linuxdebug/drivers/gpu/drm/stm/dw_mipi_dsi-stm.c

607 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2017
*
* Authors: Philippe Cornu <philippe.cornu@st.com>
* Yannick Fertre <yannick.fertre@st.com>
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <drm/bridge/dw_mipi_dsi.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_print.h>
#define HWVER_130 0x31333000 /* IP version 1.30 */
#define HWVER_131 0x31333100 /* IP version 1.31 */
/* DSI digital registers & bit definitions */
#define DSI_VERSION 0x00
#define VERSION GENMASK(31, 8)
/* DSI wrapper registers & bit definitions */
/* Note: registers are named as in the Reference Manual */
#define DSI_WCFGR 0x0400 /* Wrapper ConFiGuration Reg */
#define WCFGR_DSIM BIT(0) /* DSI Mode */
#define WCFGR_COLMUX GENMASK(3, 1) /* COLor MUltipleXing */
#define DSI_WCR 0x0404 /* Wrapper Control Reg */
#define WCR_DSIEN BIT(3) /* DSI ENable */
#define DSI_WISR 0x040C /* Wrapper Interrupt and Status Reg */
#define WISR_PLLLS BIT(8) /* PLL Lock Status */
#define WISR_RRS BIT(12) /* Regulator Ready Status */
#define DSI_WPCR0 0x0418 /* Wrapper Phy Conf Reg 0 */
#define WPCR0_UIX4 GENMASK(5, 0) /* Unit Interval X 4 */
#define WPCR0_TDDL BIT(16) /* Turn Disable Data Lanes */
#define DSI_WRPCR 0x0430 /* Wrapper Regulator & Pll Ctrl Reg */
#define WRPCR_PLLEN BIT(0) /* PLL ENable */
#define WRPCR_NDIV GENMASK(8, 2) /* pll loop DIVision Factor */
#define WRPCR_IDF GENMASK(14, 11) /* pll Input Division Factor */
#define WRPCR_ODF GENMASK(17, 16) /* pll Output Division Factor */
#define WRPCR_REGEN BIT(24) /* REGulator ENable */
#define WRPCR_BGREN BIT(28) /* BandGap Reference ENable */
#define IDF_MIN 1
#define IDF_MAX 7
#define NDIV_MIN 10
#define NDIV_MAX 125
#define ODF_MIN 1
#define ODF_MAX 8
/* dsi color format coding according to the datasheet */
enum dsi_color {
DSI_RGB565_CONF1,
DSI_RGB565_CONF2,
DSI_RGB565_CONF3,
DSI_RGB666_CONF1,
DSI_RGB666_CONF2,
DSI_RGB888,
};
#define LANE_MIN_KBPS 31250
#define LANE_MAX_KBPS 500000
/* Sleep & timeout for regulator on/off, pll lock/unlock & fifo empty */
#define SLEEP_US 1000
#define TIMEOUT_US 200000
struct dw_mipi_dsi_stm {
void __iomem *base;
struct clk *pllref_clk;
struct dw_mipi_dsi *dsi;
u32 hw_version;
int lane_min_kbps;
int lane_max_kbps;
struct regulator *vdd_supply;
};
static inline void dsi_write(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_mipi_dsi_stm *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static inline void dsi_set(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) | mask);
}
static inline void dsi_clear(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) & ~mask);
}
static inline void dsi_update_bits(struct dw_mipi_dsi_stm *dsi, u32 reg,
u32 mask, u32 val)
{
dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val);
}
static enum dsi_color dsi_color_from_mipi(enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB888:
return DSI_RGB888;
case MIPI_DSI_FMT_RGB666:
return DSI_RGB666_CONF2;
case MIPI_DSI_FMT_RGB666_PACKED:
return DSI_RGB666_CONF1;
case MIPI_DSI_FMT_RGB565:
return DSI_RGB565_CONF1;
default:
DRM_DEBUG_DRIVER("MIPI color invalid, so we use rgb888\n");
}
return DSI_RGB888;
}
static int dsi_pll_get_clkout_khz(int clkin_khz, int idf, int ndiv, int odf)
{
int divisor = idf * odf;
/* prevent from division by 0 */
if (!divisor)
return 0;
return DIV_ROUND_CLOSEST(clkin_khz * ndiv, divisor);
}
static int dsi_pll_get_params(struct dw_mipi_dsi_stm *dsi,
int clkin_khz, int clkout_khz,
int *idf, int *ndiv, int *odf)
{
int i, o, n, n_min, n_max;
int fvco_min, fvco_max, delta, best_delta; /* all in khz */
/* Early checks preventing division by 0 & odd results */
if (clkin_khz <= 0 || clkout_khz <= 0)
return -EINVAL;
fvco_min = dsi->lane_min_kbps * 2 * ODF_MAX;
fvco_max = dsi->lane_max_kbps * 2 * ODF_MIN;
best_delta = 1000000; /* big started value (1000000khz) */
for (i = IDF_MIN; i <= IDF_MAX; i++) {
/* Compute ndiv range according to Fvco */
n_min = ((fvco_min * i) / (2 * clkin_khz)) + 1;
n_max = (fvco_max * i) / (2 * clkin_khz);
/* No need to continue idf loop if we reach ndiv max */
if (n_min >= NDIV_MAX)
break;
/* Clamp ndiv to valid values */
if (n_min < NDIV_MIN)
n_min = NDIV_MIN;
if (n_max > NDIV_MAX)
n_max = NDIV_MAX;
for (o = ODF_MIN; o <= ODF_MAX; o *= 2) {
n = DIV_ROUND_CLOSEST(i * o * clkout_khz, clkin_khz);
/* Check ndiv according to vco range */
if (n < n_min || n > n_max)
continue;
/* Check if new delta is better & saves parameters */
delta = dsi_pll_get_clkout_khz(clkin_khz, i, n, o) -
clkout_khz;
if (delta < 0)
delta = -delta;
if (delta < best_delta) {
*idf = i;
*ndiv = n;
*odf = o;
best_delta = delta;
}
/* fast return in case of "perfect result" */
if (!delta)
return 0;
}
}
return 0;
}
static int dw_mipi_dsi_phy_init(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
u32 val;
int ret;
/* Enable the regulator */
dsi_set(dsi, DSI_WRPCR, WRPCR_REGEN | WRPCR_BGREN);
ret = readl_poll_timeout(dsi->base + DSI_WISR, val, val & WISR_RRS,
SLEEP_US, TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("!TIMEOUT! waiting REGU, let's continue\n");
/* Enable the DSI PLL & wait for its lock */
dsi_set(dsi, DSI_WRPCR, WRPCR_PLLEN);
ret = readl_poll_timeout(dsi->base + DSI_WISR, val, val & WISR_PLLLS,
SLEEP_US, TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("!TIMEOUT! waiting PLL, let's continue\n");
return 0;
}
static void dw_mipi_dsi_phy_power_on(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
DRM_DEBUG_DRIVER("\n");
/* Enable the DSI wrapper */
dsi_set(dsi, DSI_WCR, WCR_DSIEN);
}
static void dw_mipi_dsi_phy_power_off(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
DRM_DEBUG_DRIVER("\n");
/* Disable the DSI wrapper */
dsi_clear(dsi, DSI_WCR, WCR_DSIEN);
}
static int
dw_mipi_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format,
unsigned int *lane_mbps)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
unsigned int idf, ndiv, odf, pll_in_khz, pll_out_khz;
int ret, bpp;
u32 val;
pll_in_khz = (unsigned int)(clk_get_rate(dsi->pllref_clk) / 1000);
/* Compute requested pll out */
bpp = mipi_dsi_pixel_format_to_bpp(format);
pll_out_khz = mode->clock * bpp / lanes;
/* Add 20% to pll out to be higher than pixel bw (burst mode only) */
if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
pll_out_khz = (pll_out_khz * 12) / 10;
if (pll_out_khz > dsi->lane_max_kbps) {
pll_out_khz = dsi->lane_max_kbps;
DRM_WARN("Warning max phy mbps is used\n");
}
if (pll_out_khz < dsi->lane_min_kbps) {
pll_out_khz = dsi->lane_min_kbps;
DRM_WARN("Warning min phy mbps is used\n");
}
/* Compute best pll parameters */
idf = 0;
ndiv = 0;
odf = 0;
ret = dsi_pll_get_params(dsi, pll_in_khz, pll_out_khz,
&idf, &ndiv, &odf);
if (ret)
DRM_WARN("Warning dsi_pll_get_params(): bad params\n");
/* Get the adjusted pll out value */
pll_out_khz = dsi_pll_get_clkout_khz(pll_in_khz, idf, ndiv, odf);
/* Set the PLL division factors */
dsi_update_bits(dsi, DSI_WRPCR, WRPCR_NDIV | WRPCR_IDF | WRPCR_ODF,
(ndiv << 2) | (idf << 11) | ((ffs(odf) - 1) << 16));
/* Compute uix4 & set the bit period in high-speed mode */
val = 4000000 / pll_out_khz;
dsi_update_bits(dsi, DSI_WPCR0, WPCR0_UIX4, val);
/* Select video mode by resetting DSIM bit */
dsi_clear(dsi, DSI_WCFGR, WCFGR_DSIM);
/* Select the color coding */
dsi_update_bits(dsi, DSI_WCFGR, WCFGR_COLMUX,
dsi_color_from_mipi(format) << 1);
*lane_mbps = pll_out_khz / 1000;
DRM_DEBUG_DRIVER("pll_in %ukHz pll_out %ukHz lane_mbps %uMHz\n",
pll_in_khz, pll_out_khz, *lane_mbps);
return 0;
}
#define DSI_PHY_DELAY(fp, vp, mbps) DIV_ROUND_UP((fp) * (mbps) + 1000 * (vp), 8000)
static int
dw_mipi_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps,
struct dw_mipi_dsi_dphy_timing *timing)
{
/*
* From STM32MP157 datasheet, valid for STM32F469, STM32F7x9, STM32H747
* phy_clkhs2lp_time = (272+136*UI)/(8*UI)
* phy_clklp2hs_time = (512+40*UI)/(8*UI)
* phy_hs2lp_time = (192+64*UI)/(8*UI)
* phy_lp2hs_time = (256+32*UI)/(8*UI)
*/
timing->clk_hs2lp = DSI_PHY_DELAY(272, 136, lane_mbps);
timing->clk_lp2hs = DSI_PHY_DELAY(512, 40, lane_mbps);
timing->data_hs2lp = DSI_PHY_DELAY(192, 64, lane_mbps);
timing->data_lp2hs = DSI_PHY_DELAY(256, 32, lane_mbps);
return 0;
}
#define CLK_TOLERANCE_HZ 50
static enum drm_mode_status
dw_mipi_dsi_stm_mode_valid(void *priv_data,
const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
unsigned int idf, ndiv, odf, pll_in_khz, pll_out_khz;
int ret, bpp;
bpp = mipi_dsi_pixel_format_to_bpp(format);
if (bpp < 0)
return MODE_BAD;
/* Compute requested pll out */
pll_out_khz = mode->clock * bpp / lanes;
if (pll_out_khz > dsi->lane_max_kbps)
return MODE_CLOCK_HIGH;
if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) {
/* Add 20% to pll out to be higher than pixel bw */
pll_out_khz = (pll_out_khz * 12) / 10;
} else {
if (pll_out_khz < dsi->lane_min_kbps)
return MODE_CLOCK_LOW;
}
/* Compute best pll parameters */
idf = 0;
ndiv = 0;
odf = 0;
pll_in_khz = clk_get_rate(dsi->pllref_clk) / 1000;
ret = dsi_pll_get_params(dsi, pll_in_khz, pll_out_khz, &idf, &ndiv, &odf);
if (ret) {
DRM_WARN("Warning dsi_pll_get_params(): bad params\n");
return MODE_ERROR;
}
if (!(mode_flags & MIPI_DSI_MODE_VIDEO_BURST)) {
unsigned int px_clock_hz, target_px_clock_hz, lane_mbps;
int dsi_short_packet_size_px, hfp, hsync, hbp, delay_to_lp;
struct dw_mipi_dsi_dphy_timing dphy_timing;
/* Get the adjusted pll out value */
pll_out_khz = dsi_pll_get_clkout_khz(pll_in_khz, idf, ndiv, odf);
px_clock_hz = DIV_ROUND_CLOSEST_ULL(1000ULL * pll_out_khz * lanes, bpp);
target_px_clock_hz = mode->clock * 1000;
/*
* Filter modes according to the clock value, particularly useful for
* hdmi modes that require precise pixel clocks.
*/
if (px_clock_hz < target_px_clock_hz - CLK_TOLERANCE_HZ ||
px_clock_hz > target_px_clock_hz + CLK_TOLERANCE_HZ)
return MODE_CLOCK_RANGE;
/* sync packets are codes as DSI short packets (4 bytes) */
dsi_short_packet_size_px = DIV_ROUND_UP(4 * BITS_PER_BYTE, bpp);
hfp = mode->hsync_start - mode->hdisplay;
hsync = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
/* hsync must be longer than 4 bytes HSS packets */
if (hsync < dsi_short_packet_size_px)
return MODE_HSYNC_NARROW;
if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
/* HBP must be longer than 4 bytes HSE packets */
if (hbp < dsi_short_packet_size_px)
return MODE_HSYNC_NARROW;
hbp -= dsi_short_packet_size_px;
} else {
/* With sync events HBP extends in the hsync */
hbp += hsync - dsi_short_packet_size_px;
}
lane_mbps = pll_out_khz / 1000;
ret = dw_mipi_dsi_phy_get_timing(priv_data, lane_mbps, &dphy_timing);
if (ret)
return MODE_ERROR;
/*
* In non-burst mode DSI has to enter in LP during HFP
* (horizontal front porch) or HBP (horizontal back porch) to
* resync with LTDC pixel clock.
*/
delay_to_lp = DIV_ROUND_UP((dphy_timing.data_hs2lp + dphy_timing.data_lp2hs) *
lanes * BITS_PER_BYTE, bpp);
if (hfp < delay_to_lp && hbp < delay_to_lp)
return MODE_HSYNC;
}
return MODE_OK;
}
static const struct dw_mipi_dsi_phy_ops dw_mipi_dsi_stm_phy_ops = {
.init = dw_mipi_dsi_phy_init,
.power_on = dw_mipi_dsi_phy_power_on,
.power_off = dw_mipi_dsi_phy_power_off,
.get_lane_mbps = dw_mipi_dsi_get_lane_mbps,
.get_timing = dw_mipi_dsi_phy_get_timing,
};
static struct dw_mipi_dsi_plat_data dw_mipi_dsi_stm_plat_data = {
.max_data_lanes = 2,
.mode_valid = dw_mipi_dsi_stm_mode_valid,
.phy_ops = &dw_mipi_dsi_stm_phy_ops,
};
static const struct of_device_id dw_mipi_dsi_stm_dt_ids[] = {
{ .compatible = "st,stm32-dsi", .data = &dw_mipi_dsi_stm_plat_data, },
{ },
};
MODULE_DEVICE_TABLE(of, dw_mipi_dsi_stm_dt_ids);
static int dw_mipi_dsi_stm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dw_mipi_dsi_stm *dsi;
struct clk *pclk;
struct resource *res;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->base)) {
ret = PTR_ERR(dsi->base);
DRM_ERROR("Unable to get dsi registers %d\n", ret);
return ret;
}
dsi->vdd_supply = devm_regulator_get(dev, "phy-dsi");
if (IS_ERR(dsi->vdd_supply)) {
ret = PTR_ERR(dsi->vdd_supply);
dev_err_probe(dev, ret, "Failed to request regulator\n");
return ret;
}
ret = regulator_enable(dsi->vdd_supply);
if (ret) {
DRM_ERROR("Failed to enable regulator: %d\n", ret);
return ret;
}
dsi->pllref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(dsi->pllref_clk)) {
ret = PTR_ERR(dsi->pllref_clk);
dev_err_probe(dev, ret, "Unable to get pll reference clock\n");
goto err_clk_get;
}
ret = clk_prepare_enable(dsi->pllref_clk);
if (ret) {
DRM_ERROR("Failed to enable pllref_clk: %d\n", ret);
goto err_clk_get;
}
pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(pclk)) {
ret = PTR_ERR(pclk);
DRM_ERROR("Unable to get peripheral clock: %d\n", ret);
goto err_dsi_probe;
}
ret = clk_prepare_enable(pclk);
if (ret) {
DRM_ERROR("%s: Failed to enable peripheral clk\n", __func__);
goto err_dsi_probe;
}
dsi->hw_version = dsi_read(dsi, DSI_VERSION) & VERSION;
clk_disable_unprepare(pclk);
if (dsi->hw_version != HWVER_130 && dsi->hw_version != HWVER_131) {
ret = -ENODEV;
DRM_ERROR("bad dsi hardware version\n");
goto err_dsi_probe;
}
/* set lane capabilities according to hw version */
dsi->lane_min_kbps = LANE_MIN_KBPS;
dsi->lane_max_kbps = LANE_MAX_KBPS;
if (dsi->hw_version == HWVER_131) {
dsi->lane_min_kbps *= 2;
dsi->lane_max_kbps *= 2;
}
dw_mipi_dsi_stm_plat_data.base = dsi->base;
dw_mipi_dsi_stm_plat_data.priv_data = dsi;
platform_set_drvdata(pdev, dsi);
dsi->dsi = dw_mipi_dsi_probe(pdev, &dw_mipi_dsi_stm_plat_data);
if (IS_ERR(dsi->dsi)) {
ret = PTR_ERR(dsi->dsi);
dev_err_probe(dev, ret, "Failed to initialize mipi dsi host\n");
goto err_dsi_probe;
}
return 0;
err_dsi_probe:
clk_disable_unprepare(dsi->pllref_clk);
err_clk_get:
regulator_disable(dsi->vdd_supply);
return ret;
}
static int dw_mipi_dsi_stm_remove(struct platform_device *pdev)
{
struct dw_mipi_dsi_stm *dsi = platform_get_drvdata(pdev);
dw_mipi_dsi_remove(dsi->dsi);
clk_disable_unprepare(dsi->pllref_clk);
regulator_disable(dsi->vdd_supply);
return 0;
}
static int __maybe_unused dw_mipi_dsi_stm_suspend(struct device *dev)
{
struct dw_mipi_dsi_stm *dsi = dw_mipi_dsi_stm_plat_data.priv_data;
DRM_DEBUG_DRIVER("\n");
clk_disable_unprepare(dsi->pllref_clk);
regulator_disable(dsi->vdd_supply);
return 0;
}
static int __maybe_unused dw_mipi_dsi_stm_resume(struct device *dev)
{
struct dw_mipi_dsi_stm *dsi = dw_mipi_dsi_stm_plat_data.priv_data;
int ret;
DRM_DEBUG_DRIVER("\n");
ret = regulator_enable(dsi->vdd_supply);
if (ret) {
DRM_ERROR("Failed to enable regulator: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(dsi->pllref_clk);
if (ret) {
regulator_disable(dsi->vdd_supply);
DRM_ERROR("Failed to enable pllref_clk: %d\n", ret);
return ret;
}
return 0;
}
static const struct dev_pm_ops dw_mipi_dsi_stm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dw_mipi_dsi_stm_suspend,
dw_mipi_dsi_stm_resume)
};
static struct platform_driver dw_mipi_dsi_stm_driver = {
.probe = dw_mipi_dsi_stm_probe,
.remove = dw_mipi_dsi_stm_remove,
.driver = {
.of_match_table = dw_mipi_dsi_stm_dt_ids,
.name = "stm32-display-dsi",
.pm = &dw_mipi_dsi_stm_pm_ops,
},
};
module_platform_driver(dw_mipi_dsi_stm_driver);
MODULE_AUTHOR("Philippe Cornu <philippe.cornu@st.com>");
MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
MODULE_DESCRIPTION("STMicroelectronics DW MIPI DSI host controller driver");
MODULE_LICENSE("GPL v2");