_cap(data, data->alarm_cap);
|
|
} else {
|
|
int cur_cap;
|
|
|
|
/*
|
|
* If current capacity is equal with 0 or less than 0
|
|
* (some error occurs), we should adjust inititial
|
|
* capacity to the capacity corresponding to current OCV
|
|
* value.
|
|
*/
|
|
cur_cap = power_supply_ocv2cap_simple(data->cap_table,
|
|
data->table_len,
|
|
ocv);
|
|
sc27xx_fgu_adjust_cap(data, cur_cap);
|
|
}
|
|
|
|
if (!int_mode)
|
|
return;
|
|
|
|
/*
|
|
* After adjusting the battery capacity, we should set the
|
|
* lowest alarm voltage instead.
|
|
*/
|
|
data->min_volt = data->cap_table[data->table_len - 1].ocv;
|
|
data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
|
|
data->table_len,
|
|
data->min_volt);
|
|
|
|
adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
|
|
regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_LOW_OVERLOAD,
|
|
SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct sc27xx_fgu_data *data = dev_id;
|
|
int ret, cap;
|
|
u32 status;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
|
|
&status);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
|
|
status, status);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* When low overload voltage interrupt happens, we should calibrate the
|
|
* battery capacity in lower voltage stage.
|
|
*/
|
|
if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
|
|
goto out;
|
|
|
|
ret = sc27xx_fgu_get_capacity(data, &cap);
|
|
if (ret)
|
|
goto out;
|
|
|
|
sc27xx_fgu_capacity_calibration(data, cap, true);
|
|
|
|
out:
|
|
mutex_unlock(&data->lock);
|
|
|
|
power_supply_changed(data->battery);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
|
|
{
|
|
struct sc27xx_fgu_data *data = dev_id;
|
|
int state;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
state = gpiod_get_value_cansleep(data->gpiod);
|
|
if (state < 0) {
|
|
dev_err(data->dev, "failed to get gpio state\n");
|
|
mutex_unlock(&data->lock);
|
|
return IRQ_RETVAL(state);
|
|
}
|
|
|
|
data->bat_present = !!state;
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
power_supply_changed(data->battery);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void sc27xx_fgu_disable(void *_data)
|
|
{
|
|
struct sc27xx_fgu_data *data = _data;
|
|
|
|
regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
|
|
regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
|
|
}
|
|
|
|
static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
|
|
{
|
|
/*
|
|
* Get current capacity (mAh) = battery total capacity (mAh) *
|
|
* current capacity percent (capacity / 100).
|
|
*/
|
|
int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
|
|
|
|
/*
|
|
* Convert current capacity (mAh) to coulomb counter according to the
|
|
* formula: 1 mAh =3.6 coulomb.
|
|
*/
|
|
return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
|
|
}
|
|
|
|
static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
|
|
{
|
|
struct nvmem_cell *cell;
|
|
int calib_data, cal_4200mv;
|
|
void *buf;
|
|
size_t len;
|
|
|
|
cell = nvmem_cell_get(data->dev, "fgu_calib");
|
|
if (IS_ERR(cell))
|
|
return PTR_ERR(cell);
|
|
|
|
buf = nvmem_cell_read(cell, &len);
|
|
nvmem_cell_put(cell);
|
|
|
|
if (IS_ERR(buf))
|
|
return PTR_ERR(buf);
|
|
|
|
memcpy(&calib_data, buf, min(len, sizeof(u32)));
|
|
|
|
/*
|
|
* Get the ADC value corresponding to 4200 mV from eFuse controller
|
|
* according to below formula. Then convert to ADC values corresponding
|
|
* to 1000 mV and 1000 mA.
|
|
*/
|
|
cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
|
|
data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
|
|
data->cur_1000ma_adc =
|
|
DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
|
|
SC27XX_FGU_IDEAL_RESISTANCE);
|
|
|
|
kfree(buf);
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
|
|
{
|
|
struct power_supply_battery_info *info;
|
|
struct power_supply_battery_ocv_table *table;
|
|
int ret, delta_clbcnt, alarm_adc;
|
|
|
|
ret = power_supply_get_battery_info(data->battery, &info);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to get battery information\n");
|
|
return ret;
|
|
}
|
|
|
|
data->total_cap = info->charge_full_design_uah / 1000;
|
|
data->max_volt = info->constant_charge_voltage_max_uv / 1000;
|
|
data->internal_resist = info->factory_internal_resistance_uohm / 1000;
|
|
data->min_volt = info->voltage_min_design_uv;
|
|
|
|
/*
|
|
* For SC27XX fuel gauge device, we only use one ocv-capacity
|
|
* table in normal temperature 20 Celsius.
|
|
*/
|
|
table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
|
|
if (!table)
|
|
return -EINVAL;
|
|
|
|
data->cap_table = devm_kmemdup(data->dev, table,
|
|
data->table_len * sizeof(*table),
|
|
GFP_KERNEL);
|
|
if (!data->cap_table) {
|
|
power_supply_put_battery_info(data->battery, info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
|
|
data->table_len,
|
|
data->min_volt);
|
|
if (!data->alarm_cap)
|
|
data->alarm_cap += 1;
|
|
|
|
data->resist_table_len = info->resist_table_size;
|
|
if (data->resist_table_len > 0) {
|
|
data->resist_table = devm_kmemdup(data->dev, info->resist_table,
|
|
data->resist_table_len *
|
|
sizeof(struct power_supply_resistance_temp_table),
|
|
GFP_KERNEL);
|
|
if (!data->resist_table) {
|
|
power_supply_put_battery_info(data->battery, info);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
power_supply_put_battery_info(data->battery, info);
|
|
|
|
ret = sc27xx_fgu_calibration(data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Enable the FGU module */
|
|
ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
|
|
SC27XX_FGU_EN, SC27XX_FGU_EN);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to enable fgu\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Enable the FGU RTC clock to make it work */
|
|
ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
|
|
SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to enable fgu RTC clock\n");
|
|
goto disable_fgu;
|
|
}
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
|
|
SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to clear interrupt status\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
/*
|
|
* Set the voltage low overload threshold, which means when the battery
|
|
* voltage is lower than this threshold, the controller will generate
|
|
* one interrupt to notify.
|
|
*/
|
|
alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
|
|
SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to set fgu low overload\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
/*
|
|
* Set the coulomb counter delta threshold, that means when the coulomb
|
|
* counter change is multiples of the delta threshold, the controller
|
|
* will generate one interrupt to notify the users to update the battery
|
|
* capacity. Now we set the delta threshold as a counter value of 1%
|
|
* capacity.
|
|
*/
|
|
delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
|
|
SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to set low delta coulomb counter\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
|
|
SC27XX_FGU_CLBCNT_MASK,
|
|
delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to set high delta coulomb counter\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
/*
|
|
* Get the boot battery capacity when system powers on, which is used to
|
|
* initialize the coulomb counter. After that, we can read the coulomb
|
|
* counter to measure the battery capacity.
|
|
*/
|
|
ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to get boot capacity\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
/*
|
|
* Convert battery capacity to the corresponding initial coulomb counter
|
|
* and set into coulomb counter registers.
|
|
*/
|
|
data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
|
|
ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to initialize coulomb counter\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
disable_clk:
|
|
regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
|
|
disable_fgu:
|
|
regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sc27xx_fgu_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct power_supply_config fgu_cfg = { };
|
|
struct sc27xx_fgu_data *data;
|
|
int ret, irq;
|
|
|
|
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->regmap = dev_get_regmap(dev->parent, NULL);
|
|
if (!data->regmap) {
|
|
dev_err(dev, "failed to get regmap\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = device_property_read_u32(dev, "reg", &data->base);
|
|
if (ret) {
|
|
dev_err(dev, "failed to get fgu address\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = device_property_read_u32(&pdev->dev,
|
|
"sprd,calib-resistance-micro-ohms",
|
|
&data->calib_resist);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"failed to get fgu calibration resistance\n");
|
|
return ret;
|
|
}
|
|
|
|
data->channel = devm_iio_channel_get(dev, "bat-temp");
|
|
if (IS_ERR(data->channel)) {
|
|
dev_err(dev, "failed to get IIO channel\n");
|
|
return PTR_ERR(data->channel);
|
|
}
|
|
|
|
data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
|
|
if (IS_ERR(data->charge_chan)) {
|
|
dev_err(dev, "failed to get charge IIO channel\n");
|
|
return PTR_ERR(data->charge_chan);
|
|
}
|
|
|
|
data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
|
|
if (IS_ERR(data->gpiod)) {
|
|
dev_err(dev, "failed to get battery detection GPIO\n");
|
|
return PTR_ERR(data->gpiod);
|
|
}
|
|
|
|
ret = gpiod_get_value_cansleep(data->gpiod);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to get gpio state\n");
|
|
return ret;
|
|
}
|
|
|
|
data->bat_present = !!ret;
|
|
mutex_init(&data->lock);
|
|
data->dev = dev;
|
|
platform_set_drvdata(pdev, data);
|
|
|
|
fgu_cfg.drv_data = data;
|
|
fgu_cfg.of_node = np;
|
|
data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
|
|
&fgu_cfg);
|
|
if (IS_ERR(data->battery)) {
|
|
dev_err(dev, "failed to register power supply\n");
|
|
return PTR_ERR(data->battery);
|
|
}
|
|
|
|
ret = sc27xx_fgu_hw_init(data);
|
|
if (ret) {
|
|
dev_err(dev, "failed to initialize fgu hardware\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
|
|
if (ret) {
|
|
dev_err(dev, "failed to add fgu disable action\n");
|
|
return ret;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_threaded_irq(data->dev, irq, NULL,
|
|
sc27xx_fgu_interrupt,
|
|
IRQF_NO_SUSPEND | IRQF_ONESHOT,
|
|
pdev->name, data);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to request fgu IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
irq = gpiod_to_irq(data->gpiod);
|
|
if (irq < 0) {
|
|
dev_err(dev, "failed to translate GPIO to IRQ\n");
|
|
return irq;
|
|
}
|
|
|
|
ret = devm_request_threaded_irq(dev, irq, NULL,
|
|
sc27xx_fgu_bat_detection,
|
|
IRQF_ONESHOT | IRQF_TRIGGER_RISING |
|
|
IRQF_TRIGGER_FALLING,
|
|
pdev->name, data);
|
|
if (ret) {
|
|
dev_err(dev, "failed to request IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int sc27xx_fgu_resume(struct device *dev)
|
|
{
|
|
struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
|
|
SC27XX_FGU_LOW_OVERLOAD_INT |
|
|
SC27XX_FGU_CLBCNT_DELTA_INT, 0);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to disable fgu interrupts\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sc27xx_fgu_suspend(struct device *dev)
|
|
{
|
|
struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
|
|
int ret, status, ocv;
|
|
|
|
ret = sc27xx_fgu_get_status(data, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we are charging, then no need to enable the FGU interrupts to
|
|
* adjust the battery capacity.
|
|
*/
|
|
if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
|
|
status != POWER_SUPPLY_STATUS_DISCHARGING)
|
|
return 0;
|
|
|
|
ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
|
|
SC27XX_FGU_LOW_OVERLOAD_INT,
|
|
SC27XX_FGU_LOW_OVERLOAD_INT);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to enable low voltage interrupt\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
|
|
if (ret)
|
|
goto disable_int;
|
|
|
|
/*
|
|
* If current OCV is less than the minimum voltage, we should enable the
|
|
* coulomb counter threshold interrupt to notify events to adjust the
|
|
* battery capacity.
|
|
*/
|
|
if (ocv < data->min_volt) {
|
|
ret = regmap_update_bits(data->regmap,
|
|
data->base + SC27XX_FGU_INT_EN,
|
|
SC27XX_FGU_CLBCNT_DELTA_INT,
|
|
SC27XX_FGU_CLBCNT_DELTA_INT);
|
|
if (ret) {
|
|
dev_err(data->dev,
|
|
"failed to enable coulomb threshold int\n");
|
|
goto disable_int;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
disable_int:
|
|
regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
|
|
SC27XX_FGU_LOW_OVERLOAD_INT, 0);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
|
|
};
|
|
|
|
static const struct of_device_id sc27xx_fgu_of_match[] = {
|
|
{ .compatible = "sprd,sc2731-fgu", },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
|
|
|
|
static struct platform_driver sc27xx_fgu_driver = {
|
|
.probe = sc27xx_fgu_probe,
|
|
.driver = {
|
|
.name = "sc27xx-fgu",
|
|
.of_match_table = sc27xx_fgu_of_match,
|
|
.pm = &sc27xx_fgu_pm_ops,
|
|
}
|
|
};
|
|
|
|
module_platform_driver(sc27xx_fgu_driver);
|
|
|
|
MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
|
|
MODULE_LICENSE("GPL v2");
|