linuxdebug/drivers/hwtracing/coresight/coresight-catu.c

611 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Arm Limited. All rights reserved.
*
* Coresight Address Translation Unit support
*
* Author: Suzuki K Poulose <suzuki.poulose@arm.com>
*/
#include <linux/amba/bus.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "coresight-catu.h"
#include "coresight-priv.h"
#include "coresight-tmc.h"
#define csdev_to_catu_drvdata(csdev) \
dev_get_drvdata(csdev->dev.parent)
/* Verbose output for CATU table contents */
#ifdef CATU_DEBUG
#define catu_dbg(x, ...) dev_dbg(x, __VA_ARGS__)
#else
#define catu_dbg(x, ...) do {} while (0)
#endif
DEFINE_CORESIGHT_DEVLIST(catu_devs, "catu");
struct catu_etr_buf {
struct tmc_sg_table *catu_table;
dma_addr_t sladdr;
};
/*
* CATU uses a page size of 4KB for page tables as well as data pages.
* Each 64bit entry in the table has the following format.
*
* 63 12 1 0
* ------------------------------------
* | Address [63-12] | SBZ | V|
* ------------------------------------
*
* Where bit[0] V indicates if the address is valid or not.
* Each 4K table pages have upto 256 data page pointers, taking upto 2K
* size. There are two Link pointers, pointing to the previous and next
* table pages respectively at the end of the 4K page. (i.e, entry 510
* and 511).
* E.g, a table of two pages could look like :
*
* Table Page 0 Table Page 1
* SLADDR ===> x------------------x x--> x-----------------x
* INADDR ->| Page 0 | V | | | Page 256 | V | <- INADDR+1M
* |------------------| | |-----------------|
* INADDR+4K ->| Page 1 | V | | | |
* |------------------| | |-----------------|
* | Page 2 | V | | | |
* |------------------| | |-----------------|
* | ... | V | | | ... |
* |------------------| | |-----------------|
* INADDR+1020K| Page 255 | V | | | Page 511 | V |
* SLADDR+2K==>|------------------| | |-----------------|
* | UNUSED | | | | |
* |------------------| | | |
* | UNUSED | | | | |
* |------------------| | | |
* | ... | | | | |
* |------------------| | |-----------------|
* | IGNORED | 0 | | | Table Page 0| 1 |
* |------------------| | |-----------------|
* | Table Page 1| 1 |--x | IGNORED | 0 |
* x------------------x x-----------------x
* SLADDR+4K==>
*
* The base input address (used by the ETR, programmed in INADDR_{LO,HI})
* must be aligned to 1MB (the size addressable by a single page table).
* The CATU maps INADDR{LO:HI} to the first page in the table pointed
* to by SLADDR{LO:HI} and so on.
*
*/
typedef u64 cate_t;
#define CATU_PAGE_SHIFT 12
#define CATU_PAGE_SIZE (1UL << CATU_PAGE_SHIFT)
#define CATU_PAGES_PER_SYSPAGE (PAGE_SIZE / CATU_PAGE_SIZE)
/* Page pointers are only allocated in the first 2K half */
#define CATU_PTRS_PER_PAGE ((CATU_PAGE_SIZE >> 1) / sizeof(cate_t))
#define CATU_PTRS_PER_SYSPAGE (CATU_PAGES_PER_SYSPAGE * CATU_PTRS_PER_PAGE)
#define CATU_LINK_PREV ((CATU_PAGE_SIZE / sizeof(cate_t)) - 2)
#define CATU_LINK_NEXT ((CATU_PAGE_SIZE / sizeof(cate_t)) - 1)
#define CATU_ADDR_SHIFT 12
#define CATU_ADDR_MASK ~(((cate_t)1 << CATU_ADDR_SHIFT) - 1)
#define CATU_ENTRY_VALID ((cate_t)0x1)
#define CATU_VALID_ENTRY(addr) \
(((cate_t)(addr) & CATU_ADDR_MASK) | CATU_ENTRY_VALID)
#define CATU_ENTRY_ADDR(entry) ((cate_t)(entry) & ~((cate_t)CATU_ENTRY_VALID))
/* CATU expects the INADDR to be aligned to 1M. */
#define CATU_DEFAULT_INADDR (1ULL << 20)
/*
* catu_get_table : Retrieve the table pointers for the given @offset
* within the buffer. The buffer is wrapped around to a valid offset.
*
* Returns : The CPU virtual address for the beginning of the table
* containing the data page pointer for @offset. If @daddrp is not NULL,
* @daddrp points the DMA address of the beginning of the table.
*/
static inline cate_t *catu_get_table(struct tmc_sg_table *catu_table,
unsigned long offset,
dma_addr_t *daddrp)
{
unsigned long buf_size = tmc_sg_table_buf_size(catu_table);
unsigned int table_nr, pg_idx, pg_offset;
struct tmc_pages *table_pages = &catu_table->table_pages;
void *ptr;
/* Make sure offset is within the range */
offset %= buf_size;
/*
* Each table can address 1MB and a single kernel page can
* contain "CATU_PAGES_PER_SYSPAGE" CATU tables.
*/
table_nr = offset >> 20;
/* Find the table page where the table_nr lies in */
pg_idx = table_nr / CATU_PAGES_PER_SYSPAGE;
pg_offset = (table_nr % CATU_PAGES_PER_SYSPAGE) * CATU_PAGE_SIZE;
if (daddrp)
*daddrp = table_pages->daddrs[pg_idx] + pg_offset;
ptr = page_address(table_pages->pages[pg_idx]);
return (cate_t *)((unsigned long)ptr + pg_offset);
}
#ifdef CATU_DEBUG
static void catu_dump_table(struct tmc_sg_table *catu_table)
{
int i;
cate_t *table;
unsigned long table_end, buf_size, offset = 0;
buf_size = tmc_sg_table_buf_size(catu_table);
dev_dbg(catu_table->dev,
"Dump table %p, tdaddr: %llx\n",
catu_table, catu_table->table_daddr);
while (offset < buf_size) {
table_end = offset + SZ_1M < buf_size ?
offset + SZ_1M : buf_size;
table = catu_get_table(catu_table, offset, NULL);
for (i = 0; offset < table_end; i++, offset += CATU_PAGE_SIZE)
dev_dbg(catu_table->dev, "%d: %llx\n", i, table[i]);
dev_dbg(catu_table->dev, "Prev : %llx, Next: %llx\n",
table[CATU_LINK_PREV], table[CATU_LINK_NEXT]);
dev_dbg(catu_table->dev, "== End of sub-table ===");
}
dev_dbg(catu_table->dev, "== End of Table ===");
}
#else
static inline void catu_dump_table(struct tmc_sg_table *catu_table)
{
}
#endif
static inline cate_t catu_make_entry(dma_addr_t addr)
{
return addr ? CATU_VALID_ENTRY(addr) : 0;
}
/*
* catu_populate_table : Populate the given CATU table.
* The table is always populated as a circular table.
* i.e, the "prev" link of the "first" table points to the "last"
* table and the "next" link of the "last" table points to the
* "first" table. The buffer should be made linear by calling
* catu_set_table().
*/
static void
catu_populate_table(struct tmc_sg_table *catu_table)
{
int i;
int sys_pidx; /* Index to current system data page */
int catu_pidx; /* Index of CATU page within the system data page */
unsigned long offset, buf_size, table_end;
dma_addr_t data_daddr;
dma_addr_t prev_taddr, next_taddr, cur_taddr;
cate_t *table_ptr, *next_table;
buf_size = tmc_sg_table_buf_size(catu_table);
sys_pidx = catu_pidx = 0;
offset = 0;
table_ptr = catu_get_table(catu_table, 0, &cur_taddr);
prev_taddr = 0; /* Prev link for the first table */
while (offset < buf_size) {
/*
* The @offset is always 1M aligned here and we have an
* empty table @table_ptr to fill. Each table can address
* upto 1MB data buffer. The last table may have fewer
* entries if the buffer size is not aligned.
*/
table_end = (offset + SZ_1M) < buf_size ?
(offset + SZ_1M) : buf_size;
for (i = 0; offset < table_end;
i++, offset += CATU_PAGE_SIZE) {
data_daddr = catu_table->data_pages.daddrs[sys_pidx] +
catu_pidx * CATU_PAGE_SIZE;
catu_dbg(catu_table->dev,
"[table %5ld:%03d] 0x%llx\n",
(offset >> 20), i, data_daddr);
table_ptr[i] = catu_make_entry(data_daddr);
/* Move the pointers for data pages */
catu_pidx = (catu_pidx + 1) % CATU_PAGES_PER_SYSPAGE;
if (catu_pidx == 0)
sys_pidx++;
}
/*
* If we have finished all the valid entries, fill the rest of
* the table (i.e, last table page) with invalid entries,
* to fail the lookups.
*/
if (offset == buf_size) {
memset(&table_ptr[i], 0,
sizeof(cate_t) * (CATU_PTRS_PER_PAGE - i));
next_taddr = 0;
} else {
next_table = catu_get_table(catu_table,
offset, &next_taddr);
}
table_ptr[CATU_LINK_PREV] = catu_make_entry(prev_taddr);
table_ptr[CATU_LINK_NEXT] = catu_make_entry(next_taddr);
catu_dbg(catu_table->dev,
"[table%5ld]: Cur: 0x%llx Prev: 0x%llx, Next: 0x%llx\n",
(offset >> 20) - 1, cur_taddr, prev_taddr, next_taddr);
/* Update the prev/next addresses */
if (next_taddr) {
prev_taddr = cur_taddr;
cur_taddr = next_taddr;
table_ptr = next_table;
}
}
/* Sync the table for device */
tmc_sg_table_sync_table(catu_table);
}
static struct tmc_sg_table *
catu_init_sg_table(struct device *catu_dev, int node,
ssize_t size, void **pages)
{
int nr_tpages;
struct tmc_sg_table *catu_table;
/*
* Each table can address upto 1MB and we can have
* CATU_PAGES_PER_SYSPAGE tables in a system page.
*/
nr_tpages = DIV_ROUND_UP(size, SZ_1M) / CATU_PAGES_PER_SYSPAGE;
catu_table = tmc_alloc_sg_table(catu_dev, node, nr_tpages,
size >> PAGE_SHIFT, pages);
if (IS_ERR(catu_table))
return catu_table;
catu_populate_table(catu_table);
dev_dbg(catu_dev,
"Setup table %p, size %ldKB, %d table pages\n",
catu_table, (unsigned long)size >> 10, nr_tpages);
catu_dump_table(catu_table);
return catu_table;
}
static void catu_free_etr_buf(struct etr_buf *etr_buf)
{
struct catu_etr_buf *catu_buf;
if (!etr_buf || etr_buf->mode != ETR_MODE_CATU || !etr_buf->private)
return;
catu_buf = etr_buf->private;
tmc_free_sg_table(catu_buf->catu_table);
kfree(catu_buf);
}
static ssize_t catu_get_data_etr_buf(struct etr_buf *etr_buf, u64 offset,
size_t len, char **bufpp)
{
struct catu_etr_buf *catu_buf = etr_buf->private;
return tmc_sg_table_get_data(catu_buf->catu_table, offset, len, bufpp);
}
static void catu_sync_etr_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
struct catu_etr_buf *catu_buf = etr_buf->private;
struct tmc_sg_table *catu_table = catu_buf->catu_table;
u64 r_offset, w_offset;
/*
* ETR started off at etr_buf->hwaddr. Convert the RRP/RWP to
* offsets within the trace buffer.
*/
r_offset = rrp - etr_buf->hwaddr;
w_offset = rwp - etr_buf->hwaddr;
if (!etr_buf->full) {
etr_buf->len = w_offset - r_offset;
if (w_offset < r_offset)
etr_buf->len += etr_buf->size;
} else {
etr_buf->len = etr_buf->size;
}
etr_buf->offset = r_offset;
tmc_sg_table_sync_data_range(catu_table, r_offset, etr_buf->len);
}
static int catu_alloc_etr_buf(struct tmc_drvdata *tmc_drvdata,
struct etr_buf *etr_buf, int node, void **pages)
{
struct coresight_device *csdev;
struct tmc_sg_table *catu_table;
struct catu_etr_buf *catu_buf;
csdev = tmc_etr_get_catu_device(tmc_drvdata);
if (!csdev)
return -ENODEV;
catu_buf = kzalloc(sizeof(*catu_buf), GFP_KERNEL);
if (!catu_buf)
return -ENOMEM;
catu_table = catu_init_sg_table(&csdev->dev, node,
etr_buf->size, pages);
if (IS_ERR(catu_table)) {
kfree(catu_buf);
return PTR_ERR(catu_table);
}
etr_buf->mode = ETR_MODE_CATU;
etr_buf->private = catu_buf;
etr_buf->hwaddr = CATU_DEFAULT_INADDR;
catu_buf->catu_table = catu_table;
/* Get the table base address */
catu_buf->sladdr = catu_table->table_daddr;
return 0;
}
static const struct etr_buf_operations etr_catu_buf_ops = {
.alloc = catu_alloc_etr_buf,
.free = catu_free_etr_buf,
.sync = catu_sync_etr_buf,
.get_data = catu_get_data_etr_buf,
};
static struct attribute *catu_mgmt_attrs[] = {
coresight_simple_reg32(devid, CORESIGHT_DEVID),
coresight_simple_reg32(control, CATU_CONTROL),
coresight_simple_reg32(status, CATU_STATUS),
coresight_simple_reg32(mode, CATU_MODE),
coresight_simple_reg32(axictrl, CATU_AXICTRL),
coresight_simple_reg32(irqen, CATU_IRQEN),
coresight_simple_reg64(sladdr, CATU_SLADDRLO, CATU_SLADDRHI),
coresight_simple_reg64(inaddr, CATU_INADDRLO, CATU_INADDRHI),
NULL,
};
static const struct attribute_group catu_mgmt_group = {
.attrs = catu_mgmt_attrs,
.name = "mgmt",
};
static const struct attribute_group *catu_groups[] = {
&catu_mgmt_group,
NULL,
};
static inline int catu_wait_for_ready(struct catu_drvdata *drvdata)
{
struct csdev_access *csa = &drvdata->csdev->access;
return coresight_timeout(csa, CATU_STATUS, CATU_STATUS_READY, 1);
}
static int catu_enable_hw(struct catu_drvdata *drvdata, void *data)
{
int rc;
u32 control, mode;
struct etr_buf *etr_buf = data;
struct device *dev = &drvdata->csdev->dev;
struct coresight_device *csdev = drvdata->csdev;
if (catu_wait_for_ready(drvdata))
dev_warn(dev, "Timeout while waiting for READY\n");
control = catu_read_control(drvdata);
if (control & BIT(CATU_CONTROL_ENABLE)) {
dev_warn(dev, "CATU is already enabled\n");
return -EBUSY;
}
rc = coresight_claim_device_unlocked(csdev);
if (rc)
return rc;
control |= BIT(CATU_CONTROL_ENABLE);
if (etr_buf && etr_buf->mode == ETR_MODE_CATU) {
struct catu_etr_buf *catu_buf = etr_buf->private;
mode = CATU_MODE_TRANSLATE;
catu_write_axictrl(drvdata, CATU_OS_AXICTRL);
catu_write_sladdr(drvdata, catu_buf->sladdr);
catu_write_inaddr(drvdata, CATU_DEFAULT_INADDR);
} else {
mode = CATU_MODE_PASS_THROUGH;
catu_write_sladdr(drvdata, 0);
catu_write_inaddr(drvdata, 0);
}
catu_write_irqen(drvdata, 0);
catu_write_mode(drvdata, mode);
catu_write_control(drvdata, control);
dev_dbg(dev, "Enabled in %s mode\n",
(mode == CATU_MODE_PASS_THROUGH) ?
"Pass through" :
"Translate");
return 0;
}
static int catu_enable(struct coresight_device *csdev, void *data)
{
int rc;
struct catu_drvdata *catu_drvdata = csdev_to_catu_drvdata(csdev);
CS_UNLOCK(catu_drvdata->base);
rc = catu_enable_hw(catu_drvdata, data);
CS_LOCK(catu_drvdata->base);
return rc;
}
static int catu_disable_hw(struct catu_drvdata *drvdata)
{
int rc = 0;
struct device *dev = &drvdata->csdev->dev;
struct coresight_device *csdev = drvdata->csdev;
catu_write_control(drvdata, 0);
coresight_disclaim_device_unlocked(csdev);
if (catu_wait_for_ready(drvdata)) {
dev_info(dev, "Timeout while waiting for READY\n");
rc = -EAGAIN;
}
dev_dbg(dev, "Disabled\n");
return rc;
}
static int catu_disable(struct coresight_device *csdev, void *__unused)
{
int rc;
struct catu_drvdata *catu_drvdata = csdev_to_catu_drvdata(csdev);
CS_UNLOCK(catu_drvdata->base);
rc = catu_disable_hw(catu_drvdata);
CS_LOCK(catu_drvdata->base);
return rc;
}
static const struct coresight_ops_helper catu_helper_ops = {
.enable = catu_enable,
.disable = catu_disable,
};
static const struct coresight_ops catu_ops = {
.helper_ops = &catu_helper_ops,
};
static int catu_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret = 0;
u32 dma_mask;
struct catu_drvdata *drvdata;
struct coresight_desc catu_desc;
struct coresight_platform_data *pdata = NULL;
struct device *dev = &adev->dev;
void __iomem *base;
catu_desc.name = coresight_alloc_device_name(&catu_devs, dev);
if (!catu_desc.name)
return -ENOMEM;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata) {
ret = -ENOMEM;
goto out;
}
dev_set_drvdata(dev, drvdata);
base = devm_ioremap_resource(dev, &adev->res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out;
}
/* Setup dma mask for the device */
dma_mask = readl_relaxed(base + CORESIGHT_DEVID) & 0x3f;
switch (dma_mask) {
case 32:
case 40:
case 44:
case 48:
case 52:
case 56:
case 64:
break;
default:
/* Default to the 40bits as supported by TMC-ETR */
dma_mask = 40;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_mask));
if (ret)
goto out;
pdata = coresight_get_platform_data(dev);
if (IS_ERR(pdata)) {
ret = PTR_ERR(pdata);
goto out;
}
dev->platform_data = pdata;
drvdata->base = base;
catu_desc.access = CSDEV_ACCESS_IOMEM(base);
catu_desc.pdata = pdata;
catu_desc.dev = dev;
catu_desc.groups = catu_groups;
catu_desc.type = CORESIGHT_DEV_TYPE_HELPER;
catu_desc.subtype.helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU;
catu_desc.ops = &catu_ops;
drvdata->csdev = coresight_register(&catu_desc);
if (IS_ERR(drvdata->csdev))
ret = PTR_ERR(drvdata->csdev);
else
pm_runtime_put(&adev->dev);
out:
return ret;
}
static void catu_remove(struct amba_device *adev)
{
struct catu_drvdata *drvdata = dev_get_drvdata(&adev->dev);
coresight_unregister(drvdata->csdev);
}
static struct amba_id catu_ids[] = {
CS_AMBA_ID(0x000bb9ee),
{},
};
MODULE_DEVICE_TABLE(amba, catu_ids);
static struct amba_driver catu_driver = {
.drv = {
.name = "coresight-catu",
.owner = THIS_MODULE,
.suppress_bind_attrs = true,
},
.probe = catu_probe,
.remove = catu_remove,
.id_table = catu_ids,
};
static int __init catu_init(void)
{
int ret;
ret = amba_driver_register(&catu_driver);
if (ret)
pr_info("Error registering catu driver\n");
tmc_etr_set_catu_ops(&etr_catu_buf_ops);
return ret;
}
static void __exit catu_exit(void)
{
tmc_etr_remove_catu_ops();
amba_driver_unregister(&catu_driver);
}
module_init(catu_init);
module_exit(catu_exit);
MODULE_AUTHOR("Suzuki K Poulose <suzuki.poulose@arm.com>");
MODULE_DESCRIPTION("Arm CoreSight Address Translation Unit (CATU) Driver");
MODULE_LICENSE("GPL v2");