linuxdebug/drivers/i2c/busses/i2c-designware-common.c

638 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Synopsys DesignWare I2C adapter driver.
*
* Based on the TI DAVINCI I2C adapter driver.
*
* Copyright (C) 2006 Texas Instruments.
* Copyright (C) 2007 MontaVista Software Inc.
* Copyright (C) 2009 Provigent Ltd.
*/
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/swab.h>
#include <linux/types.h>
#include <linux/units.h>
#include "i2c-designware-core.h"
static char *abort_sources[] = {
[ABRT_7B_ADDR_NOACK] =
"slave address not acknowledged (7bit mode)",
[ABRT_10ADDR1_NOACK] =
"first address byte not acknowledged (10bit mode)",
[ABRT_10ADDR2_NOACK] =
"second address byte not acknowledged (10bit mode)",
[ABRT_TXDATA_NOACK] =
"data not acknowledged",
[ABRT_GCALL_NOACK] =
"no acknowledgement for a general call",
[ABRT_GCALL_READ] =
"read after general call",
[ABRT_SBYTE_ACKDET] =
"start byte acknowledged",
[ABRT_SBYTE_NORSTRT] =
"trying to send start byte when restart is disabled",
[ABRT_10B_RD_NORSTRT] =
"trying to read when restart is disabled (10bit mode)",
[ABRT_MASTER_DIS] =
"trying to use disabled adapter",
[ARB_LOST] =
"lost arbitration",
[ABRT_SLAVE_FLUSH_TXFIFO] =
"read command so flush old data in the TX FIFO",
[ABRT_SLAVE_ARBLOST] =
"slave lost the bus while transmitting data to a remote master",
[ABRT_SLAVE_RD_INTX] =
"incorrect slave-transmitter mode configuration",
};
static int dw_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct dw_i2c_dev *dev = context;
*val = readl_relaxed(dev->base + reg);
return 0;
}
static int dw_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct dw_i2c_dev *dev = context;
writel_relaxed(val, dev->base + reg);
return 0;
}
static int dw_reg_read_swab(void *context, unsigned int reg, unsigned int *val)
{
struct dw_i2c_dev *dev = context;
*val = swab32(readl_relaxed(dev->base + reg));
return 0;
}
static int dw_reg_write_swab(void *context, unsigned int reg, unsigned int val)
{
struct dw_i2c_dev *dev = context;
writel_relaxed(swab32(val), dev->base + reg);
return 0;
}
static int dw_reg_read_word(void *context, unsigned int reg, unsigned int *val)
{
struct dw_i2c_dev *dev = context;
*val = readw_relaxed(dev->base + reg) |
(readw_relaxed(dev->base + reg + 2) << 16);
return 0;
}
static int dw_reg_write_word(void *context, unsigned int reg, unsigned int val)
{
struct dw_i2c_dev *dev = context;
writew_relaxed(val, dev->base + reg);
writew_relaxed(val >> 16, dev->base + reg + 2);
return 0;
}
/**
* i2c_dw_init_regmap() - Initialize registers map
* @dev: device private data
*
* Autodetects needed register access mode and creates the regmap with
* corresponding read/write callbacks. This must be called before doing any
* other register access.
*/
int i2c_dw_init_regmap(struct dw_i2c_dev *dev)
{
struct regmap_config map_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.disable_locking = true,
.reg_read = dw_reg_read,
.reg_write = dw_reg_write,
.max_register = DW_IC_COMP_TYPE,
};
u32 reg;
int ret;
/*
* Skip detecting the registers map configuration if the regmap has
* already been provided by a higher code.
*/
if (dev->map)
return 0;
ret = i2c_dw_acquire_lock(dev);
if (ret)
return ret;
reg = readl(dev->base + DW_IC_COMP_TYPE);
i2c_dw_release_lock(dev);
if ((dev->flags & MODEL_MASK) == MODEL_AMD_NAVI_GPU)
map_cfg.max_register = AMD_UCSI_INTR_REG;
if (reg == swab32(DW_IC_COMP_TYPE_VALUE)) {
map_cfg.reg_read = dw_reg_read_swab;
map_cfg.reg_write = dw_reg_write_swab;
} else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
map_cfg.reg_read = dw_reg_read_word;
map_cfg.reg_write = dw_reg_write_word;
} else if (reg != DW_IC_COMP_TYPE_VALUE) {
dev_err(dev->dev,
"Unknown Synopsys component type: 0x%08x\n", reg);
return -ENODEV;
}
/*
* Note we'll check the return value of the regmap IO accessors only
* at the probe stage. The rest of the code won't do this because
* basically we have MMIO-based regmap so non of the read/write methods
* can fail.
*/
dev->map = devm_regmap_init(dev->dev, NULL, dev, &map_cfg);
if (IS_ERR(dev->map)) {
dev_err(dev->dev, "Failed to init the registers map\n");
return PTR_ERR(dev->map);
}
return 0;
}
static const u32 supported_speeds[] = {
I2C_MAX_HIGH_SPEED_MODE_FREQ,
I2C_MAX_FAST_MODE_PLUS_FREQ,
I2C_MAX_FAST_MODE_FREQ,
I2C_MAX_STANDARD_MODE_FREQ,
};
int i2c_dw_validate_speed(struct dw_i2c_dev *dev)
{
struct i2c_timings *t = &dev->timings;
unsigned int i;
/*
* Only standard mode at 100kHz, fast mode at 400kHz,
* fast mode plus at 1MHz and high speed mode at 3.4MHz are supported.
*/
for (i = 0; i < ARRAY_SIZE(supported_speeds); i++) {
if (t->bus_freq_hz == supported_speeds[i])
return 0;
}
dev_err(dev->dev,
"%d Hz is unsupported, only 100kHz, 400kHz, 1MHz and 3.4MHz are supported\n",
t->bus_freq_hz);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(i2c_dw_validate_speed);
#ifdef CONFIG_ACPI
#include <linux/dmi.h>
/*
* The HCNT/LCNT information coming from ACPI should be the most accurate
* for given platform. However, some systems get it wrong. On such systems
* we get better results by calculating those based on the input clock.
*/
static const struct dmi_system_id i2c_dw_no_acpi_params[] = {
{
.ident = "Dell Inspiron 7348",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7348"),
},
},
{}
};
static void i2c_dw_acpi_params(struct device *device, char method[],
u16 *hcnt, u16 *lcnt, u32 *sda_hold)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER };
acpi_handle handle = ACPI_HANDLE(device);
union acpi_object *obj;
if (dmi_check_system(i2c_dw_no_acpi_params))
return;
if (ACPI_FAILURE(acpi_evaluate_object(handle, method, NULL, &buf)))
return;
obj = (union acpi_object *)buf.pointer;
if (obj->type == ACPI_TYPE_PACKAGE && obj->package.count == 3) {
const union acpi_object *objs = obj->package.elements;
*hcnt = (u16)objs[0].integer.value;
*lcnt = (u16)objs[1].integer.value;
*sda_hold = (u32)objs[2].integer.value;
}
kfree(buf.pointer);
}
int i2c_dw_acpi_configure(struct device *device)
{
struct dw_i2c_dev *dev = dev_get_drvdata(device);
struct i2c_timings *t = &dev->timings;
u32 ss_ht = 0, fp_ht = 0, hs_ht = 0, fs_ht = 0;
/*
* Try to get SDA hold time and *CNT values from an ACPI method for
* selected speed modes.
*/
i2c_dw_acpi_params(device, "SSCN", &dev->ss_hcnt, &dev->ss_lcnt, &ss_ht);
i2c_dw_acpi_params(device, "FMCN", &dev->fs_hcnt, &dev->fs_lcnt, &fs_ht);
i2c_dw_acpi_params(device, "FPCN", &dev->fp_hcnt, &dev->fp_lcnt, &fp_ht);
i2c_dw_acpi_params(device, "HSCN", &dev->hs_hcnt, &dev->hs_lcnt, &hs_ht);
switch (t->bus_freq_hz) {
case I2C_MAX_STANDARD_MODE_FREQ:
dev->sda_hold_time = ss_ht;
break;
case I2C_MAX_FAST_MODE_PLUS_FREQ:
dev->sda_hold_time = fp_ht;
break;
case I2C_MAX_HIGH_SPEED_MODE_FREQ:
dev->sda_hold_time = hs_ht;
break;
case I2C_MAX_FAST_MODE_FREQ:
default:
dev->sda_hold_time = fs_ht;
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(i2c_dw_acpi_configure);
static u32 i2c_dw_acpi_round_bus_speed(struct device *device)
{
u32 acpi_speed;
int i;
acpi_speed = i2c_acpi_find_bus_speed(device);
/*
* Some DSTDs use a non standard speed, round down to the lowest
* standard speed.
*/
for (i = 0; i < ARRAY_SIZE(supported_speeds); i++) {
if (acpi_speed >= supported_speeds[i])
return supported_speeds[i];
}
return 0;
}
#else /* CONFIG_ACPI */
static inline u32 i2c_dw_acpi_round_bus_speed(struct device *device) { return 0; }
#endif /* CONFIG_ACPI */
void i2c_dw_adjust_bus_speed(struct dw_i2c_dev *dev)
{
u32 acpi_speed = i2c_dw_acpi_round_bus_speed(dev->dev);
struct i2c_timings *t = &dev->timings;
/*
* Find bus speed from the "clock-frequency" device property, ACPI
* or by using fast mode if neither is set.
*/
if (acpi_speed && t->bus_freq_hz)
t->bus_freq_hz = min(t->bus_freq_hz, acpi_speed);
else if (acpi_speed || t->bus_freq_hz)
t->bus_freq_hz = max(t->bus_freq_hz, acpi_speed);
else
t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
}
EXPORT_SYMBOL_GPL(i2c_dw_adjust_bus_speed);
u32 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
{
/*
* DesignWare I2C core doesn't seem to have solid strategy to meet
* the tHD;STA timing spec. Configuring _HCNT based on tHIGH spec
* will result in violation of the tHD;STA spec.
*/
if (cond)
/*
* Conditional expression:
*
* IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
*
* This is based on the DW manuals, and represents an ideal
* configuration. The resulting I2C bus speed will be
* faster than any of the others.
*
* If your hardware is free from tHD;STA issue, try this one.
*/
return DIV_ROUND_CLOSEST_ULL((u64)ic_clk * tSYMBOL, MICRO) -
8 + offset;
else
/*
* Conditional expression:
*
* IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
*
* This is just experimental rule; the tHD;STA period turned
* out to be proportinal to (_HCNT + 3). With this setting,
* we could meet both tHIGH and tHD;STA timing specs.
*
* If unsure, you'd better to take this alternative.
*
* The reason why we need to take into account "tf" here,
* is the same as described in i2c_dw_scl_lcnt().
*/
return DIV_ROUND_CLOSEST_ULL((u64)ic_clk * (tSYMBOL + tf), MICRO) -
3 + offset;
}
u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
{
/*
* Conditional expression:
*
* IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
*
* DW I2C core starts counting the SCL CNTs for the LOW period
* of the SCL clock (tLOW) as soon as it pulls the SCL line.
* In order to meet the tLOW timing spec, we need to take into
* account the fall time of SCL signal (tf). Default tf value
* should be 0.3 us, for safety.
*/
return DIV_ROUND_CLOSEST_ULL((u64)ic_clk * (tLOW + tf), MICRO) -
1 + offset;
}
int i2c_dw_set_sda_hold(struct dw_i2c_dev *dev)
{
u32 reg;
int ret;
ret = i2c_dw_acquire_lock(dev);
if (ret)
return ret;
/* Configure SDA Hold Time if required */
ret = regmap_read(dev->map, DW_IC_COMP_VERSION, &reg);
if (ret)
goto err_release_lock;
if (reg >= DW_IC_SDA_HOLD_MIN_VERS) {
if (!dev->sda_hold_time) {
/* Keep previous hold time setting if no one set it */
ret = regmap_read(dev->map, DW_IC_SDA_HOLD,
&dev->sda_hold_time);
if (ret)
goto err_release_lock;
}
/*
* Workaround for avoiding TX arbitration lost in case I2C
* slave pulls SDA down "too quickly" after falling edge of
* SCL by enabling non-zero SDA RX hold. Specification says it
* extends incoming SDA low to high transition while SCL is
* high but it appears to help also above issue.
*/
if (!(dev->sda_hold_time & DW_IC_SDA_HOLD_RX_MASK))
dev->sda_hold_time |= 1 << DW_IC_SDA_HOLD_RX_SHIFT;
dev_dbg(dev->dev, "SDA Hold Time TX:RX = %d:%d\n",
dev->sda_hold_time & ~(u32)DW_IC_SDA_HOLD_RX_MASK,
dev->sda_hold_time >> DW_IC_SDA_HOLD_RX_SHIFT);
} else if (dev->set_sda_hold_time) {
dev->set_sda_hold_time(dev);
} else if (dev->sda_hold_time) {
dev_warn(dev->dev,
"Hardware too old to adjust SDA hold time.\n");
dev->sda_hold_time = 0;
}
err_release_lock:
i2c_dw_release_lock(dev);
return ret;
}
void __i2c_dw_disable(struct dw_i2c_dev *dev)
{
int timeout = 100;
u32 status;
do {
__i2c_dw_disable_nowait(dev);
/*
* The enable status register may be unimplemented, but
* in that case this test reads zero and exits the loop.
*/
regmap_read(dev->map, DW_IC_ENABLE_STATUS, &status);
if ((status & 1) == 0)
return;
/*
* Wait 10 times the signaling period of the highest I2C
* transfer supported by the driver (for 400KHz this is
* 25us) as described in the DesignWare I2C databook.
*/
usleep_range(25, 250);
} while (timeout--);
dev_warn(dev->dev, "timeout in disabling adapter\n");
}
u32 i2c_dw_clk_rate(struct dw_i2c_dev *dev)
{
/*
* Clock is not necessary if we got LCNT/HCNT values directly from
* the platform code.
*/
if (WARN_ON_ONCE(!dev->get_clk_rate_khz))
return 0;
return dev->get_clk_rate_khz(dev);
}
int i2c_dw_prepare_clk(struct dw_i2c_dev *dev, bool prepare)
{
int ret;
if (prepare) {
/* Optional interface clock */
ret = clk_prepare_enable(dev->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(dev->clk);
if (ret)
clk_disable_unprepare(dev->pclk);
return ret;
}
clk_disable_unprepare(dev->clk);
clk_disable_unprepare(dev->pclk);
return 0;
}
EXPORT_SYMBOL_GPL(i2c_dw_prepare_clk);
int i2c_dw_acquire_lock(struct dw_i2c_dev *dev)
{
int ret;
if (!dev->acquire_lock)
return 0;
ret = dev->acquire_lock();
if (!ret)
return 0;
dev_err(dev->dev, "couldn't acquire bus ownership\n");
return ret;
}
void i2c_dw_release_lock(struct dw_i2c_dev *dev)
{
if (dev->release_lock)
dev->release_lock();
}
/*
* Waiting for bus not busy
*/
int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
{
u32 status;
int ret;
ret = regmap_read_poll_timeout(dev->map, DW_IC_STATUS, status,
!(status & DW_IC_STATUS_ACTIVITY),
1100, 20000);
if (ret) {
dev_warn(dev->dev, "timeout waiting for bus ready\n");
i2c_recover_bus(&dev->adapter);
regmap_read(dev->map, DW_IC_STATUS, &status);
if (!(status & DW_IC_STATUS_ACTIVITY))
ret = 0;
}
return ret;
}
int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
{
unsigned long abort_source = dev->abort_source;
int i;
if (abort_source & DW_IC_TX_ABRT_NOACK) {
for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
dev_dbg(dev->dev,
"%s: %s\n", __func__, abort_sources[i]);
return -EREMOTEIO;
}
for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);
if (abort_source & DW_IC_TX_ARB_LOST)
return -EAGAIN;
else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
return -EINVAL; /* wrong msgs[] data */
else
return -EIO;
}
int i2c_dw_set_fifo_size(struct dw_i2c_dev *dev)
{
u32 param, tx_fifo_depth, rx_fifo_depth;
int ret;
/*
* Try to detect the FIFO depth if not set by interface driver,
* the depth could be from 2 to 256 from HW spec.
*/
ret = i2c_dw_acquire_lock(dev);
if (ret)
return ret;
ret = regmap_read(dev->map, DW_IC_COMP_PARAM_1, &param);
i2c_dw_release_lock(dev);
if (ret)
return ret;
tx_fifo_depth = ((param >> 16) & 0xff) + 1;
rx_fifo_depth = ((param >> 8) & 0xff) + 1;
if (!dev->tx_fifo_depth) {
dev->tx_fifo_depth = tx_fifo_depth;
dev->rx_fifo_depth = rx_fifo_depth;
} else if (tx_fifo_depth >= 2) {
dev->tx_fifo_depth = min_t(u32, dev->tx_fifo_depth,
tx_fifo_depth);
dev->rx_fifo_depth = min_t(u32, dev->rx_fifo_depth,
rx_fifo_depth);
}
return 0;
}
u32 i2c_dw_func(struct i2c_adapter *adap)
{
struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
return dev->functionality;
}
void i2c_dw_disable(struct dw_i2c_dev *dev)
{
u32 dummy;
int ret;
ret = i2c_dw_acquire_lock(dev);
if (ret)
return;
/* Disable controller */
__i2c_dw_disable(dev);
/* Disable all interrupts */
regmap_write(dev->map, DW_IC_INTR_MASK, 0);
regmap_read(dev->map, DW_IC_CLR_INTR, &dummy);
i2c_dw_release_lock(dev);
}
void i2c_dw_disable_int(struct dw_i2c_dev *dev)
{
regmap_write(dev->map, DW_IC_INTR_MASK, 0);
}
MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
MODULE_LICENSE("GPL");