linuxdebug/drivers/net/dsa/microchip/ksz8795.c

1421 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ8795 switch driver
*
* Copyright (C) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/micrel_phy.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include <linux/phylink.h>
#include "ksz_common.h"
#include "ksz8795_reg.h"
#include "ksz8.h"
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
{
const u16 *regs;
u16 ctrl_addr;
int ret = 0;
regs = dev->info->regs;
mutex_lock(&dev->alu_mutex);
ctrl_addr = IND_ACC_TABLE(table) | addr;
ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
if (!ret)
ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
mutex_unlock(&dev->alu_mutex);
return ret;
}
int ksz8_reset_switch(struct ksz_device *dev)
{
if (ksz_is_ksz88x3(dev)) {
/* reset switch */
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
} else {
/* reset switch */
ksz_write8(dev, REG_POWER_MANAGEMENT_1,
SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
}
return 0;
}
static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
{
u8 hi, lo;
/* Number of queues can only be 1, 2, or 4. */
switch (queue) {
case 4:
case 3:
queue = PORT_QUEUE_SPLIT_4;
break;
case 2:
queue = PORT_QUEUE_SPLIT_2;
break;
default:
queue = PORT_QUEUE_SPLIT_1;
}
ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
lo &= ~PORT_QUEUE_SPLIT_L;
if (queue & PORT_QUEUE_SPLIT_2)
lo |= PORT_QUEUE_SPLIT_L;
hi &= ~PORT_QUEUE_SPLIT_H;
if (queue & PORT_QUEUE_SPLIT_4)
hi |= PORT_QUEUE_SPLIT_H;
ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
/* Default is port based for egress rate limit. */
if (queue != PORT_QUEUE_SPLIT_1)
ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
true);
}
void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
{
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = dev->info->masks;
regs = dev->info->regs;
ctrl_addr = addr + dev->info->reg_mib_cnt * port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_COUNTER_VALUE + 1;
*cnt += data & MIB_COUNTER_VALUE;
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = dev->info->masks;
regs = dev->info->regs;
addr -= dev->info->reg_mib_cnt;
ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (addr < 2) {
u64 total;
total = check & MIB_TOTAL_BYTES_H;
total <<= 32;
*cnt += total;
*cnt += data;
if (check & masks[MIB_COUNTER_OVERFLOW]) {
total = MIB_TOTAL_BYTES_H + 1;
total <<= 32;
*cnt += total;
}
} else {
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_PACKET_DROPPED + 1;
*cnt += data & MIB_PACKET_DROPPED;
}
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
u32 *last = (u32 *)dropped;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u32 cur;
regs = dev->info->regs;
addr -= dev->info->reg_mib_cnt;
ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
KSZ8863_MIB_PACKET_DROPPED_RX_0;
ctrl_addr += port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
mutex_unlock(&dev->alu_mutex);
data &= MIB_PACKET_DROPPED;
cur = last[addr];
if (data != cur) {
last[addr] = data;
if (data < cur)
data += MIB_PACKET_DROPPED + 1;
data -= cur;
*cnt += data;
}
}
void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
if (ksz_is_ksz88x3(dev))
ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
else
ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
}
void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
if (ksz_is_ksz88x3(dev))
return;
/* enable the port for flush/freeze function */
if (freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
/* disable the port after freeze is done */
if (!freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
void ksz8_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
u64 *dropped;
if (!ksz_is_ksz88x3(dev)) {
/* flush all enabled port MIB counters */
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
mib->cnt_ptr = 0;
/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
&mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
/* last one in storage */
dropped = &mib->counters[dev->info->mib_cnt];
/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->mib_cnt) {
dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
dropped, &mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
}
static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
{
const u16 *regs;
u16 ctrl_addr;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
ksz_read64(dev, regs[REG_IND_DATA_HI], data);
mutex_unlock(&dev->alu_mutex);
}
static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
{
const u16 *regs;
u16 ctrl_addr;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(table) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write64(dev, regs[REG_IND_DATA_HI], data);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
mutex_unlock(&dev->alu_mutex);
}
static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
{
int timeout = 100;
const u32 *masks;
const u16 *regs;
masks = dev->info->masks;
regs = dev->info->regs;
do {
ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
timeout--;
} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
/* Entry is not ready for accessing. */
if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
return -EAGAIN;
/* Entry is ready for accessing. */
} else {
ksz_read8(dev, regs[REG_IND_DATA_8], data);
/* There is no valid entry in the table. */
if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
return -ENXIO;
}
return 0;
}
int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u8 data;
int rc;
shifts = dev->info->shifts;
masks = dev->info->masks;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
rc = ksz8_valid_dyn_entry(dev, &data);
if (rc == -EAGAIN) {
if (addr == 0)
*entries = 0;
} else if (rc == -ENXIO) {
*entries = 0;
/* At least one valid entry in the table. */
} else {
u64 buf = 0;
int cnt;
ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
data_hi = (u32)(buf >> 32);
data_lo = (u32)buf;
/* Check out how many valid entry in the table. */
cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
shifts[DYNAMIC_MAC_ENTRIES];
*entries = cnt + 1;
*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
shifts[DYNAMIC_MAC_FID];
*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
shifts[DYNAMIC_MAC_SRC_PORT];
*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
shifts[DYNAMIC_MAC_TIMESTAMP];
mac_addr[5] = (u8)data_lo;
mac_addr[4] = (u8)(data_lo >> 8);
mac_addr[3] = (u8)(data_lo >> 16);
mac_addr[2] = (u8)(data_lo >> 24);
mac_addr[1] = (u8)data_hi;
mac_addr[0] = (u8)(data_hi >> 8);
rc = 0;
}
mutex_unlock(&dev->alu_mutex);
return rc;
}
static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu, bool *valid)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
shifts = dev->info->shifts;
masks = dev->info->masks;
ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
data_hi = data >> 32;
data_lo = (u32)data;
if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
masks[STATIC_MAC_TABLE_OVERRIDE]))) {
*valid = false;
return 0;
}
alu->mac[5] = (u8)data_lo;
alu->mac[4] = (u8)(data_lo >> 8);
alu->mac[3] = (u8)(data_lo >> 16);
alu->mac[2] = (u8)(data_lo >> 24);
alu->mac[1] = (u8)data_hi;
alu->mac[0] = (u8)(data_hi >> 8);
alu->port_forward =
(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
shifts[STATIC_MAC_FWD_PORTS];
alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
* STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
* static MAC table compared to doing write.
*/
if (ksz_is_ksz87xx(dev))
data_hi >>= 1;
alu->is_static = true;
alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
shifts[STATIC_MAC_FID];
*valid = true;
return 0;
}
void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
shifts = dev->info->shifts;
masks = dev->info->masks;
data_lo = ((u32)alu->mac[2] << 24) |
((u32)alu->mac[3] << 16) |
((u32)alu->mac[4] << 8) | alu->mac[5];
data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
if (alu->is_override)
data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
if (alu->is_use_fid) {
data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
}
if (alu->is_static)
data_hi |= masks[STATIC_MAC_TABLE_VALID];
else
data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
data = (u64)data_hi << 32 | data_lo;
ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
}
static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
u8 *member, u8 *valid)
{
const u8 *shifts;
const u32 *masks;
shifts = dev->info->shifts;
masks = dev->info->masks;
*fid = vlan & masks[VLAN_TABLE_FID];
*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
shifts[VLAN_TABLE_MEMBERSHIP_S];
*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
}
static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
u16 *vlan)
{
const u8 *shifts;
const u32 *masks;
shifts = dev->info->shifts;
masks = dev->info->masks;
*vlan = fid;
*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
if (valid)
*vlan |= masks[VLAN_TABLE_VALID];
}
static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
{
const u8 *shifts;
u64 data;
int i;
shifts = dev->info->shifts;
ksz8_r_table(dev, TABLE_VLAN, addr, &data);
addr *= 4;
for (i = 0; i < 4; i++) {
dev->vlan_cache[addr + i].table[0] = (u16)data;
data >>= shifts[VLAN_TABLE];
}
}
static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
*vlan = data[index];
}
static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
data[index] = vlan;
dev->vlan_cache[vid].table[0] = vlan;
ksz8_w_table(dev, TABLE_VLAN, addr, buf);
}
int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
{
u8 restart, speed, ctrl, link;
int processed = true;
const u16 *regs;
u8 val1, val2;
u16 data = 0;
u8 p = phy;
int ret;
regs = dev->info->regs;
switch (reg) {
case MII_BMCR:
ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
if (ret)
return ret;
ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
if (ret)
return ret;
ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
if (ret)
return ret;
if (restart & PORT_PHY_LOOPBACK)
data |= BMCR_LOOPBACK;
if (ctrl & PORT_FORCE_100_MBIT)
data |= BMCR_SPEED100;
if (ksz_is_ksz88x3(dev)) {
if ((ctrl & PORT_AUTO_NEG_ENABLE))
data |= BMCR_ANENABLE;
} else {
if (!(ctrl & PORT_AUTO_NEG_DISABLE))
data |= BMCR_ANENABLE;
}
if (restart & PORT_POWER_DOWN)
data |= BMCR_PDOWN;
if (restart & PORT_AUTO_NEG_RESTART)
data |= BMCR_ANRESTART;
if (ctrl & PORT_FORCE_FULL_DUPLEX)
data |= BMCR_FULLDPLX;
if (speed & PORT_HP_MDIX)
data |= KSZ886X_BMCR_HP_MDIX;
if (restart & PORT_FORCE_MDIX)
data |= KSZ886X_BMCR_FORCE_MDI;
if (restart & PORT_AUTO_MDIX_DISABLE)
data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
if (restart & PORT_TX_DISABLE)
data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
if (restart & PORT_LED_OFF)
data |= KSZ886X_BMCR_DISABLE_LED;
break;
case MII_BMSR:
ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
if (ret)
return ret;
data = BMSR_100FULL |
BMSR_100HALF |
BMSR_10FULL |
BMSR_10HALF |
BMSR_ANEGCAPABLE;
if (link & PORT_AUTO_NEG_COMPLETE)
data |= BMSR_ANEGCOMPLETE;
if (link & PORT_STAT_LINK_GOOD)
data |= BMSR_LSTATUS;
break;
case MII_PHYSID1:
data = KSZ8795_ID_HI;
break;
case MII_PHYSID2:
if (ksz_is_ksz88x3(dev))
data = KSZ8863_ID_LO;
else
data = KSZ8795_ID_LO;
break;
case MII_ADVERTISE:
ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
if (ret)
return ret;
data = ADVERTISE_CSMA;
if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
data |= ADVERTISE_PAUSE_CAP;
if (ctrl & PORT_AUTO_NEG_100BTX_FD)
data |= ADVERTISE_100FULL;
if (ctrl & PORT_AUTO_NEG_100BTX)
data |= ADVERTISE_100HALF;
if (ctrl & PORT_AUTO_NEG_10BT_FD)
data |= ADVERTISE_10FULL;
if (ctrl & PORT_AUTO_NEG_10BT)
data |= ADVERTISE_10HALF;
break;
case MII_LPA:
ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
if (ret)
return ret;
data = LPA_SLCT;
if (link & PORT_REMOTE_SYM_PAUSE)
data |= LPA_PAUSE_CAP;
if (link & PORT_REMOTE_100BTX_FD)
data |= LPA_100FULL;
if (link & PORT_REMOTE_100BTX)
data |= LPA_100HALF;
if (link & PORT_REMOTE_10BT_FD)
data |= LPA_10FULL;
if (link & PORT_REMOTE_10BT)
data |= LPA_10HALF;
if (data & ~LPA_SLCT)
data |= LPA_LPACK;
break;
case PHY_REG_LINK_MD:
ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
if (ret)
return ret;
ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
if (ret)
return ret;
if (val1 & PORT_START_CABLE_DIAG)
data |= PHY_START_CABLE_DIAG;
if (val1 & PORT_CABLE_10M_SHORT)
data |= PHY_CABLE_10M_SHORT;
data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
break;
case PHY_REG_PHY_CTRL:
ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
if (ret)
return ret;
if (link & PORT_MDIX_STATUS)
data |= KSZ886X_CTRL_MDIX_STAT;
break;
default:
processed = false;
break;
}
if (processed)
*val = data;
return 0;
}
int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
{
u8 restart, speed, ctrl, data;
const u16 *regs;
u8 p = phy;
int ret;
regs = dev->info->regs;
switch (reg) {
case MII_BMCR:
/* Do not support PHY reset function. */
if (val & BMCR_RESET)
break;
ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
if (ret)
return ret;
data = speed;
if (val & KSZ886X_BMCR_HP_MDIX)
data |= PORT_HP_MDIX;
else
data &= ~PORT_HP_MDIX;
if (data != speed) {
ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
if (ret)
return ret;
}
ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
if (ret)
return ret;
data = ctrl;
if (ksz_is_ksz88x3(dev)) {
if ((val & BMCR_ANENABLE))
data |= PORT_AUTO_NEG_ENABLE;
else
data &= ~PORT_AUTO_NEG_ENABLE;
} else {
if (!(val & BMCR_ANENABLE))
data |= PORT_AUTO_NEG_DISABLE;
else
data &= ~PORT_AUTO_NEG_DISABLE;
/* Fiber port does not support auto-negotiation. */
if (dev->ports[p].fiber)
data |= PORT_AUTO_NEG_DISABLE;
}
if (val & BMCR_SPEED100)
data |= PORT_FORCE_100_MBIT;
else
data &= ~PORT_FORCE_100_MBIT;
if (val & BMCR_FULLDPLX)
data |= PORT_FORCE_FULL_DUPLEX;
else
data &= ~PORT_FORCE_FULL_DUPLEX;
if (data != ctrl) {
ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
if (ret)
return ret;
}
ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
if (ret)
return ret;
data = restart;
if (val & KSZ886X_BMCR_DISABLE_LED)
data |= PORT_LED_OFF;
else
data &= ~PORT_LED_OFF;
if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
data |= PORT_TX_DISABLE;
else
data &= ~PORT_TX_DISABLE;
if (val & BMCR_ANRESTART)
data |= PORT_AUTO_NEG_RESTART;
else
data &= ~(PORT_AUTO_NEG_RESTART);
if (val & BMCR_PDOWN)
data |= PORT_POWER_DOWN;
else
data &= ~PORT_POWER_DOWN;
if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
data |= PORT_AUTO_MDIX_DISABLE;
else
data &= ~PORT_AUTO_MDIX_DISABLE;
if (val & KSZ886X_BMCR_FORCE_MDI)
data |= PORT_FORCE_MDIX;
else
data &= ~PORT_FORCE_MDIX;
if (val & BMCR_LOOPBACK)
data |= PORT_PHY_LOOPBACK;
else
data &= ~PORT_PHY_LOOPBACK;
if (data != restart) {
ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
data);
if (ret)
return ret;
}
break;
case MII_ADVERTISE:
ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
if (ret)
return ret;
data = ctrl;
data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT_FD |
PORT_AUTO_NEG_10BT);
if (val & ADVERTISE_PAUSE_CAP)
data |= PORT_AUTO_NEG_SYM_PAUSE;
if (val & ADVERTISE_100FULL)
data |= PORT_AUTO_NEG_100BTX_FD;
if (val & ADVERTISE_100HALF)
data |= PORT_AUTO_NEG_100BTX;
if (val & ADVERTISE_10FULL)
data |= PORT_AUTO_NEG_10BT_FD;
if (val & ADVERTISE_10HALF)
data |= PORT_AUTO_NEG_10BT;
if (data != ctrl) {
ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
if (ret)
return ret;
}
break;
case PHY_REG_LINK_MD:
if (val & PHY_START_CABLE_DIAG)
ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
break;
default:
break;
}
return 0;
}
void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
{
u8 data;
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
data &= ~PORT_VLAN_MEMBERSHIP;
data |= (member & dev->port_mask);
ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
}
void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 learn[DSA_MAX_PORTS];
int first, index, cnt;
struct ksz_port *p;
const u16 *regs;
regs = dev->info->regs;
if ((uint)port < dev->info->port_cnt) {
first = port;
cnt = port + 1;
} else {
/* Flush all ports. */
first = 0;
cnt = dev->info->port_cnt;
}
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, regs[P_STP_CTRL],
learn[index] | PORT_LEARN_DISABLE);
}
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
}
}
int ksz8_fdb_dump(struct ksz_device *dev, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
int ret = 0;
u16 i = 0;
u16 entries = 0;
u8 timestamp = 0;
u8 fid;
u8 src_port;
u8 mac[ETH_ALEN];
do {
ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
&timestamp, &entries);
if (!ret && port == src_port) {
ret = cb(mac, fid, false, data);
if (ret)
break;
}
i++;
} while (i < entries);
if (i >= entries)
ret = 0;
return ret;
}
static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid)
{
struct alu_struct alu;
int index, ret;
int empty = 0;
alu.port_forward = 0;
for (index = 0; index < dev->info->num_statics; index++) {
bool valid;
ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
if (ret)
return ret;
if (!valid) {
/* Remember the first empty entry. */
if (!empty)
empty = index + 1;
continue;
}
if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
break;
}
/* no available entry */
if (index == dev->info->num_statics && !empty)
return -ENOSPC;
/* add entry */
if (index == dev->info->num_statics) {
index = empty - 1;
memset(&alu, 0, sizeof(alu));
memcpy(alu.mac, addr, ETH_ALEN);
alu.is_static = true;
}
alu.port_forward |= BIT(port);
if (vid) {
alu.is_use_fid = true;
/* Need a way to map VID to FID. */
alu.fid = vid;
}
ksz8_w_sta_mac_table(dev, index, &alu);
return 0;
}
static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid)
{
struct alu_struct alu;
int index, ret;
for (index = 0; index < dev->info->num_statics; index++) {
bool valid;
ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
if (ret)
return ret;
if (!valid)
continue;
if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
break;
}
/* no available entry */
if (index == dev->info->num_statics)
goto exit;
/* clear port */
alu.port_forward &= ~BIT(port);
if (!alu.port_forward)
alu.is_static = false;
ksz8_w_sta_mac_table(dev, index, &alu);
exit:
return 0;
}
int ksz8_mdb_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
}
int ksz8_mdb_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
}
int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
struct netlink_ext_ack *extack)
{
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
/* Discard packets with VID not enabled on the switch */
ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
/* Discard packets with VID not enabled on the ingress port */
for (port = 0; port < dev->phy_port_cnt; ++port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
flag);
return 0;
}
static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
{
if (ksz_is_ksz88x3(dev)) {
ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
0x03 << (4 - 2 * port), state);
} else {
ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
}
}
int ksz8_port_vlan_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_port *p = &dev->ports[port];
u16 data, new_pvid = 0;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
/* If a VLAN is added with untagged flag different from the
* port's Remove Tag flag, we need to change the latter.
* Ignore VID 0, which is always untagged.
* Ignore CPU port, which will always be tagged.
*/
if (untagged != p->remove_tag && vlan->vid != 0 &&
port != dev->cpu_port) {
unsigned int vid;
/* Reject attempts to add a VLAN that requires the
* Remove Tag flag to be changed, unless there are no
* other VLANs currently configured.
*/
for (vid = 1; vid < dev->info->num_vlans; ++vid) {
/* Skip the VID we are going to add or reconfigure */
if (vid == vlan->vid)
continue;
ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
&fid, &member, &valid);
if (valid && (member & BIT(port)))
return -EINVAL;
}
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
p->remove_tag = untagged;
}
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
/* First time to setup the VLAN entry. */
if (!valid) {
/* Need to find a way to map VID to FID. */
fid = 1;
valid = 1;
}
member |= BIT(port);
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
new_pvid = vlan->vid;
if (new_pvid) {
u16 vid;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
vid &= ~VLAN_VID_MASK;
vid |= new_pvid;
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
ksz8_port_enable_pvid(dev, port, true);
}
return 0;
}
int ksz8_port_vlan_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan)
{
u16 data, pvid;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
pvid = pvid & 0xFFF;
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
member &= ~BIT(port);
/* Invalidate the entry if no more member. */
if (!member) {
fid = 0;
valid = 0;
}
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
if (pvid == vlan->vid)
ksz8_port_enable_pvid(dev, port, false);
return 0;
}
int ksz8_port_mirror_add(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
if (ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
dev->mirror_rx |= BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
dev->mirror_tx |= BIT(port);
}
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
if (dev->mirror_rx || dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
return 0;
}
void ksz8_port_mirror_del(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
u8 data;
if (mirror->ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
dev->mirror_rx &= ~BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
dev->mirror_tx &= ~BIT(port);
}
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!dev->mirror_rx && !dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
{
struct ksz_port *p = &dev->ports[port];
if (!p->interface && dev->compat_interface) {
dev_warn(dev->dev,
"Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
"Please update your device tree.\n",
port);
p->interface = dev->compat_interface;
}
}
void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct dsa_switch *ds = dev->ds;
const u32 *masks;
u8 member;
masks = dev->info->masks;
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
if (!ksz_is_ksz88x3(dev))
ksz8795_set_prio_queue(dev, port, 4);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, P_802_1P_CTRL,
masks[PORT_802_1P_REMAPPING], false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
if (cpu_port) {
if (!ksz_is_ksz88x3(dev))
ksz8795_cpu_interface_select(dev, port);
member = dsa_user_ports(ds);
} else {
member = BIT(dsa_upstream_port(ds, port));
}
ksz8_cfg_port_member(dev, port, member);
}
void ksz8_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
const u32 *masks;
const u16 *regs;
u8 remote;
int i;
masks = dev->info->masks;
regs = dev->info->regs;
/* Switch marks the maximum frame with extra byte as oversize. */
ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
p = &dev->ports[dev->cpu_port];
p->on = 1;
ksz8_port_setup(dev, dev->cpu_port, true);
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
/* Last port may be disabled. */
if (i == dev->phy_port_cnt)
break;
p->on = 1;
}
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
if (!p->on)
continue;
if (!ksz_is_ksz88x3(dev)) {
ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
if (remote & KSZ8_PORT_FIBER_MODE)
p->fiber = 1;
}
if (p->fiber)
ksz_port_cfg(dev, i, regs[P_STP_CTRL],
PORT_FORCE_FLOW_CTRL, true);
else
ksz_port_cfg(dev, i, regs[P_STP_CTRL],
PORT_FORCE_FLOW_CTRL, false);
}
}
static int ksz8_handle_global_errata(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
/* KSZ87xx Errata DS80000687C.
* Module 2: Link drops with some EEE link partners.
* An issue with the EEE next page exchange between the
* KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
* the link dropping.
*/
if (dev->info->ksz87xx_eee_link_erratum)
ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
return ret;
}
int ksz8_enable_stp_addr(struct ksz_device *dev)
{
struct alu_struct alu;
/* Setup STP address for STP operation. */
memset(&alu, 0, sizeof(alu));
ether_addr_copy(alu.mac, eth_stp_addr);
alu.is_static = true;
alu.is_override = true;
alu.port_forward = dev->info->cpu_ports;
ksz8_w_sta_mac_table(dev, 0, &alu);
return 0;
}
int ksz8_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int i;
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
/* Enable automatic fast aging when link changed detected. */
ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
/* Enable aggressive back off algorithm in half duplex mode. */
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
/*
* Make sure unicast VLAN boundary is set as default and
* enable no excessive collision drop.
*/
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
if (!ksz_is_ksz88x3(dev))
ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
for (i = 0; i < (dev->info->num_vlans / 4); i++)
ksz8_r_vlan_entries(dev, i);
return ksz8_handle_global_errata(ds);
}
void ksz8_get_caps(struct ksz_device *dev, int port,
struct phylink_config *config)
{
config->mac_capabilities = MAC_10 | MAC_100;
/* Silicon Errata Sheet (DS80000830A):
* "Port 1 does not respond to received flow control PAUSE frames"
* So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
* switches.
*/
if (!ksz_is_ksz88x3(dev) || port)
config->mac_capabilities |= MAC_SYM_PAUSE;
/* Asym pause is not supported on KSZ8863 and KSZ8873 */
if (!ksz_is_ksz88x3(dev))
config->mac_capabilities |= MAC_ASYM_PAUSE;
}
u32 ksz8_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
int ksz8_switch_init(struct ksz_device *dev)
{
dev->cpu_port = fls(dev->info->cpu_ports) - 1;
dev->phy_port_cnt = dev->info->port_cnt - 1;
dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
/* We rely on software untagging on the CPU port, so that we
* can support both tagged and untagged VLANs
*/
dev->ds->untag_bridge_pvid = true;
/* VLAN filtering is partly controlled by the global VLAN
* Enable flag
*/
dev->ds->vlan_filtering_is_global = true;
return 0;
}
void ksz8_switch_exit(struct ksz_device *dev)
{
ksz8_reset_switch(dev);
}
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
MODULE_LICENSE("GPL");