linuxdebug/drivers/net/phy/bcm7xxx.c

973 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Broadcom BCM7xxx internal transceivers support.
*
* Copyright (C) 2014-2017 Broadcom
*/
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/delay.h>
#include "bcm-phy-lib.h"
#include <linux/bitops.h>
#include <linux/brcmphy.h>
#include <linux/clk.h>
#include <linux/mdio.h>
/* Broadcom BCM7xxx internal PHY registers */
/* EPHY only register definitions */
#define MII_BCM7XXX_100TX_AUX_CTL 0x10
#define MII_BCM7XXX_100TX_FALSE_CAR 0x13
#define MII_BCM7XXX_100TX_DISC 0x14
#define MII_BCM7XXX_AUX_MODE 0x1d
#define MII_BCM7XXX_64CLK_MDIO BIT(12)
#define MII_BCM7XXX_TEST 0x1f
#define MII_BCM7XXX_SHD_MODE_2 BIT(2)
#define MII_BCM7XXX_SHD_2_ADDR_CTRL 0xe
#define MII_BCM7XXX_SHD_2_CTRL_STAT 0xf
#define MII_BCM7XXX_SHD_2_BIAS_TRIM 0x1a
#define MII_BCM7XXX_SHD_3_PCS_CTRL 0x0
#define MII_BCM7XXX_SHD_3_PCS_STATUS 0x1
#define MII_BCM7XXX_SHD_3_EEE_CAP 0x2
#define MII_BCM7XXX_SHD_3_AN_EEE_ADV 0x3
#define MII_BCM7XXX_SHD_3_EEE_LP 0x4
#define MII_BCM7XXX_SHD_3_EEE_WK_ERR 0x5
#define MII_BCM7XXX_SHD_3_PCS_CTRL_2 0x6
#define MII_BCM7XXX_PCS_CTRL_2_DEF 0x4400
#define MII_BCM7XXX_SHD_3_AN_STAT 0xb
#define MII_BCM7XXX_AN_NULL_MSG_EN BIT(0)
#define MII_BCM7XXX_AN_EEE_EN BIT(1)
#define MII_BCM7XXX_SHD_3_EEE_THRESH 0xe
#define MII_BCM7XXX_EEE_THRESH_DEF 0x50
#define MII_BCM7XXX_SHD_3_TL4 0x23
#define MII_BCM7XXX_TL4_RST_MSK (BIT(2) | BIT(1))
struct bcm7xxx_phy_priv {
u64 *stats;
struct clk *clk;
};
static int bcm7xxx_28nm_d0_afe_config_init(struct phy_device *phydev)
{
/* AFE_RXCONFIG_0 */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_0, 0xeb15);
/* AFE_RXCONFIG_1 */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9b2f);
/* AFE_RXCONFIG_2, set rCal offset for HT=0 code and LT=-2 code */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_2, 0x2003);
/* AFE_RX_LP_COUNTER, set RX bandwidth to maximum */
bcm_phy_write_misc(phydev, AFE_RX_LP_COUNTER, 0x7fc0);
/* AFE_TX_CONFIG, set 100BT Cfeed=011 to improve rise/fall time */
bcm_phy_write_misc(phydev, AFE_TX_CONFIG, 0x431);
/* AFE_VDCA_ICTRL_0, set Iq=1101 instead of 0111 for AB symmetry */
bcm_phy_write_misc(phydev, AFE_VDCA_ICTRL_0, 0xa7da);
/* AFE_VDAC_OTHERS_0, set 1000BT Cidac=010 for all ports */
bcm_phy_write_misc(phydev, AFE_VDAC_OTHERS_0, 0xa020);
/* AFE_HPF_TRIM_OTHERS, set 100Tx/10BT to -4.5% swing and set rCal
* offset for HT=0 code
*/
bcm_phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x00e3);
/* CORE_BASE1E, force trim to overwrite and set I_ext trim to 0000 */
phy_write(phydev, MII_BRCM_CORE_BASE1E, 0x0010);
/* DSP_TAP10, adjust bias current trim (+0% swing, +0 tick) */
bcm_phy_write_misc(phydev, DSP_TAP10, 0x011b);
/* Reset R_CAL/RC_CAL engine */
bcm_phy_r_rc_cal_reset(phydev);
return 0;
}
static int bcm7xxx_28nm_e0_plus_afe_config_init(struct phy_device *phydev)
{
/* AFE_RXCONFIG_1, provide more margin for INL/DNL measurement */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9b2f);
/* AFE_TX_CONFIG, set 100BT Cfeed=011 to improve rise/fall time */
bcm_phy_write_misc(phydev, AFE_TX_CONFIG, 0x431);
/* AFE_VDCA_ICTRL_0, set Iq=1101 instead of 0111 for AB symmetry */
bcm_phy_write_misc(phydev, AFE_VDCA_ICTRL_0, 0xa7da);
/* AFE_HPF_TRIM_OTHERS, set 100Tx/10BT to -4.5% swing and set rCal
* offset for HT=0 code
*/
bcm_phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x00e3);
/* CORE_BASE1E, force trim to overwrite and set I_ext trim to 0000 */
phy_write(phydev, MII_BRCM_CORE_BASE1E, 0x0010);
/* DSP_TAP10, adjust bias current trim (+0% swing, +0 tick) */
bcm_phy_write_misc(phydev, DSP_TAP10, 0x011b);
/* Reset R_CAL/RC_CAL engine */
bcm_phy_r_rc_cal_reset(phydev);
return 0;
}
static int bcm7xxx_28nm_a0_patch_afe_config_init(struct phy_device *phydev)
{
/* +1 RC_CAL codes for RL centering for both LT and HT conditions */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_2, 0xd003);
/* Cut master bias current by 2% to compensate for RC_CAL offset */
bcm_phy_write_misc(phydev, DSP_TAP10, 0x791b);
/* Improve hybrid leakage */
bcm_phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x10e3);
/* Change rx_on_tune 8 to 0xf */
bcm_phy_write_misc(phydev, 0x21, 0x2, 0x87f6);
/* Change 100Tx EEE bandwidth */
bcm_phy_write_misc(phydev, 0x22, 0x2, 0x017d);
/* Enable ffe zero detection for Vitesse interoperability */
bcm_phy_write_misc(phydev, 0x26, 0x2, 0x0015);
bcm_phy_r_rc_cal_reset(phydev);
return 0;
}
static int bcm7xxx_28nm_config_init(struct phy_device *phydev)
{
u8 rev = PHY_BRCM_7XXX_REV(phydev->dev_flags);
u8 patch = PHY_BRCM_7XXX_PATCH(phydev->dev_flags);
u8 count;
int ret = 0;
/* Newer devices have moved the revision information back into a
* standard location in MII_PHYS_ID[23]
*/
if (rev == 0)
rev = phydev->phy_id & ~phydev->drv->phy_id_mask;
pr_info_once("%s: %s PHY revision: 0x%02x, patch: %d\n",
phydev_name(phydev), phydev->drv->name, rev, patch);
/* Dummy read to a register to workaround an issue upon reset where the
* internal inverter may not allow the first MDIO transaction to pass
* the MDIO management controller and make us return 0xffff for such
* reads.
*/
phy_read(phydev, MII_BMSR);
switch (rev) {
case 0xa0:
case 0xb0:
ret = bcm_phy_28nm_a0b0_afe_config_init(phydev);
break;
case 0xd0:
ret = bcm7xxx_28nm_d0_afe_config_init(phydev);
break;
case 0xe0:
case 0xf0:
/* Rev G0 introduces a roll over */
case 0x10:
ret = bcm7xxx_28nm_e0_plus_afe_config_init(phydev);
break;
case 0x01:
ret = bcm7xxx_28nm_a0_patch_afe_config_init(phydev);
break;
default:
break;
}
if (ret)
return ret;
ret = bcm_phy_enable_jumbo(phydev);
if (ret)
return ret;
ret = bcm_phy_downshift_get(phydev, &count);
if (ret)
return ret;
/* Only enable EEE if Wirespeed/downshift is disabled */
ret = bcm_phy_set_eee(phydev, count == DOWNSHIFT_DEV_DISABLE);
if (ret)
return ret;
return bcm_phy_enable_apd(phydev, true);
}
static int bcm7xxx_28nm_resume(struct phy_device *phydev)
{
int ret;
/* Re-apply workarounds coming out suspend/resume */
ret = bcm7xxx_28nm_config_init(phydev);
if (ret)
return ret;
/* 28nm Gigabit PHYs come out of reset without any half-duplex
* or "hub" compliant advertised mode, fix that. This does not
* cause any problems with the PHY library since genphy_config_aneg()
* gracefully handles auto-negotiated and forced modes.
*/
return genphy_config_aneg(phydev);
}
static int __phy_set_clr_bits(struct phy_device *dev, int location,
int set_mask, int clr_mask)
{
int v, ret;
v = __phy_read(dev, location);
if (v < 0)
return v;
v &= ~clr_mask;
v |= set_mask;
ret = __phy_write(dev, location, v);
if (ret < 0)
return ret;
return v;
}
static int phy_set_clr_bits(struct phy_device *dev, int location,
int set_mask, int clr_mask)
{
int ret;
mutex_lock(&dev->mdio.bus->mdio_lock);
ret = __phy_set_clr_bits(dev, location, set_mask, clr_mask);
mutex_unlock(&dev->mdio.bus->mdio_lock);
return ret;
}
static int bcm7xxx_28nm_ephy_01_afe_config_init(struct phy_device *phydev)
{
int ret;
/* set shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, 0);
if (ret < 0)
return ret;
/* Set current trim values INT_trim = -1, Ext_trim =0 */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_BIAS_TRIM, 0x3BE0);
if (ret < 0)
goto reset_shadow_mode;
/* Cal reset */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_TL4);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
MII_BCM7XXX_TL4_RST_MSK, 0);
if (ret < 0)
goto reset_shadow_mode;
/* Cal reset disable */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_TL4);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
0, MII_BCM7XXX_TL4_RST_MSK);
if (ret < 0)
goto reset_shadow_mode;
reset_shadow_mode:
/* reset shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, 0,
MII_BCM7XXX_SHD_MODE_2);
if (ret < 0)
return ret;
return 0;
}
/* The 28nm EPHY does not support Clause 45 (MMD) used by bcm-phy-lib */
static int bcm7xxx_28nm_ephy_apd_enable(struct phy_device *phydev)
{
int ret;
/* set shadow mode 1 */
ret = phy_set_clr_bits(phydev, MII_BRCM_FET_BRCMTEST,
MII_BRCM_FET_BT_SRE, 0);
if (ret < 0)
return ret;
/* Enable auto-power down */
ret = phy_set_clr_bits(phydev, MII_BRCM_FET_SHDW_AUXSTAT2,
MII_BRCM_FET_SHDW_AS2_APDE, 0);
if (ret < 0)
return ret;
/* reset shadow mode 1 */
ret = phy_set_clr_bits(phydev, MII_BRCM_FET_BRCMTEST, 0,
MII_BRCM_FET_BT_SRE);
if (ret < 0)
return ret;
return 0;
}
static int bcm7xxx_28nm_ephy_eee_enable(struct phy_device *phydev)
{
int ret;
/* set shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, 0);
if (ret < 0)
return ret;
/* Advertise supported modes */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_AN_EEE_ADV);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
MDIO_EEE_100TX);
if (ret < 0)
goto reset_shadow_mode;
/* Restore Defaults */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_PCS_CTRL_2);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
MII_BCM7XXX_PCS_CTRL_2_DEF);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_EEE_THRESH);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
MII_BCM7XXX_EEE_THRESH_DEF);
if (ret < 0)
goto reset_shadow_mode;
/* Enable EEE autonegotiation */
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL,
MII_BCM7XXX_SHD_3_AN_STAT);
if (ret < 0)
goto reset_shadow_mode;
ret = phy_write(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT,
(MII_BCM7XXX_AN_NULL_MSG_EN | MII_BCM7XXX_AN_EEE_EN));
if (ret < 0)
goto reset_shadow_mode;
reset_shadow_mode:
/* reset shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, 0,
MII_BCM7XXX_SHD_MODE_2);
if (ret < 0)
return ret;
/* Restart autoneg */
phy_write(phydev, MII_BMCR,
(BMCR_SPEED100 | BMCR_ANENABLE | BMCR_ANRESTART));
return 0;
}
static int bcm7xxx_28nm_ephy_config_init(struct phy_device *phydev)
{
u8 rev = phydev->phy_id & ~phydev->drv->phy_id_mask;
int ret = 0;
pr_info_once("%s: %s PHY revision: 0x%02x\n",
phydev_name(phydev), phydev->drv->name, rev);
/* Dummy read to a register to workaround a possible issue upon reset
* where the internal inverter may not allow the first MDIO transaction
* to pass the MDIO management controller and make us return 0xffff for
* such reads.
*/
phy_read(phydev, MII_BMSR);
/* Apply AFE software work-around if necessary */
if (rev == 0x01) {
ret = bcm7xxx_28nm_ephy_01_afe_config_init(phydev);
if (ret)
return ret;
}
ret = bcm7xxx_28nm_ephy_eee_enable(phydev);
if (ret)
return ret;
return bcm7xxx_28nm_ephy_apd_enable(phydev);
}
static int bcm7xxx_16nm_ephy_afe_config(struct phy_device *phydev)
{
int tmp, rcalcode, rcalnewcodelp, rcalnewcode11, rcalnewcode11d2;
/* Reset PHY */
tmp = genphy_soft_reset(phydev);
if (tmp)
return tmp;
/* Reset AFE and PLL */
bcm_phy_write_exp_sel(phydev, 0x0003, 0x0006);
/* Clear reset */
bcm_phy_write_exp_sel(phydev, 0x0003, 0x0000);
/* Write PLL/AFE control register to select 54MHz crystal */
bcm_phy_write_misc(phydev, 0x0030, 0x0001, 0x0000);
bcm_phy_write_misc(phydev, 0x0031, 0x0000, 0x044a);
/* Change Ka,Kp,Ki to pdiv=1 */
bcm_phy_write_misc(phydev, 0x0033, 0x0002, 0x71a1);
/* Configuration override */
bcm_phy_write_misc(phydev, 0x0033, 0x0001, 0x8000);
/* Change PLL_NDIV and PLL_NUDGE */
bcm_phy_write_misc(phydev, 0x0031, 0x0001, 0x2f68);
bcm_phy_write_misc(phydev, 0x0031, 0x0002, 0x0000);
/* Reference frequency is 54Mhz, config_mode[15:14] = 3 (low
* phase)
*/
bcm_phy_write_misc(phydev, 0x0030, 0x0003, 0xc036);
/* Initialize bypass mode */
bcm_phy_write_misc(phydev, 0x0032, 0x0003, 0x0000);
/* Bypass code, default: VCOCLK enabled */
bcm_phy_write_misc(phydev, 0x0033, 0x0000, 0x0002);
/* LDOs at default setting */
bcm_phy_write_misc(phydev, 0x0030, 0x0002, 0x01c0);
/* Release PLL reset */
bcm_phy_write_misc(phydev, 0x0030, 0x0001, 0x0001);
/* Bandgap curvature correction to correct default */
bcm_phy_write_misc(phydev, 0x0038, 0x0000, 0x0010);
/* Run RCAL */
bcm_phy_write_misc(phydev, 0x0039, 0x0003, 0x0038);
bcm_phy_write_misc(phydev, 0x0039, 0x0003, 0x003b);
udelay(2);
bcm_phy_write_misc(phydev, 0x0039, 0x0003, 0x003f);
mdelay(5);
/* AFE_CAL_CONFIG_0, Vref=1000, Target=10, averaging enabled */
bcm_phy_write_misc(phydev, 0x0039, 0x0001, 0x1c82);
/* AFE_CAL_CONFIG_0, no reset and analog powerup */
bcm_phy_write_misc(phydev, 0x0039, 0x0001, 0x9e82);
udelay(2);
/* AFE_CAL_CONFIG_0, start calibration */
bcm_phy_write_misc(phydev, 0x0039, 0x0001, 0x9f82);
udelay(100);
/* AFE_CAL_CONFIG_0, clear start calibration, set HiBW */
bcm_phy_write_misc(phydev, 0x0039, 0x0001, 0x9e86);
udelay(2);
/* AFE_CAL_CONFIG_0, start calibration with hi BW mode set */
bcm_phy_write_misc(phydev, 0x0039, 0x0001, 0x9f86);
udelay(100);
/* Adjust 10BT amplitude additional +7% and 100BT +2% */
bcm_phy_write_misc(phydev, 0x0038, 0x0001, 0xe7ea);
/* Adjust 1G mode amplitude and 1G testmode1 */
bcm_phy_write_misc(phydev, 0x0038, 0x0002, 0xede0);
/* Read CORE_EXPA9 */
tmp = bcm_phy_read_exp_sel(phydev, 0x00a9);
/* CORE_EXPA9[6:1] is rcalcode[5:0] */
rcalcode = (tmp & 0x7e) / 2;
/* Correct RCAL code + 1 is -1% rprogr, LP: +16 */
rcalnewcodelp = rcalcode + 16;
/* Correct RCAL code + 1 is -15 rprogr, 11: +10 */
rcalnewcode11 = rcalcode + 10;
/* Saturate if necessary */
if (rcalnewcodelp > 0x3f)
rcalnewcodelp = 0x3f;
if (rcalnewcode11 > 0x3f)
rcalnewcode11 = 0x3f;
/* REXT=1 BYP=1 RCAL_st1<5:0>=new rcal code */
tmp = 0x00f8 + rcalnewcodelp * 256;
/* Program into AFE_CAL_CONFIG_2 */
bcm_phy_write_misc(phydev, 0x0039, 0x0003, tmp);
/* AFE_BIAS_CONFIG_0 10BT bias code (Bias: E4) */
bcm_phy_write_misc(phydev, 0x0038, 0x0001, 0xe7e4);
/* invert adc clock output and 'adc refp ldo current To correct
* default
*/
bcm_phy_write_misc(phydev, 0x003b, 0x0000, 0x8002);
/* 100BT stair case, high BW, 1G stair case, alternate encode */
bcm_phy_write_misc(phydev, 0x003c, 0x0003, 0xf882);
/* 1000BT DAC transition method per Erol, bits[32], DAC Shuffle
* sequence 1 + 10BT imp adjust bits
*/
bcm_phy_write_misc(phydev, 0x003d, 0x0000, 0x3201);
/* Non-overlap fix */
bcm_phy_write_misc(phydev, 0x003a, 0x0002, 0x0c00);
/* pwdb override (rxconfig<5>) to turn on RX LDO indpendent of
* pwdb controls from DSP_TAP10
*/
bcm_phy_write_misc(phydev, 0x003a, 0x0001, 0x0020);
/* Remove references to channel 2 and 3 */
bcm_phy_write_misc(phydev, 0x003b, 0x0002, 0x0000);
bcm_phy_write_misc(phydev, 0x003b, 0x0003, 0x0000);
/* Set cal_bypassb bit rxconfig<43> */
bcm_phy_write_misc(phydev, 0x003a, 0x0003, 0x0800);
udelay(2);
/* Revert pwdb_override (rxconfig<5>) to 0 so that the RX pwr
* is controlled by DSP.
*/
bcm_phy_write_misc(phydev, 0x003a, 0x0001, 0x0000);
/* Drop LSB */
rcalnewcode11d2 = (rcalnewcode11 & 0xfffe) / 2;
tmp = bcm_phy_read_misc(phydev, 0x003d, 0x0001);
/* Clear bits [11:5] */
tmp &= ~0xfe0;
/* set txcfg_ch0<5>=1 (enable + set local rcal) */
tmp |= 0x0020 | (rcalnewcode11d2 * 64);
bcm_phy_write_misc(phydev, 0x003d, 0x0001, tmp);
bcm_phy_write_misc(phydev, 0x003d, 0x0002, tmp);
tmp = bcm_phy_read_misc(phydev, 0x003d, 0x0000);
/* set txcfg<45:44>=11 (enable Rextra + invert fullscaledetect)
*/
tmp &= ~0x3000;
tmp |= 0x3000;
bcm_phy_write_misc(phydev, 0x003d, 0x0000, tmp);
return 0;
}
static int bcm7xxx_16nm_ephy_config_init(struct phy_device *phydev)
{
int ret, val;
ret = bcm7xxx_16nm_ephy_afe_config(phydev);
if (ret)
return ret;
ret = bcm_phy_set_eee(phydev, true);
if (ret)
return ret;
ret = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR3);
if (ret < 0)
return ret;
val = ret;
/* Auto power down of DLL enabled,
* TXC/RXC disabled during auto power down.
*/
val &= ~BCM54XX_SHD_SCR3_DLLAPD_DIS;
val |= BIT(8);
ret = bcm_phy_write_shadow(phydev, BCM54XX_SHD_SCR3, val);
if (ret < 0)
return ret;
return bcm_phy_enable_apd(phydev, true);
}
static int bcm7xxx_16nm_ephy_resume(struct phy_device *phydev)
{
int ret;
/* Re-apply workarounds coming out suspend/resume */
ret = bcm7xxx_16nm_ephy_config_init(phydev);
if (ret)
return ret;
return genphy_config_aneg(phydev);
}
#define MII_BCM7XXX_REG_INVALID 0xff
static u8 bcm7xxx_28nm_ephy_regnum_to_shd(u16 regnum)
{
switch (regnum) {
case MDIO_CTRL1:
return MII_BCM7XXX_SHD_3_PCS_CTRL;
case MDIO_STAT1:
return MII_BCM7XXX_SHD_3_PCS_STATUS;
case MDIO_PCS_EEE_ABLE:
return MII_BCM7XXX_SHD_3_EEE_CAP;
case MDIO_AN_EEE_ADV:
return MII_BCM7XXX_SHD_3_AN_EEE_ADV;
case MDIO_AN_EEE_LPABLE:
return MII_BCM7XXX_SHD_3_EEE_LP;
case MDIO_PCS_EEE_WK_ERR:
return MII_BCM7XXX_SHD_3_EEE_WK_ERR;
default:
return MII_BCM7XXX_REG_INVALID;
}
}
static bool bcm7xxx_28nm_ephy_dev_valid(int devnum)
{
return devnum == MDIO_MMD_AN || devnum == MDIO_MMD_PCS;
}
static int bcm7xxx_28nm_ephy_read_mmd(struct phy_device *phydev,
int devnum, u16 regnum)
{
u8 shd = bcm7xxx_28nm_ephy_regnum_to_shd(regnum);
int ret;
if (!bcm7xxx_28nm_ephy_dev_valid(devnum) ||
shd == MII_BCM7XXX_REG_INVALID)
return -EOPNOTSUPP;
/* set shadow mode 2 */
ret = __phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, 0);
if (ret < 0)
return ret;
/* Access the desired shadow register address */
ret = __phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL, shd);
if (ret < 0)
goto reset_shadow_mode;
ret = __phy_read(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT);
reset_shadow_mode:
/* reset shadow mode 2 */
__phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, 0,
MII_BCM7XXX_SHD_MODE_2);
return ret;
}
static int bcm7xxx_28nm_ephy_write_mmd(struct phy_device *phydev,
int devnum, u16 regnum, u16 val)
{
u8 shd = bcm7xxx_28nm_ephy_regnum_to_shd(regnum);
int ret;
if (!bcm7xxx_28nm_ephy_dev_valid(devnum) ||
shd == MII_BCM7XXX_REG_INVALID)
return -EOPNOTSUPP;
/* set shadow mode 2 */
ret = __phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, 0);
if (ret < 0)
return ret;
/* Access the desired shadow register address */
ret = __phy_write(phydev, MII_BCM7XXX_SHD_2_ADDR_CTRL, shd);
if (ret < 0)
goto reset_shadow_mode;
/* Write the desired value in the shadow register */
__phy_write(phydev, MII_BCM7XXX_SHD_2_CTRL_STAT, val);
reset_shadow_mode:
/* reset shadow mode 2 */
return __phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, 0,
MII_BCM7XXX_SHD_MODE_2);
}
static int bcm7xxx_28nm_ephy_resume(struct phy_device *phydev)
{
int ret;
/* Re-apply workarounds coming out suspend/resume */
ret = bcm7xxx_28nm_ephy_config_init(phydev);
if (ret)
return ret;
return genphy_config_aneg(phydev);
}
static int bcm7xxx_config_init(struct phy_device *phydev)
{
int ret;
/* Enable 64 clock MDIO */
phy_write(phydev, MII_BCM7XXX_AUX_MODE, MII_BCM7XXX_64CLK_MDIO);
phy_read(phydev, MII_BCM7XXX_AUX_MODE);
/* set shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST,
MII_BCM7XXX_SHD_MODE_2, MII_BCM7XXX_SHD_MODE_2);
if (ret < 0)
return ret;
/* set iddq_clkbias */
phy_write(phydev, MII_BCM7XXX_100TX_DISC, 0x0F00);
udelay(10);
/* reset iddq_clkbias */
phy_write(phydev, MII_BCM7XXX_100TX_DISC, 0x0C00);
phy_write(phydev, MII_BCM7XXX_100TX_FALSE_CAR, 0x7555);
/* reset shadow mode 2 */
ret = phy_set_clr_bits(phydev, MII_BCM7XXX_TEST, 0, MII_BCM7XXX_SHD_MODE_2);
if (ret < 0)
return ret;
return 0;
}
/* Workaround for putting the PHY in IDDQ mode, required
* for all BCM7XXX 40nm and 65nm PHYs
*/
static int bcm7xxx_suspend(struct phy_device *phydev)
{
int ret;
static const struct bcm7xxx_regs {
int reg;
u16 value;
} bcm7xxx_suspend_cfg[] = {
{ MII_BCM7XXX_TEST, 0x008b },
{ MII_BCM7XXX_100TX_AUX_CTL, 0x01c0 },
{ MII_BCM7XXX_100TX_DISC, 0x7000 },
{ MII_BCM7XXX_TEST, 0x000f },
{ MII_BCM7XXX_100TX_AUX_CTL, 0x20d0 },
{ MII_BCM7XXX_TEST, 0x000b },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(bcm7xxx_suspend_cfg); i++) {
ret = phy_write(phydev,
bcm7xxx_suspend_cfg[i].reg,
bcm7xxx_suspend_cfg[i].value);
if (ret)
return ret;
}
return 0;
}
static int bcm7xxx_28nm_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna,
void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return bcm_phy_downshift_get(phydev, (u8 *)data);
default:
return -EOPNOTSUPP;
}
}
static int bcm7xxx_28nm_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna,
const void *data)
{
u8 count = *(u8 *)data;
int ret;
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
ret = bcm_phy_downshift_set(phydev, count);
break;
default:
return -EOPNOTSUPP;
}
if (ret)
return ret;
/* Disable EEE advertisement since this prevents the PHY
* from successfully linking up, trigger auto-negotiation restart
* to let the MAC decide what to do.
*/
ret = bcm_phy_set_eee(phydev, count == DOWNSHIFT_DEV_DISABLE);
if (ret)
return ret;
return genphy_restart_aneg(phydev);
}
static void bcm7xxx_28nm_get_phy_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
struct bcm7xxx_phy_priv *priv = phydev->priv;
bcm_phy_get_stats(phydev, priv->stats, stats, data);
}
static int bcm7xxx_28nm_probe(struct phy_device *phydev)
{
struct bcm7xxx_phy_priv *priv;
int ret = 0;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
priv->stats = devm_kcalloc(&phydev->mdio.dev,
bcm_phy_get_sset_count(phydev), sizeof(u64),
GFP_KERNEL);
if (!priv->stats)
return -ENOMEM;
priv->clk = devm_clk_get_optional(&phydev->mdio.dev, NULL);
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
/* Dummy read to a register to workaround an issue upon reset where the
* internal inverter may not allow the first MDIO transaction to pass
* the MDIO management controller and make us return 0xffff for such
* reads. This is needed to ensure that any subsequent reads to the
* PHY will succeed.
*/
phy_read(phydev, MII_BMSR);
return ret;
}
static void bcm7xxx_28nm_remove(struct phy_device *phydev)
{
struct bcm7xxx_phy_priv *priv = phydev->priv;
clk_disable_unprepare(priv->clk);
}
#define BCM7XXX_28NM_GPHY(_oui, _name) \
{ \
.phy_id = (_oui), \
.phy_id_mask = 0xfffffff0, \
.name = _name, \
/* PHY_GBIT_FEATURES */ \
.flags = PHY_IS_INTERNAL, \
.config_init = bcm7xxx_28nm_config_init, \
.resume = bcm7xxx_28nm_resume, \
.get_tunable = bcm7xxx_28nm_get_tunable, \
.set_tunable = bcm7xxx_28nm_set_tunable, \
.get_sset_count = bcm_phy_get_sset_count, \
.get_strings = bcm_phy_get_strings, \
.get_stats = bcm7xxx_28nm_get_phy_stats, \
.probe = bcm7xxx_28nm_probe, \
.remove = bcm7xxx_28nm_remove, \
}
#define BCM7XXX_28NM_EPHY(_oui, _name) \
{ \
.phy_id = (_oui), \
.phy_id_mask = 0xfffffff0, \
.name = _name, \
/* PHY_BASIC_FEATURES */ \
.flags = PHY_IS_INTERNAL, \
.config_init = bcm7xxx_28nm_ephy_config_init, \
.resume = bcm7xxx_28nm_ephy_resume, \
.get_sset_count = bcm_phy_get_sset_count, \
.get_strings = bcm_phy_get_strings, \
.get_stats = bcm7xxx_28nm_get_phy_stats, \
.probe = bcm7xxx_28nm_probe, \
.remove = bcm7xxx_28nm_remove, \
.read_mmd = bcm7xxx_28nm_ephy_read_mmd, \
.write_mmd = bcm7xxx_28nm_ephy_write_mmd, \
}
#define BCM7XXX_40NM_EPHY(_oui, _name) \
{ \
.phy_id = (_oui), \
.phy_id_mask = 0xfffffff0, \
.name = _name, \
/* PHY_BASIC_FEATURES */ \
.flags = PHY_IS_INTERNAL, \
.soft_reset = genphy_soft_reset, \
.config_init = bcm7xxx_config_init, \
.suspend = bcm7xxx_suspend, \
.resume = bcm7xxx_config_init, \
}
#define BCM7XXX_16NM_EPHY(_oui, _name) \
{ \
.phy_id = (_oui), \
.phy_id_mask = 0xfffffff0, \
.name = _name, \
/* PHY_BASIC_FEATURES */ \
.flags = PHY_IS_INTERNAL, \
.probe = bcm7xxx_28nm_probe, \
.remove = bcm7xxx_28nm_remove, \
.config_init = bcm7xxx_16nm_ephy_config_init, \
.config_aneg = genphy_config_aneg, \
.read_status = genphy_read_status, \
.resume = bcm7xxx_16nm_ephy_resume, \
}
static struct phy_driver bcm7xxx_driver[] = {
BCM7XXX_28NM_EPHY(PHY_ID_BCM72113, "Broadcom BCM72113"),
BCM7XXX_28NM_EPHY(PHY_ID_BCM72116, "Broadcom BCM72116"),
BCM7XXX_16NM_EPHY(PHY_ID_BCM72165, "Broadcom BCM72165"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7250, "Broadcom BCM7250"),
BCM7XXX_28NM_EPHY(PHY_ID_BCM7255, "Broadcom BCM7255"),
BCM7XXX_28NM_EPHY(PHY_ID_BCM7260, "Broadcom BCM7260"),
BCM7XXX_28NM_EPHY(PHY_ID_BCM7268, "Broadcom BCM7268"),
BCM7XXX_28NM_EPHY(PHY_ID_BCM7271, "Broadcom BCM7271"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7278, "Broadcom BCM7278"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7364, "Broadcom BCM7364"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7366, "Broadcom BCM7366"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM74371, "Broadcom BCM74371"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7439, "Broadcom BCM7439"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7439_2, "Broadcom BCM7439 (2)"),
BCM7XXX_28NM_GPHY(PHY_ID_BCM7445, "Broadcom BCM7445"),
BCM7XXX_40NM_EPHY(PHY_ID_BCM7346, "Broadcom BCM7346"),
BCM7XXX_40NM_EPHY(PHY_ID_BCM7362, "Broadcom BCM7362"),
BCM7XXX_40NM_EPHY(PHY_ID_BCM7425, "Broadcom BCM7425"),
BCM7XXX_40NM_EPHY(PHY_ID_BCM7429, "Broadcom BCM7429"),
BCM7XXX_40NM_EPHY(PHY_ID_BCM7435, "Broadcom BCM7435"),
BCM7XXX_16NM_EPHY(PHY_ID_BCM7712, "Broadcom BCM7712"),
};
static struct mdio_device_id __maybe_unused bcm7xxx_tbl[] = {
{ PHY_ID_BCM72113, 0xfffffff0 },
{ PHY_ID_BCM72116, 0xfffffff0, },
{ PHY_ID_BCM72165, 0xfffffff0, },
{ PHY_ID_BCM7250, 0xfffffff0, },
{ PHY_ID_BCM7255, 0xfffffff0, },
{ PHY_ID_BCM7260, 0xfffffff0, },
{ PHY_ID_BCM7268, 0xfffffff0, },
{ PHY_ID_BCM7271, 0xfffffff0, },
{ PHY_ID_BCM7278, 0xfffffff0, },
{ PHY_ID_BCM7364, 0xfffffff0, },
{ PHY_ID_BCM7366, 0xfffffff0, },
{ PHY_ID_BCM7346, 0xfffffff0, },
{ PHY_ID_BCM7362, 0xfffffff0, },
{ PHY_ID_BCM7425, 0xfffffff0, },
{ PHY_ID_BCM7429, 0xfffffff0, },
{ PHY_ID_BCM74371, 0xfffffff0, },
{ PHY_ID_BCM7439, 0xfffffff0, },
{ PHY_ID_BCM7435, 0xfffffff0, },
{ PHY_ID_BCM7445, 0xfffffff0, },
{ PHY_ID_BCM7712, 0xfffffff0, },
{ }
};
module_phy_driver(bcm7xxx_driver);
MODULE_DEVICE_TABLE(mdio, bcm7xxx_tbl);
MODULE_DESCRIPTION("Broadcom BCM7xxx internal PHY driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Broadcom Corporation");