linuxdebug/drivers/mmc/host/sdhci-of-sparx5.c

271 lines
7.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers/mmc/host/sdhci-of-sparx5.c
*
* MCHP Sparx5 SoC Secure Digital Host Controller Interface.
*
* Copyright (c) 2019 Microchip Inc.
*
* Author: Lars Povlsen <lars.povlsen@microchip.com>
*/
#include <linux/sizes.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/of_device.h>
#include <linux/mfd/syscon.h>
#include <linux/dma-mapping.h>
#include "sdhci-pltfm.h"
#define CPU_REGS_GENERAL_CTRL (0x22 * 4)
#define MSHC_DLY_CC_MASK GENMASK(16, 13)
#define MSHC_DLY_CC_SHIFT 13
#define MSHC_DLY_CC_MAX 15
#define CPU_REGS_PROC_CTRL (0x2C * 4)
#define ACP_CACHE_FORCE_ENA BIT(4)
#define ACP_AWCACHE BIT(3)
#define ACP_ARCACHE BIT(2)
#define ACP_CACHE_MASK (ACP_CACHE_FORCE_ENA|ACP_AWCACHE|ACP_ARCACHE)
#define MSHC2_VERSION 0x500 /* Off 0x140, reg 0x0 */
#define MSHC2_TYPE 0x504 /* Off 0x140, reg 0x1 */
#define MSHC2_EMMC_CTRL 0x52c /* Off 0x140, reg 0xB */
#define MSHC2_EMMC_CTRL_EMMC_RST_N BIT(2)
#define MSHC2_EMMC_CTRL_IS_EMMC BIT(0)
struct sdhci_sparx5_data {
struct sdhci_host *host;
struct regmap *cpu_ctrl;
int delay_clock;
};
#define BOUNDARY_OK(addr, len) \
((addr | (SZ_128M - 1)) == ((addr + len - 1) | (SZ_128M - 1)))
/*
* If DMA addr spans 128MB boundary, we split the DMA transfer into two
* so that each DMA transfer doesn't exceed the boundary.
*/
static void sdhci_sparx5_adma_write_desc(struct sdhci_host *host, void **desc,
dma_addr_t addr, int len,
unsigned int cmd)
{
int tmplen, offset;
if (likely(!len || BOUNDARY_OK(addr, len))) {
sdhci_adma_write_desc(host, desc, addr, len, cmd);
return;
}
pr_debug("%s: write_desc: splitting dma len %d, offset %pad\n",
mmc_hostname(host->mmc), len, &addr);
offset = addr & (SZ_128M - 1);
tmplen = SZ_128M - offset;
sdhci_adma_write_desc(host, desc, addr, tmplen, cmd);
addr += tmplen;
len -= tmplen;
sdhci_adma_write_desc(host, desc, addr, len, cmd);
}
static void sparx5_set_cacheable(struct sdhci_host *host, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_sparx5_data *sdhci_sparx5 = sdhci_pltfm_priv(pltfm_host);
pr_debug("%s: Set Cacheable = 0x%x\n", mmc_hostname(host->mmc), value);
/* Update ACP caching attributes in HW */
regmap_update_bits(sdhci_sparx5->cpu_ctrl,
CPU_REGS_PROC_CTRL, ACP_CACHE_MASK, value);
}
static void sparx5_set_delay(struct sdhci_host *host, u8 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_sparx5_data *sdhci_sparx5 = sdhci_pltfm_priv(pltfm_host);
pr_debug("%s: Set DLY_CC = %u\n", mmc_hostname(host->mmc), value);
/* Update DLY_CC in HW */
regmap_update_bits(sdhci_sparx5->cpu_ctrl,
CPU_REGS_GENERAL_CTRL,
MSHC_DLY_CC_MASK,
(value << MSHC_DLY_CC_SHIFT));
}
static void sdhci_sparx5_set_emmc(struct sdhci_host *host)
{
if (!mmc_card_is_removable(host->mmc)) {
u8 value;
value = sdhci_readb(host, MSHC2_EMMC_CTRL);
if (!(value & MSHC2_EMMC_CTRL_IS_EMMC)) {
value |= MSHC2_EMMC_CTRL_IS_EMMC;
pr_debug("%s: Set EMMC_CTRL: 0x%08x\n",
mmc_hostname(host->mmc), value);
sdhci_writeb(host, value, MSHC2_EMMC_CTRL);
}
}
}
static void sdhci_sparx5_reset_emmc(struct sdhci_host *host)
{
u8 value;
pr_debug("%s: Toggle EMMC_CTRL.EMMC_RST_N\n", mmc_hostname(host->mmc));
value = sdhci_readb(host, MSHC2_EMMC_CTRL) &
~MSHC2_EMMC_CTRL_EMMC_RST_N;
sdhci_writeb(host, value, MSHC2_EMMC_CTRL);
/* For eMMC, minimum is 1us but give it 10us for good measure */
usleep_range(10, 20);
sdhci_writeb(host, value | MSHC2_EMMC_CTRL_EMMC_RST_N,
MSHC2_EMMC_CTRL);
/* For eMMC, minimum is 200us but give it 300us for good measure */
usleep_range(300, 400);
}
static void sdhci_sparx5_reset(struct sdhci_host *host, u8 mask)
{
pr_debug("%s: *** RESET: mask %d\n", mmc_hostname(host->mmc), mask);
sdhci_reset(host, mask);
/* Be sure CARD_IS_EMMC stays set */
sdhci_sparx5_set_emmc(host);
}
static const struct sdhci_ops sdhci_sparx5_ops = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.reset = sdhci_sparx5_reset,
.adma_write_desc = sdhci_sparx5_adma_write_desc,
};
static const struct sdhci_pltfm_data sdhci_sparx5_pdata = {
.quirks = 0,
.quirks2 = SDHCI_QUIRK2_HOST_NO_CMD23 | /* Controller issue */
SDHCI_QUIRK2_NO_1_8_V, /* No sdr104, ddr50, etc */
.ops = &sdhci_sparx5_ops,
};
static int sdhci_sparx5_probe(struct platform_device *pdev)
{
int ret;
const char *syscon = "microchip,sparx5-cpu-syscon";
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_sparx5_data *sdhci_sparx5;
struct device_node *np = pdev->dev.of_node;
u32 value;
u32 extra;
host = sdhci_pltfm_init(pdev, &sdhci_sparx5_pdata,
sizeof(*sdhci_sparx5));
if (IS_ERR(host))
return PTR_ERR(host);
/*
* extra adma table cnt for cross 128M boundary handling.
*/
extra = DIV_ROUND_UP_ULL(dma_get_required_mask(&pdev->dev), SZ_128M);
if (extra > SDHCI_MAX_SEGS)
extra = SDHCI_MAX_SEGS;
host->adma_table_cnt += extra;
pltfm_host = sdhci_priv(host);
sdhci_sparx5 = sdhci_pltfm_priv(pltfm_host);
sdhci_sparx5->host = host;
pltfm_host->clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(pltfm_host->clk)) {
ret = PTR_ERR(pltfm_host->clk);
dev_err(&pdev->dev, "failed to get core clk: %d\n", ret);
goto free_pltfm;
}
ret = clk_prepare_enable(pltfm_host->clk);
if (ret)
goto free_pltfm;
if (!of_property_read_u32(np, "microchip,clock-delay", &value) &&
(value > 0 && value <= MSHC_DLY_CC_MAX))
sdhci_sparx5->delay_clock = value;
sdhci_get_of_property(pdev);
ret = mmc_of_parse(host->mmc);
if (ret)
goto err_clk;
sdhci_sparx5->cpu_ctrl = syscon_regmap_lookup_by_compatible(syscon);
if (IS_ERR(sdhci_sparx5->cpu_ctrl)) {
dev_err(&pdev->dev, "No CPU syscon regmap !\n");
ret = PTR_ERR(sdhci_sparx5->cpu_ctrl);
goto err_clk;
}
if (sdhci_sparx5->delay_clock >= 0)
sparx5_set_delay(host, sdhci_sparx5->delay_clock);
if (!mmc_card_is_removable(host->mmc)) {
/* Do a HW reset of eMMC card */
sdhci_sparx5_reset_emmc(host);
/* Update EMMC_CTRL */
sdhci_sparx5_set_emmc(host);
/* If eMMC, disable SD and SDIO */
host->mmc->caps2 |= (MMC_CAP2_NO_SDIO|MMC_CAP2_NO_SD);
}
ret = sdhci_add_host(host);
if (ret)
goto err_clk;
/* Set AXI bus master to use un-cached access (for DMA) */
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA) &&
IS_ENABLED(CONFIG_DMA_DECLARE_COHERENT))
sparx5_set_cacheable(host, ACP_CACHE_FORCE_ENA);
pr_debug("%s: SDHC version: 0x%08x\n",
mmc_hostname(host->mmc), sdhci_readl(host, MSHC2_VERSION));
pr_debug("%s: SDHC type: 0x%08x\n",
mmc_hostname(host->mmc), sdhci_readl(host, MSHC2_TYPE));
return ret;
err_clk:
clk_disable_unprepare(pltfm_host->clk);
free_pltfm:
sdhci_pltfm_free(pdev);
return ret;
}
static const struct of_device_id sdhci_sparx5_of_match[] = {
{ .compatible = "microchip,dw-sparx5-sdhci" },
{ }
};
MODULE_DEVICE_TABLE(of, sdhci_sparx5_of_match);
static struct platform_driver sdhci_sparx5_driver = {
.driver = {
.name = "sdhci-sparx5",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_sparx5_of_match,
.pm = &sdhci_pltfm_pmops,
},
.probe = sdhci_sparx5_probe,
.remove = sdhci_pltfm_unregister,
};
module_platform_driver(sdhci_sparx5_driver);
MODULE_DESCRIPTION("Sparx5 SDHCI OF driver");
MODULE_AUTHOR("Lars Povlsen <lars.povlsen@microchip.com>");
MODULE_LICENSE("GPL v2");