linuxdebug/drivers/gpu/drm/vc4/vc4_validate_shaders.c

955 lines
27 KiB
C

/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* DOC: Shader validator for VC4.
*
* Since the VC4 has no IOMMU between it and system memory, a user
* with access to execute shaders could escalate privilege by
* overwriting system memory (using the VPM write address register in
* the general-purpose DMA mode) or reading system memory it shouldn't
* (reading it as a texture, uniform data, or direct-addressed TMU
* lookup).
*
* The shader validator walks over a shader's BO, ensuring that its
* accesses are appropriately bounded, and recording where texture
* accesses are made so that we can do relocations for them in the
* uniform stream.
*
* Shader BO are immutable for their lifetimes (enforced by not
* allowing mmaps, GEM prime export, or rendering to from a CL), so
* this validation is only performed at BO creation time.
*/
#include "vc4_drv.h"
#include "vc4_qpu_defines.h"
#define LIVE_REG_COUNT (32 + 32 + 4)
struct vc4_shader_validation_state {
/* Current IP being validated. */
uint32_t ip;
/* IP at the end of the BO, do not read shader[max_ip] */
uint32_t max_ip;
uint64_t *shader;
struct vc4_texture_sample_info tmu_setup[2];
int tmu_write_count[2];
/* For registers that were last written to by a MIN instruction with
* one argument being a uniform, the address of the uniform.
* Otherwise, ~0.
*
* This is used for the validation of direct address memory reads.
*/
uint32_t live_min_clamp_offsets[LIVE_REG_COUNT];
bool live_max_clamp_regs[LIVE_REG_COUNT];
uint32_t live_immediates[LIVE_REG_COUNT];
/* Bitfield of which IPs are used as branch targets.
*
* Used for validation that the uniform stream is updated at the right
* points and clearing the texturing/clamping state.
*/
unsigned long *branch_targets;
/* Set when entering a basic block, and cleared when the uniform
* address update is found. This is used to make sure that we don't
* read uniforms when the address is undefined.
*/
bool needs_uniform_address_update;
/* Set when we find a backwards branch. If the branch is backwards,
* the taraget is probably doing an address reset to read uniforms,
* and so we need to be sure that a uniforms address is present in the
* stream, even if the shader didn't need to read uniforms in later
* basic blocks.
*/
bool needs_uniform_address_for_loop;
/* Set when we find an instruction writing the top half of the
* register files. If we allowed writing the unusable regs in
* a threaded shader, then the other shader running on our
* QPU's clamp validation would be invalid.
*/
bool all_registers_used;
};
static uint32_t
waddr_to_live_reg_index(uint32_t waddr, bool is_b)
{
if (waddr < 32) {
if (is_b)
return 32 + waddr;
else
return waddr;
} else if (waddr <= QPU_W_ACC3) {
return 64 + waddr - QPU_W_ACC0;
} else {
return ~0;
}
}
static uint32_t
raddr_add_a_to_live_reg_index(uint64_t inst)
{
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A);
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
if (add_a == QPU_MUX_A)
return raddr_a;
else if (add_a == QPU_MUX_B && sig != QPU_SIG_SMALL_IMM)
return 32 + raddr_b;
else if (add_a <= QPU_MUX_R3)
return 64 + add_a;
else
return ~0;
}
static bool
live_reg_is_upper_half(uint32_t lri)
{
return (lri >= 16 && lri < 32) ||
(lri >= 32 + 16 && lri < 32 + 32);
}
static bool
is_tmu_submit(uint32_t waddr)
{
return (waddr == QPU_W_TMU0_S ||
waddr == QPU_W_TMU1_S);
}
static bool
is_tmu_write(uint32_t waddr)
{
return (waddr >= QPU_W_TMU0_S &&
waddr <= QPU_W_TMU1_B);
}
static bool
record_texture_sample(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state,
int tmu)
{
uint32_t s = validated_shader->num_texture_samples;
int i;
struct vc4_texture_sample_info *temp_samples;
temp_samples = krealloc(validated_shader->texture_samples,
(s + 1) * sizeof(*temp_samples),
GFP_KERNEL);
if (!temp_samples)
return false;
memcpy(&temp_samples[s],
&validation_state->tmu_setup[tmu],
sizeof(*temp_samples));
validated_shader->num_texture_samples = s + 1;
validated_shader->texture_samples = temp_samples;
for (i = 0; i < 4; i++)
validation_state->tmu_setup[tmu].p_offset[i] = ~0;
return true;
}
static bool
check_tmu_write(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state,
bool is_mul)
{
uint64_t inst = validation_state->shader[validation_state->ip];
uint32_t waddr = (is_mul ?
QPU_GET_FIELD(inst, QPU_WADDR_MUL) :
QPU_GET_FIELD(inst, QPU_WADDR_ADD));
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
int tmu = waddr > QPU_W_TMU0_B;
bool submit = is_tmu_submit(waddr);
bool is_direct = submit && validation_state->tmu_write_count[tmu] == 0;
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
if (is_direct) {
uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
uint32_t clamp_reg, clamp_offset;
if (sig == QPU_SIG_SMALL_IMM) {
DRM_DEBUG("direct TMU read used small immediate\n");
return false;
}
/* Make sure that this texture load is an add of the base
* address of the UBO to a clamped offset within the UBO.
*/
if (is_mul ||
QPU_GET_FIELD(inst, QPU_OP_ADD) != QPU_A_ADD) {
DRM_DEBUG("direct TMU load wasn't an add\n");
return false;
}
/* We assert that the clamped address is the first
* argument, and the UBO base address is the second argument.
* This is arbitrary, but simpler than supporting flipping the
* two either way.
*/
clamp_reg = raddr_add_a_to_live_reg_index(inst);
if (clamp_reg == ~0) {
DRM_DEBUG("direct TMU load wasn't clamped\n");
return false;
}
clamp_offset = validation_state->live_min_clamp_offsets[clamp_reg];
if (clamp_offset == ~0) {
DRM_DEBUG("direct TMU load wasn't clamped\n");
return false;
}
/* Store the clamp value's offset in p1 (see reloc_tex() in
* vc4_validate.c).
*/
validation_state->tmu_setup[tmu].p_offset[1] =
clamp_offset;
if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) &&
!(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF)) {
DRM_DEBUG("direct TMU load didn't add to a uniform\n");
return false;
}
validation_state->tmu_setup[tmu].is_direct = true;
} else {
if (raddr_a == QPU_R_UNIF || (sig != QPU_SIG_SMALL_IMM &&
raddr_b == QPU_R_UNIF)) {
DRM_DEBUG("uniform read in the same instruction as "
"texture setup.\n");
return false;
}
}
if (validation_state->tmu_write_count[tmu] >= 4) {
DRM_DEBUG("TMU%d got too many parameters before dispatch\n",
tmu);
return false;
}
validation_state->tmu_setup[tmu].p_offset[validation_state->tmu_write_count[tmu]] =
validated_shader->uniforms_size;
validation_state->tmu_write_count[tmu]++;
/* Since direct uses a RADDR uniform reference, it will get counted in
* check_instruction_reads()
*/
if (!is_direct) {
if (validation_state->needs_uniform_address_update) {
DRM_DEBUG("Texturing with undefined uniform address\n");
return false;
}
validated_shader->uniforms_size += 4;
}
if (submit) {
if (!record_texture_sample(validated_shader,
validation_state, tmu)) {
return false;
}
validation_state->tmu_write_count[tmu] = 0;
}
return true;
}
static bool require_uniform_address_uniform(struct vc4_validated_shader_info *validated_shader)
{
uint32_t o = validated_shader->num_uniform_addr_offsets;
uint32_t num_uniforms = validated_shader->uniforms_size / 4;
validated_shader->uniform_addr_offsets =
krealloc(validated_shader->uniform_addr_offsets,
(o + 1) *
sizeof(*validated_shader->uniform_addr_offsets),
GFP_KERNEL);
if (!validated_shader->uniform_addr_offsets)
return false;
validated_shader->uniform_addr_offsets[o] = num_uniforms;
validated_shader->num_uniform_addr_offsets++;
return true;
}
static bool
validate_uniform_address_write(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state,
bool is_mul)
{
uint64_t inst = validation_state->shader[validation_state->ip];
u32 add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
u32 raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
u32 raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
u32 add_lri = raddr_add_a_to_live_reg_index(inst);
/* We want our reset to be pointing at whatever uniform follows the
* uniforms base address.
*/
u32 expected_offset = validated_shader->uniforms_size + 4;
/* We only support absolute uniform address changes, and we
* require that they be in the current basic block before any
* of its uniform reads.
*
* One could potentially emit more efficient QPU code, by
* noticing that (say) an if statement does uniform control
* flow for all threads and that the if reads the same number
* of uniforms on each side. However, this scheme is easy to
* validate so it's all we allow for now.
*/
switch (QPU_GET_FIELD(inst, QPU_SIG)) {
case QPU_SIG_NONE:
case QPU_SIG_SCOREBOARD_UNLOCK:
case QPU_SIG_COLOR_LOAD:
case QPU_SIG_LOAD_TMU0:
case QPU_SIG_LOAD_TMU1:
break;
default:
DRM_DEBUG("uniforms address change must be "
"normal math\n");
return false;
}
if (is_mul || QPU_GET_FIELD(inst, QPU_OP_ADD) != QPU_A_ADD) {
DRM_DEBUG("Uniform address reset must be an ADD.\n");
return false;
}
if (QPU_GET_FIELD(inst, QPU_COND_ADD) != QPU_COND_ALWAYS) {
DRM_DEBUG("Uniform address reset must be unconditional.\n");
return false;
}
if (QPU_GET_FIELD(inst, QPU_PACK) != QPU_PACK_A_NOP &&
!(inst & QPU_PM)) {
DRM_DEBUG("No packing allowed on uniforms reset\n");
return false;
}
if (add_lri == -1) {
DRM_DEBUG("First argument of uniform address write must be "
"an immediate value.\n");
return false;
}
if (validation_state->live_immediates[add_lri] != expected_offset) {
DRM_DEBUG("Resetting uniforms with offset %db instead of %db\n",
validation_state->live_immediates[add_lri],
expected_offset);
return false;
}
if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) &&
!(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF)) {
DRM_DEBUG("Second argument of uniform address write must be "
"a uniform.\n");
return false;
}
validation_state->needs_uniform_address_update = false;
validation_state->needs_uniform_address_for_loop = false;
return require_uniform_address_uniform(validated_shader);
}
static bool
check_reg_write(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state,
bool is_mul)
{
uint64_t inst = validation_state->shader[validation_state->ip];
uint32_t waddr = (is_mul ?
QPU_GET_FIELD(inst, QPU_WADDR_MUL) :
QPU_GET_FIELD(inst, QPU_WADDR_ADD));
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
bool ws = inst & QPU_WS;
bool is_b = is_mul ^ ws;
u32 lri = waddr_to_live_reg_index(waddr, is_b);
if (lri != -1) {
uint32_t cond_add = QPU_GET_FIELD(inst, QPU_COND_ADD);
uint32_t cond_mul = QPU_GET_FIELD(inst, QPU_COND_MUL);
if (sig == QPU_SIG_LOAD_IMM &&
QPU_GET_FIELD(inst, QPU_PACK) == QPU_PACK_A_NOP &&
((is_mul && cond_mul == QPU_COND_ALWAYS) ||
(!is_mul && cond_add == QPU_COND_ALWAYS))) {
validation_state->live_immediates[lri] =
QPU_GET_FIELD(inst, QPU_LOAD_IMM);
} else {
validation_state->live_immediates[lri] = ~0;
}
if (live_reg_is_upper_half(lri))
validation_state->all_registers_used = true;
}
switch (waddr) {
case QPU_W_UNIFORMS_ADDRESS:
if (is_b) {
DRM_DEBUG("relative uniforms address change "
"unsupported\n");
return false;
}
return validate_uniform_address_write(validated_shader,
validation_state,
is_mul);
case QPU_W_TLB_COLOR_MS:
case QPU_W_TLB_COLOR_ALL:
case QPU_W_TLB_Z:
/* These only interact with the tile buffer, not main memory,
* so they're safe.
*/
return true;
case QPU_W_TMU0_S:
case QPU_W_TMU0_T:
case QPU_W_TMU0_R:
case QPU_W_TMU0_B:
case QPU_W_TMU1_S:
case QPU_W_TMU1_T:
case QPU_W_TMU1_R:
case QPU_W_TMU1_B:
return check_tmu_write(validated_shader, validation_state,
is_mul);
case QPU_W_HOST_INT:
case QPU_W_TMU_NOSWAP:
case QPU_W_TLB_ALPHA_MASK:
case QPU_W_MUTEX_RELEASE:
/* XXX: I haven't thought about these, so don't support them
* for now.
*/
DRM_DEBUG("Unsupported waddr %d\n", waddr);
return false;
case QPU_W_VPM_ADDR:
DRM_DEBUG("General VPM DMA unsupported\n");
return false;
case QPU_W_VPM:
case QPU_W_VPMVCD_SETUP:
/* We allow VPM setup in general, even including VPM DMA
* configuration setup, because the (unsafe) DMA can only be
* triggered by QPU_W_VPM_ADDR writes.
*/
return true;
case QPU_W_TLB_STENCIL_SETUP:
return true;
}
return true;
}
static void
track_live_clamps(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state)
{
uint64_t inst = validation_state->shader[validation_state->ip];
uint32_t op_add = QPU_GET_FIELD(inst, QPU_OP_ADD);
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
uint32_t cond_add = QPU_GET_FIELD(inst, QPU_COND_ADD);
uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A);
uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
bool ws = inst & QPU_WS;
uint32_t lri_add_a, lri_add, lri_mul;
bool add_a_is_min_0;
/* Check whether OP_ADD's A argumennt comes from a live MAX(x, 0),
* before we clear previous live state.
*/
lri_add_a = raddr_add_a_to_live_reg_index(inst);
add_a_is_min_0 = (lri_add_a != ~0 &&
validation_state->live_max_clamp_regs[lri_add_a]);
/* Clear live state for registers written by our instruction. */
lri_add = waddr_to_live_reg_index(waddr_add, ws);
lri_mul = waddr_to_live_reg_index(waddr_mul, !ws);
if (lri_mul != ~0) {
validation_state->live_max_clamp_regs[lri_mul] = false;
validation_state->live_min_clamp_offsets[lri_mul] = ~0;
}
if (lri_add != ~0) {
validation_state->live_max_clamp_regs[lri_add] = false;
validation_state->live_min_clamp_offsets[lri_add] = ~0;
} else {
/* Nothing further to do for live tracking, since only ADDs
* generate new live clamp registers.
*/
return;
}
/* Now, handle remaining live clamp tracking for the ADD operation. */
if (cond_add != QPU_COND_ALWAYS)
return;
if (op_add == QPU_A_MAX) {
/* Track live clamps of a value to a minimum of 0 (in either
* arg).
*/
if (sig != QPU_SIG_SMALL_IMM || raddr_b != 0 ||
(add_a != QPU_MUX_B && add_b != QPU_MUX_B)) {
return;
}
validation_state->live_max_clamp_regs[lri_add] = true;
} else if (op_add == QPU_A_MIN) {
/* Track live clamps of a value clamped to a minimum of 0 and
* a maximum of some uniform's offset.
*/
if (!add_a_is_min_0)
return;
if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) &&
!(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF &&
sig != QPU_SIG_SMALL_IMM)) {
return;
}
validation_state->live_min_clamp_offsets[lri_add] =
validated_shader->uniforms_size;
}
}
static bool
check_instruction_writes(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state)
{
uint64_t inst = validation_state->shader[validation_state->ip];
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
bool ok;
if (is_tmu_write(waddr_add) && is_tmu_write(waddr_mul)) {
DRM_DEBUG("ADD and MUL both set up textures\n");
return false;
}
ok = (check_reg_write(validated_shader, validation_state, false) &&
check_reg_write(validated_shader, validation_state, true));
track_live_clamps(validated_shader, validation_state);
return ok;
}
static bool
check_branch(uint64_t inst,
struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state,
int ip)
{
int32_t branch_imm = QPU_GET_FIELD(inst, QPU_BRANCH_TARGET);
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
if ((int)branch_imm < 0)
validation_state->needs_uniform_address_for_loop = true;
/* We don't want to have to worry about validation of this, and
* there's no need for it.
*/
if (waddr_add != QPU_W_NOP || waddr_mul != QPU_W_NOP) {
DRM_DEBUG("branch instruction at %d wrote a register.\n",
validation_state->ip);
return false;
}
return true;
}
static bool
check_instruction_reads(struct vc4_validated_shader_info *validated_shader,
struct vc4_shader_validation_state *validation_state)
{
uint64_t inst = validation_state->shader[validation_state->ip];
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
if (raddr_a == QPU_R_UNIF ||
(raddr_b == QPU_R_UNIF && sig != QPU_SIG_SMALL_IMM)) {
/* This can't overflow the uint32_t, because we're reading 8
* bytes of instruction to increment by 4 here, so we'd
* already be OOM.
*/
validated_shader->uniforms_size += 4;
if (validation_state->needs_uniform_address_update) {
DRM_DEBUG("Uniform read with undefined uniform "
"address\n");
return false;
}
}
if ((raddr_a >= 16 && raddr_a < 32) ||
(raddr_b >= 16 && raddr_b < 32 && sig != QPU_SIG_SMALL_IMM)) {
validation_state->all_registers_used = true;
}
return true;
}
/* Make sure that all branches are absolute and point within the shader, and
* note their targets for later.
*/
static bool
vc4_validate_branches(struct vc4_shader_validation_state *validation_state)
{
uint32_t max_branch_target = 0;
int ip;
int last_branch = -2;
for (ip = 0; ip < validation_state->max_ip; ip++) {
uint64_t inst = validation_state->shader[ip];
int32_t branch_imm = QPU_GET_FIELD(inst, QPU_BRANCH_TARGET);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
uint32_t after_delay_ip = ip + 4;
uint32_t branch_target_ip;
if (sig == QPU_SIG_PROG_END) {
/* There are two delay slots after program end is
* signaled that are still executed, then we're
* finished. validation_state->max_ip is the
* instruction after the last valid instruction in the
* program.
*/
validation_state->max_ip = ip + 3;
continue;
}
if (sig != QPU_SIG_BRANCH)
continue;
if (ip - last_branch < 4) {
DRM_DEBUG("Branch at %d during delay slots\n", ip);
return false;
}
last_branch = ip;
if (inst & QPU_BRANCH_REG) {
DRM_DEBUG("branching from register relative "
"not supported\n");
return false;
}
if (!(inst & QPU_BRANCH_REL)) {
DRM_DEBUG("relative branching required\n");
return false;
}
/* The actual branch target is the instruction after the delay
* slots, plus whatever byte offset is in the low 32 bits of
* the instruction. Make sure we're not branching beyond the
* end of the shader object.
*/
if (branch_imm % sizeof(inst) != 0) {
DRM_DEBUG("branch target not aligned\n");
return false;
}
branch_target_ip = after_delay_ip + (branch_imm >> 3);
if (branch_target_ip >= validation_state->max_ip) {
DRM_DEBUG("Branch at %d outside of shader (ip %d/%d)\n",
ip, branch_target_ip,
validation_state->max_ip);
return false;
}
set_bit(branch_target_ip, validation_state->branch_targets);
/* Make sure that the non-branching path is also not outside
* the shader.
*/
if (after_delay_ip >= validation_state->max_ip) {
DRM_DEBUG("Branch at %d continues past shader end "
"(%d/%d)\n",
ip, after_delay_ip, validation_state->max_ip);
return false;
}
set_bit(after_delay_ip, validation_state->branch_targets);
max_branch_target = max(max_branch_target, after_delay_ip);
}
if (max_branch_target > validation_state->max_ip - 3) {
DRM_DEBUG("Branch landed after QPU_SIG_PROG_END");
return false;
}
return true;
}
/* Resets any known state for the shader, used when we may be branched to from
* multiple locations in the program (or at shader start).
*/
static void
reset_validation_state(struct vc4_shader_validation_state *validation_state)
{
int i;
for (i = 0; i < 8; i++)
validation_state->tmu_setup[i / 4].p_offset[i % 4] = ~0;
for (i = 0; i < LIVE_REG_COUNT; i++) {
validation_state->live_min_clamp_offsets[i] = ~0;
validation_state->live_max_clamp_regs[i] = false;
validation_state->live_immediates[i] = ~0;
}
}
static bool
texturing_in_progress(struct vc4_shader_validation_state *validation_state)
{
return (validation_state->tmu_write_count[0] != 0 ||
validation_state->tmu_write_count[1] != 0);
}
static bool
vc4_handle_branch_target(struct vc4_shader_validation_state *validation_state)
{
uint32_t ip = validation_state->ip;
if (!test_bit(ip, validation_state->branch_targets))
return true;
if (texturing_in_progress(validation_state)) {
DRM_DEBUG("Branch target landed during TMU setup\n");
return false;
}
/* Reset our live values tracking, since this instruction may have
* multiple predecessors.
*
* One could potentially do analysis to determine that, for
* example, all predecessors have a live max clamp in the same
* register, but we don't bother with that.
*/
reset_validation_state(validation_state);
/* Since we've entered a basic block from potentially multiple
* predecessors, we need the uniforms address to be updated before any
* unforms are read. We require that after any branch point, the next
* uniform to be loaded is a uniform address offset. That uniform's
* offset will be marked by the uniform address register write
* validation, or a one-off the end-of-program check.
*/
validation_state->needs_uniform_address_update = true;
return true;
}
struct vc4_validated_shader_info *
vc4_validate_shader(struct drm_gem_dma_object *shader_obj)
{
struct vc4_dev *vc4 = to_vc4_dev(shader_obj->base.dev);
bool found_shader_end = false;
int shader_end_ip = 0;
uint32_t last_thread_switch_ip = -3;
uint32_t ip;
struct vc4_validated_shader_info *validated_shader = NULL;
struct vc4_shader_validation_state validation_state;
if (WARN_ON_ONCE(vc4->is_vc5))
return NULL;
memset(&validation_state, 0, sizeof(validation_state));
validation_state.shader = shader_obj->vaddr;
validation_state.max_ip = shader_obj->base.size / sizeof(uint64_t);
reset_validation_state(&validation_state);
validation_state.branch_targets =
kcalloc(BITS_TO_LONGS(validation_state.max_ip),
sizeof(unsigned long), GFP_KERNEL);
if (!validation_state.branch_targets)
goto fail;
validated_shader = kcalloc(1, sizeof(*validated_shader), GFP_KERNEL);
if (!validated_shader)
goto fail;
if (!vc4_validate_branches(&validation_state))
goto fail;
for (ip = 0; ip < validation_state.max_ip; ip++) {
uint64_t inst = validation_state.shader[ip];
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
validation_state.ip = ip;
if (!vc4_handle_branch_target(&validation_state))
goto fail;
if (ip == last_thread_switch_ip + 3) {
/* Reset r0-r3 live clamp data */
int i;
for (i = 64; i < LIVE_REG_COUNT; i++) {
validation_state.live_min_clamp_offsets[i] = ~0;
validation_state.live_max_clamp_regs[i] = false;
validation_state.live_immediates[i] = ~0;
}
}
switch (sig) {
case QPU_SIG_NONE:
case QPU_SIG_WAIT_FOR_SCOREBOARD:
case QPU_SIG_SCOREBOARD_UNLOCK:
case QPU_SIG_COLOR_LOAD:
case QPU_SIG_LOAD_TMU0:
case QPU_SIG_LOAD_TMU1:
case QPU_SIG_PROG_END:
case QPU_SIG_SMALL_IMM:
case QPU_SIG_THREAD_SWITCH:
case QPU_SIG_LAST_THREAD_SWITCH:
if (!check_instruction_writes(validated_shader,
&validation_state)) {
DRM_DEBUG("Bad write at ip %d\n", ip);
goto fail;
}
if (!check_instruction_reads(validated_shader,
&validation_state))
goto fail;
if (sig == QPU_SIG_PROG_END) {
found_shader_end = true;
shader_end_ip = ip;
}
if (sig == QPU_SIG_THREAD_SWITCH ||
sig == QPU_SIG_LAST_THREAD_SWITCH) {
validated_shader->is_threaded = true;
if (ip < last_thread_switch_ip + 3) {
DRM_DEBUG("Thread switch too soon after "
"last switch at ip %d\n", ip);
goto fail;
}
last_thread_switch_ip = ip;
}
break;
case QPU_SIG_LOAD_IMM:
if (!check_instruction_writes(validated_shader,
&validation_state)) {
DRM_DEBUG("Bad LOAD_IMM write at ip %d\n", ip);
goto fail;
}
break;
case QPU_SIG_BRANCH:
if (!check_branch(inst, validated_shader,
&validation_state, ip))
goto fail;
if (ip < last_thread_switch_ip + 3) {
DRM_DEBUG("Branch in thread switch at ip %d",
ip);
goto fail;
}
break;
default:
DRM_DEBUG("Unsupported QPU signal %d at "
"instruction %d\n", sig, ip);
goto fail;
}
/* There are two delay slots after program end is signaled
* that are still executed, then we're finished.
*/
if (found_shader_end && ip == shader_end_ip + 2)
break;
}
if (ip == validation_state.max_ip) {
DRM_DEBUG("shader failed to terminate before "
"shader BO end at %zd\n",
shader_obj->base.size);
goto fail;
}
/* Might corrupt other thread */
if (validated_shader->is_threaded &&
validation_state.all_registers_used) {
DRM_DEBUG("Shader uses threading, but uses the upper "
"half of the registers, too\n");
goto fail;
}
/* If we did a backwards branch and we haven't emitted a uniforms
* reset since then, we still need the uniforms stream to have the
* uniforms address available so that the backwards branch can do its
* uniforms reset.
*
* We could potentially prove that the backwards branch doesn't
* contain any uses of uniforms until program exit, but that doesn't
* seem to be worth the trouble.
*/
if (validation_state.needs_uniform_address_for_loop) {
if (!require_uniform_address_uniform(validated_shader))
goto fail;
validated_shader->uniforms_size += 4;
}
/* Again, no chance of integer overflow here because the worst case
* scenario is 8 bytes of uniforms plus handles per 8-byte
* instruction.
*/
validated_shader->uniforms_src_size =
(validated_shader->uniforms_size +
4 * validated_shader->num_texture_samples);
kfree(validation_state.branch_targets);
return validated_shader;
fail:
kfree(validation_state.branch_targets);
if (validated_shader) {
kfree(validated_shader->uniform_addr_offsets);
kfree(validated_shader->texture_samples);
kfree(validated_shader);
}
return NULL;
}