3289 lines
72 KiB
C
3289 lines
72 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/prime_numbers.h>
|
|
#include <linux/pm_qos.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include "gem/i915_gem_internal.h"
|
|
#include "gem/i915_gem_pm.h"
|
|
#include "gem/selftests/mock_context.h"
|
|
|
|
#include "gt/intel_engine_heartbeat.h"
|
|
#include "gt/intel_engine_pm.h"
|
|
#include "gt/intel_engine_user.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_clock_utils.h"
|
|
#include "gt/intel_gt_requests.h"
|
|
#include "gt/selftest_engine_heartbeat.h"
|
|
|
|
#include "i915_random.h"
|
|
#include "i915_selftest.h"
|
|
#include "igt_flush_test.h"
|
|
#include "igt_live_test.h"
|
|
#include "igt_spinner.h"
|
|
#include "lib_sw_fence.h"
|
|
|
|
#include "mock_drm.h"
|
|
#include "mock_gem_device.h"
|
|
|
|
static unsigned int num_uabi_engines(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
unsigned int count;
|
|
|
|
count = 0;
|
|
for_each_uabi_engine(engine, i915)
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
|
|
{
|
|
return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
|
|
}
|
|
|
|
static int igt_add_request(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct i915_request *request;
|
|
|
|
/* Basic preliminary test to create a request and let it loose! */
|
|
|
|
request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
i915_request_add(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igt_wait_request(void *arg)
|
|
{
|
|
const long T = HZ / 4;
|
|
struct drm_i915_private *i915 = arg;
|
|
struct i915_request *request;
|
|
int err = -EINVAL;
|
|
|
|
/* Submit a request, then wait upon it */
|
|
|
|
request = mock_request(rcs0(i915)->kernel_context, T);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
i915_request_get(request);
|
|
|
|
if (i915_request_wait(request, 0, 0) != -ETIME) {
|
|
pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_wait(request, 0, T) != -ETIME) {
|
|
pr_err("request wait succeeded (expected timeout before submit!)\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_completed(request)) {
|
|
pr_err("request completed before submit!!\n");
|
|
goto out_request;
|
|
}
|
|
|
|
i915_request_add(request);
|
|
|
|
if (i915_request_wait(request, 0, 0) != -ETIME) {
|
|
pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_completed(request)) {
|
|
pr_err("request completed immediately!\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_wait(request, 0, T / 2) != -ETIME) {
|
|
pr_err("request wait succeeded (expected timeout!)\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_wait(request, 0, T) == -ETIME) {
|
|
pr_err("request wait timed out!\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (!i915_request_completed(request)) {
|
|
pr_err("request not complete after waiting!\n");
|
|
goto out_request;
|
|
}
|
|
|
|
if (i915_request_wait(request, 0, T) == -ETIME) {
|
|
pr_err("request wait timed out when already complete!\n");
|
|
goto out_request;
|
|
}
|
|
|
|
err = 0;
|
|
out_request:
|
|
i915_request_put(request);
|
|
mock_device_flush(i915);
|
|
return err;
|
|
}
|
|
|
|
static int igt_fence_wait(void *arg)
|
|
{
|
|
const long T = HZ / 4;
|
|
struct drm_i915_private *i915 = arg;
|
|
struct i915_request *request;
|
|
int err = -EINVAL;
|
|
|
|
/* Submit a request, treat it as a fence and wait upon it */
|
|
|
|
request = mock_request(rcs0(i915)->kernel_context, T);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
|
|
pr_err("fence wait success before submit (expected timeout)!\n");
|
|
goto out;
|
|
}
|
|
|
|
i915_request_add(request);
|
|
|
|
if (dma_fence_is_signaled(&request->fence)) {
|
|
pr_err("fence signaled immediately!\n");
|
|
goto out;
|
|
}
|
|
|
|
if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
|
|
pr_err("fence wait success after submit (expected timeout)!\n");
|
|
goto out;
|
|
}
|
|
|
|
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
|
|
pr_err("fence wait timed out (expected success)!\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!dma_fence_is_signaled(&request->fence)) {
|
|
pr_err("fence unsignaled after waiting!\n");
|
|
goto out;
|
|
}
|
|
|
|
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
|
|
pr_err("fence wait timed out when complete (expected success)!\n");
|
|
goto out;
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
mock_device_flush(i915);
|
|
return err;
|
|
}
|
|
|
|
static int igt_request_rewind(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct i915_request *request, *vip;
|
|
struct i915_gem_context *ctx[2];
|
|
struct intel_context *ce;
|
|
int err = -EINVAL;
|
|
|
|
ctx[0] = mock_context(i915, "A");
|
|
if (!ctx[0]) {
|
|
err = -ENOMEM;
|
|
goto err_ctx_0;
|
|
}
|
|
|
|
ce = i915_gem_context_get_engine(ctx[0], RCS0);
|
|
GEM_BUG_ON(IS_ERR(ce));
|
|
request = mock_request(ce, 2 * HZ);
|
|
intel_context_put(ce);
|
|
if (!request) {
|
|
err = -ENOMEM;
|
|
goto err_context_0;
|
|
}
|
|
|
|
i915_request_get(request);
|
|
i915_request_add(request);
|
|
|
|
ctx[1] = mock_context(i915, "B");
|
|
if (!ctx[1]) {
|
|
err = -ENOMEM;
|
|
goto err_ctx_1;
|
|
}
|
|
|
|
ce = i915_gem_context_get_engine(ctx[1], RCS0);
|
|
GEM_BUG_ON(IS_ERR(ce));
|
|
vip = mock_request(ce, 0);
|
|
intel_context_put(ce);
|
|
if (!vip) {
|
|
err = -ENOMEM;
|
|
goto err_context_1;
|
|
}
|
|
|
|
/* Simulate preemption by manual reordering */
|
|
if (!mock_cancel_request(request)) {
|
|
pr_err("failed to cancel request (already executed)!\n");
|
|
i915_request_add(vip);
|
|
goto err_context_1;
|
|
}
|
|
i915_request_get(vip);
|
|
i915_request_add(vip);
|
|
rcu_read_lock();
|
|
request->engine->submit_request(request);
|
|
rcu_read_unlock();
|
|
|
|
|
|
if (i915_request_wait(vip, 0, HZ) == -ETIME) {
|
|
pr_err("timed out waiting for high priority request\n");
|
|
goto err;
|
|
}
|
|
|
|
if (i915_request_completed(request)) {
|
|
pr_err("low priority request already completed\n");
|
|
goto err;
|
|
}
|
|
|
|
err = 0;
|
|
err:
|
|
i915_request_put(vip);
|
|
err_context_1:
|
|
mock_context_close(ctx[1]);
|
|
err_ctx_1:
|
|
i915_request_put(request);
|
|
err_context_0:
|
|
mock_context_close(ctx[0]);
|
|
err_ctx_0:
|
|
mock_device_flush(i915);
|
|
return err;
|
|
}
|
|
|
|
struct smoketest {
|
|
struct intel_engine_cs *engine;
|
|
struct i915_gem_context **contexts;
|
|
atomic_long_t num_waits, num_fences;
|
|
int ncontexts, max_batch;
|
|
struct i915_request *(*request_alloc)(struct intel_context *ce);
|
|
};
|
|
|
|
static struct i915_request *
|
|
__mock_request_alloc(struct intel_context *ce)
|
|
{
|
|
return mock_request(ce, 0);
|
|
}
|
|
|
|
static struct i915_request *
|
|
__live_request_alloc(struct intel_context *ce)
|
|
{
|
|
return intel_context_create_request(ce);
|
|
}
|
|
|
|
struct smoke_thread {
|
|
struct kthread_worker *worker;
|
|
struct kthread_work work;
|
|
struct smoketest *t;
|
|
bool stop;
|
|
int result;
|
|
};
|
|
|
|
static void __igt_breadcrumbs_smoketest(struct kthread_work *work)
|
|
{
|
|
struct smoke_thread *thread = container_of(work, typeof(*thread), work);
|
|
struct smoketest *t = thread->t;
|
|
const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
|
|
const unsigned int total = 4 * t->ncontexts + 1;
|
|
unsigned int num_waits = 0, num_fences = 0;
|
|
struct i915_request **requests;
|
|
I915_RND_STATE(prng);
|
|
unsigned int *order;
|
|
int err = 0;
|
|
|
|
/*
|
|
* A very simple test to catch the most egregious of list handling bugs.
|
|
*
|
|
* At its heart, we simply create oodles of requests running across
|
|
* multiple kthreads and enable signaling on them, for the sole purpose
|
|
* of stressing our breadcrumb handling. The only inspection we do is
|
|
* that the fences were marked as signaled.
|
|
*/
|
|
|
|
requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
|
|
if (!requests) {
|
|
thread->result = -ENOMEM;
|
|
return;
|
|
}
|
|
|
|
order = i915_random_order(total, &prng);
|
|
if (!order) {
|
|
err = -ENOMEM;
|
|
goto out_requests;
|
|
}
|
|
|
|
while (!READ_ONCE(thread->stop)) {
|
|
struct i915_sw_fence *submit, *wait;
|
|
unsigned int n, count;
|
|
|
|
submit = heap_fence_create(GFP_KERNEL);
|
|
if (!submit) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
wait = heap_fence_create(GFP_KERNEL);
|
|
if (!wait) {
|
|
i915_sw_fence_commit(submit);
|
|
heap_fence_put(submit);
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
i915_random_reorder(order, total, &prng);
|
|
count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
|
|
|
|
for (n = 0; n < count; n++) {
|
|
struct i915_gem_context *ctx =
|
|
t->contexts[order[n] % t->ncontexts];
|
|
struct i915_request *rq;
|
|
struct intel_context *ce;
|
|
|
|
ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
|
|
GEM_BUG_ON(IS_ERR(ce));
|
|
rq = t->request_alloc(ce);
|
|
intel_context_put(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
count = n;
|
|
break;
|
|
}
|
|
|
|
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
|
|
submit,
|
|
GFP_KERNEL);
|
|
|
|
requests[n] = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (err >= 0)
|
|
err = i915_sw_fence_await_dma_fence(wait,
|
|
&rq->fence,
|
|
0,
|
|
GFP_KERNEL);
|
|
|
|
if (err < 0) {
|
|
i915_request_put(rq);
|
|
count = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
i915_sw_fence_commit(submit);
|
|
i915_sw_fence_commit(wait);
|
|
|
|
if (!wait_event_timeout(wait->wait,
|
|
i915_sw_fence_done(wait),
|
|
5 * HZ)) {
|
|
struct i915_request *rq = requests[count - 1];
|
|
|
|
pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
|
|
atomic_read(&wait->pending), count,
|
|
rq->fence.context, rq->fence.seqno,
|
|
t->engine->name);
|
|
GEM_TRACE_DUMP();
|
|
|
|
intel_gt_set_wedged(t->engine->gt);
|
|
GEM_BUG_ON(!i915_request_completed(rq));
|
|
i915_sw_fence_wait(wait);
|
|
err = -EIO;
|
|
}
|
|
|
|
for (n = 0; n < count; n++) {
|
|
struct i915_request *rq = requests[n];
|
|
|
|
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
|
|
&rq->fence.flags)) {
|
|
pr_err("%llu:%llu was not signaled!\n",
|
|
rq->fence.context, rq->fence.seqno);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
i915_request_put(rq);
|
|
}
|
|
|
|
heap_fence_put(wait);
|
|
heap_fence_put(submit);
|
|
|
|
if (err < 0)
|
|
break;
|
|
|
|
num_fences += count;
|
|
num_waits++;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
atomic_long_add(num_fences, &t->num_fences);
|
|
atomic_long_add(num_waits, &t->num_waits);
|
|
|
|
kfree(order);
|
|
out_requests:
|
|
kfree(requests);
|
|
thread->result = err;
|
|
}
|
|
|
|
static int mock_breadcrumbs_smoketest(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct smoketest t = {
|
|
.engine = rcs0(i915),
|
|
.ncontexts = 1024,
|
|
.max_batch = 1024,
|
|
.request_alloc = __mock_request_alloc
|
|
};
|
|
unsigned int ncpus = num_online_cpus();
|
|
struct smoke_thread *threads;
|
|
unsigned int n;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Smoketest our breadcrumb/signal handling for requests across multiple
|
|
* threads. A very simple test to only catch the most egregious of bugs.
|
|
* See __igt_breadcrumbs_smoketest();
|
|
*/
|
|
|
|
threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
|
|
if (!threads)
|
|
return -ENOMEM;
|
|
|
|
t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
|
|
if (!t.contexts) {
|
|
ret = -ENOMEM;
|
|
goto out_threads;
|
|
}
|
|
|
|
for (n = 0; n < t.ncontexts; n++) {
|
|
t.contexts[n] = mock_context(t.engine->i915, "mock");
|
|
if (!t.contexts[n]) {
|
|
ret = -ENOMEM;
|
|
goto out_contexts;
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < ncpus; n++) {
|
|
struct kthread_worker *worker;
|
|
|
|
worker = kthread_create_worker(0, "igt/%d", n);
|
|
if (IS_ERR(worker)) {
|
|
ret = PTR_ERR(worker);
|
|
ncpus = n;
|
|
break;
|
|
}
|
|
|
|
threads[n].worker = worker;
|
|
threads[n].t = &t;
|
|
threads[n].stop = false;
|
|
threads[n].result = 0;
|
|
|
|
kthread_init_work(&threads[n].work,
|
|
__igt_breadcrumbs_smoketest);
|
|
kthread_queue_work(worker, &threads[n].work);
|
|
}
|
|
|
|
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
|
|
|
|
for (n = 0; n < ncpus; n++) {
|
|
int err;
|
|
|
|
WRITE_ONCE(threads[n].stop, true);
|
|
kthread_flush_work(&threads[n].work);
|
|
err = READ_ONCE(threads[n].result);
|
|
if (err < 0 && !ret)
|
|
ret = err;
|
|
|
|
kthread_destroy_worker(threads[n].worker);
|
|
}
|
|
pr_info("Completed %lu waits for %lu fence across %d cpus\n",
|
|
atomic_long_read(&t.num_waits),
|
|
atomic_long_read(&t.num_fences),
|
|
ncpus);
|
|
|
|
out_contexts:
|
|
for (n = 0; n < t.ncontexts; n++) {
|
|
if (!t.contexts[n])
|
|
break;
|
|
mock_context_close(t.contexts[n]);
|
|
}
|
|
kfree(t.contexts);
|
|
out_threads:
|
|
kfree(threads);
|
|
return ret;
|
|
}
|
|
|
|
int i915_request_mock_selftests(void)
|
|
{
|
|
static const struct i915_subtest tests[] = {
|
|
SUBTEST(igt_add_request),
|
|
SUBTEST(igt_wait_request),
|
|
SUBTEST(igt_fence_wait),
|
|
SUBTEST(igt_request_rewind),
|
|
SUBTEST(mock_breadcrumbs_smoketest),
|
|
};
|
|
struct drm_i915_private *i915;
|
|
intel_wakeref_t wakeref;
|
|
int err = 0;
|
|
|
|
i915 = mock_gem_device();
|
|
if (!i915)
|
|
return -ENOMEM;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
|
|
err = i915_subtests(tests, i915);
|
|
|
|
mock_destroy_device(i915);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int live_nop_request(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct intel_engine_cs *engine;
|
|
struct igt_live_test t;
|
|
int err = -ENODEV;
|
|
|
|
/*
|
|
* Submit various sized batches of empty requests, to each engine
|
|
* (individually), and wait for the batch to complete. We can check
|
|
* the overhead of submitting requests to the hardware.
|
|
*/
|
|
|
|
for_each_uabi_engine(engine, i915) {
|
|
unsigned long n, prime;
|
|
IGT_TIMEOUT(end_time);
|
|
ktime_t times[2] = {};
|
|
|
|
err = igt_live_test_begin(&t, i915, __func__, engine->name);
|
|
if (err)
|
|
return err;
|
|
|
|
intel_engine_pm_get(engine);
|
|
for_each_prime_number_from(prime, 1, 8192) {
|
|
struct i915_request *request = NULL;
|
|
|
|
times[1] = ktime_get_raw();
|
|
|
|
for (n = 0; n < prime; n++) {
|
|
i915_request_put(request);
|
|
request = i915_request_create(engine->kernel_context);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
|
|
/*
|
|
* This space is left intentionally blank.
|
|
*
|
|
* We do not actually want to perform any
|
|
* action with this request, we just want
|
|
* to measure the latency in allocation
|
|
* and submission of our breadcrumbs -
|
|
* ensuring that the bare request is sufficient
|
|
* for the system to work (i.e. proper HEAD
|
|
* tracking of the rings, interrupt handling,
|
|
* etc). It also gives us the lowest bounds
|
|
* for latency.
|
|
*/
|
|
|
|
i915_request_get(request);
|
|
i915_request_add(request);
|
|
}
|
|
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
|
|
i915_request_put(request);
|
|
|
|
times[1] = ktime_sub(ktime_get_raw(), times[1]);
|
|
if (prime == 1)
|
|
times[0] = times[1];
|
|
|
|
if (__igt_timeout(end_time, NULL))
|
|
break;
|
|
}
|
|
intel_engine_pm_put(engine);
|
|
|
|
err = igt_live_test_end(&t);
|
|
if (err)
|
|
return err;
|
|
|
|
pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
|
|
engine->name,
|
|
ktime_to_ns(times[0]),
|
|
prime, div64_u64(ktime_to_ns(times[1]), prime));
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __cancel_inactive(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce;
|
|
struct igt_spinner spin;
|
|
struct i915_request *rq;
|
|
int err = 0;
|
|
|
|
if (igt_spinner_init(&spin, engine->gt))
|
|
return -ENOMEM;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out_spin;
|
|
}
|
|
|
|
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
|
|
pr_debug("%s: Cancelling inactive request\n", engine->name);
|
|
i915_request_cancel(rq, -EINTR);
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("%s: Failed to cancel inactive request\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_rq;
|
|
}
|
|
|
|
if (rq->fence.error != -EINTR) {
|
|
pr_err("%s: fence not cancelled (%u)\n",
|
|
engine->name, rq->fence.error);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
out_rq:
|
|
i915_request_put(rq);
|
|
out_ce:
|
|
intel_context_put(ce);
|
|
out_spin:
|
|
igt_spinner_fini(&spin);
|
|
if (err)
|
|
pr_err("%s: %s error %d\n", __func__, engine->name, err);
|
|
return err;
|
|
}
|
|
|
|
static int __cancel_active(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce;
|
|
struct igt_spinner spin;
|
|
struct i915_request *rq;
|
|
int err = 0;
|
|
|
|
if (igt_spinner_init(&spin, engine->gt))
|
|
return -ENOMEM;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out_spin;
|
|
}
|
|
|
|
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
|
|
pr_debug("%s: Cancelling active request\n", engine->name);
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("Failed to start spinner on %s\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_rq;
|
|
}
|
|
i915_request_cancel(rq, -EINTR);
|
|
|
|
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("%s: Failed to cancel active request\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_rq;
|
|
}
|
|
|
|
if (rq->fence.error != -EINTR) {
|
|
pr_err("%s: fence not cancelled (%u)\n",
|
|
engine->name, rq->fence.error);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
out_rq:
|
|
i915_request_put(rq);
|
|
out_ce:
|
|
intel_context_put(ce);
|
|
out_spin:
|
|
igt_spinner_fini(&spin);
|
|
if (err)
|
|
pr_err("%s: %s error %d\n", __func__, engine->name, err);
|
|
return err;
|
|
}
|
|
|
|
static int __cancel_completed(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce;
|
|
struct igt_spinner spin;
|
|
struct i915_request *rq;
|
|
int err = 0;
|
|
|
|
if (igt_spinner_init(&spin, engine->gt))
|
|
return -ENOMEM;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out_spin;
|
|
}
|
|
|
|
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
igt_spinner_end(&spin);
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
|
|
err = -ETIME;
|
|
goto out_rq;
|
|
}
|
|
|
|
pr_debug("%s: Cancelling completed request\n", engine->name);
|
|
i915_request_cancel(rq, -EINTR);
|
|
if (rq->fence.error) {
|
|
pr_err("%s: fence not cancelled (%u)\n",
|
|
engine->name, rq->fence.error);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
out_rq:
|
|
i915_request_put(rq);
|
|
out_ce:
|
|
intel_context_put(ce);
|
|
out_spin:
|
|
igt_spinner_fini(&spin);
|
|
if (err)
|
|
pr_err("%s: %s error %d\n", __func__, engine->name, err);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Test to prove a non-preemptable request can be cancelled and a subsequent
|
|
* request on the same context can successfully complete after cancellation.
|
|
*
|
|
* Testing methodology is to create a non-preemptible request and submit it,
|
|
* wait for spinner to start, create a NOP request and submit it, cancel the
|
|
* spinner, wait for spinner to complete and verify it failed with an error,
|
|
* finally wait for NOP request to complete verify it succeeded without an
|
|
* error. Preemption timeout also reduced / restored so test runs in a timely
|
|
* maner.
|
|
*/
|
|
static int __cancel_reset(struct drm_i915_private *i915,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce;
|
|
struct igt_spinner spin;
|
|
struct i915_request *rq, *nop;
|
|
unsigned long preempt_timeout_ms;
|
|
int err = 0;
|
|
|
|
if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT ||
|
|
!intel_has_reset_engine(engine->gt))
|
|
return 0;
|
|
|
|
preempt_timeout_ms = engine->props.preempt_timeout_ms;
|
|
engine->props.preempt_timeout_ms = 100;
|
|
|
|
if (igt_spinner_init(&spin, engine->gt))
|
|
goto out_restore;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out_spin;
|
|
}
|
|
|
|
rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
|
|
pr_debug("%s: Cancelling active non-preemptable request\n",
|
|
engine->name);
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("Failed to start spinner on %s\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_rq;
|
|
}
|
|
|
|
nop = intel_context_create_request(ce);
|
|
if (IS_ERR(nop))
|
|
goto out_rq;
|
|
i915_request_get(nop);
|
|
i915_request_add(nop);
|
|
|
|
i915_request_cancel(rq, -EINTR);
|
|
|
|
if (i915_request_wait(rq, 0, HZ) < 0) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("%s: Failed to cancel hung request\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_nop;
|
|
}
|
|
|
|
if (rq->fence.error != -EINTR) {
|
|
pr_err("%s: fence not cancelled (%u)\n",
|
|
engine->name, rq->fence.error);
|
|
err = -EINVAL;
|
|
goto out_nop;
|
|
}
|
|
|
|
if (i915_request_wait(nop, 0, HZ) < 0) {
|
|
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
|
|
|
|
pr_err("%s: Failed to complete nop request\n", engine->name);
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
err = -ETIME;
|
|
goto out_nop;
|
|
}
|
|
|
|
if (nop->fence.error != 0) {
|
|
pr_err("%s: Nop request errored (%u)\n",
|
|
engine->name, nop->fence.error);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
out_nop:
|
|
i915_request_put(nop);
|
|
out_rq:
|
|
i915_request_put(rq);
|
|
out_ce:
|
|
intel_context_put(ce);
|
|
out_spin:
|
|
igt_spinner_fini(&spin);
|
|
out_restore:
|
|
engine->props.preempt_timeout_ms = preempt_timeout_ms;
|
|
if (err)
|
|
pr_err("%s: %s error %d\n", __func__, engine->name, err);
|
|
return err;
|
|
}
|
|
|
|
static int live_cancel_request(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct intel_engine_cs *engine;
|
|
|
|
/*
|
|
* Check cancellation of requests. We expect to be able to immediately
|
|
* cancel active requests, even if they are currently on the GPU.
|
|
*/
|
|
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct igt_live_test t;
|
|
int err, err2;
|
|
|
|
if (!intel_engine_has_preemption(engine))
|
|
continue;
|
|
|
|
err = igt_live_test_begin(&t, i915, __func__, engine->name);
|
|
if (err)
|
|
return err;
|
|
|
|
err = __cancel_inactive(engine);
|
|
if (err == 0)
|
|
err = __cancel_active(engine);
|
|
if (err == 0)
|
|
err = __cancel_completed(engine);
|
|
|
|
err2 = igt_live_test_end(&t);
|
|
if (err)
|
|
return err;
|
|
if (err2)
|
|
return err2;
|
|
|
|
/* Expects reset so call outside of igt_live_test_* */
|
|
err = __cancel_reset(i915, engine);
|
|
if (err)
|
|
return err;
|
|
|
|
if (igt_flush_test(i915))
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *empty_batch(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
u32 *cmd;
|
|
int err;
|
|
|
|
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB);
|
|
if (IS_ERR(cmd)) {
|
|
err = PTR_ERR(cmd);
|
|
goto err;
|
|
}
|
|
|
|
*cmd = MI_BATCH_BUFFER_END;
|
|
|
|
__i915_gem_object_flush_map(obj, 0, 64);
|
|
i915_gem_object_unpin_map(obj);
|
|
|
|
intel_gt_chipset_flush(to_gt(i915));
|
|
|
|
vma = i915_vma_instance(obj, &to_gt(i915)->ggtt->vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
|
|
if (err)
|
|
goto err;
|
|
|
|
/* Force the wait now to avoid including it in the benchmark */
|
|
err = i915_vma_sync(vma);
|
|
if (err)
|
|
goto err_pin;
|
|
|
|
return vma;
|
|
|
|
err_pin:
|
|
i915_vma_unpin(vma);
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static struct i915_request *
|
|
empty_request(struct intel_engine_cs *engine,
|
|
struct i915_vma *batch)
|
|
{
|
|
struct i915_request *request;
|
|
int err;
|
|
|
|
request = i915_request_create(engine->kernel_context);
|
|
if (IS_ERR(request))
|
|
return request;
|
|
|
|
err = engine->emit_bb_start(request,
|
|
batch->node.start,
|
|
batch->node.size,
|
|
I915_DISPATCH_SECURE);
|
|
if (err)
|
|
goto out_request;
|
|
|
|
i915_request_get(request);
|
|
out_request:
|
|
i915_request_add(request);
|
|
return err ? ERR_PTR(err) : request;
|
|
}
|
|
|
|
static int live_empty_request(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct intel_engine_cs *engine;
|
|
struct igt_live_test t;
|
|
struct i915_vma *batch;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Submit various sized batches of empty requests, to each engine
|
|
* (individually), and wait for the batch to complete. We can check
|
|
* the overhead of submitting requests to the hardware.
|
|
*/
|
|
|
|
batch = empty_batch(i915);
|
|
if (IS_ERR(batch))
|
|
return PTR_ERR(batch);
|
|
|
|
for_each_uabi_engine(engine, i915) {
|
|
IGT_TIMEOUT(end_time);
|
|
struct i915_request *request;
|
|
unsigned long n, prime;
|
|
ktime_t times[2] = {};
|
|
|
|
err = igt_live_test_begin(&t, i915, __func__, engine->name);
|
|
if (err)
|
|
goto out_batch;
|
|
|
|
intel_engine_pm_get(engine);
|
|
|
|
/* Warmup / preload */
|
|
request = empty_request(engine, batch);
|
|
if (IS_ERR(request)) {
|
|
err = PTR_ERR(request);
|
|
intel_engine_pm_put(engine);
|
|
goto out_batch;
|
|
}
|
|
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
|
|
|
|
for_each_prime_number_from(prime, 1, 8192) {
|
|
times[1] = ktime_get_raw();
|
|
|
|
for (n = 0; n < prime; n++) {
|
|
i915_request_put(request);
|
|
request = empty_request(engine, batch);
|
|
if (IS_ERR(request)) {
|
|
err = PTR_ERR(request);
|
|
intel_engine_pm_put(engine);
|
|
goto out_batch;
|
|
}
|
|
}
|
|
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
|
|
|
|
times[1] = ktime_sub(ktime_get_raw(), times[1]);
|
|
if (prime == 1)
|
|
times[0] = times[1];
|
|
|
|
if (__igt_timeout(end_time, NULL))
|
|
break;
|
|
}
|
|
i915_request_put(request);
|
|
intel_engine_pm_put(engine);
|
|
|
|
err = igt_live_test_end(&t);
|
|
if (err)
|
|
goto out_batch;
|
|
|
|
pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
|
|
engine->name,
|
|
ktime_to_ns(times[0]),
|
|
prime, div64_u64(ktime_to_ns(times[1]), prime));
|
|
}
|
|
|
|
out_batch:
|
|
i915_vma_unpin(batch);
|
|
i915_vma_put(batch);
|
|
return err;
|
|
}
|
|
|
|
static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
const int ver = GRAPHICS_VER(i915);
|
|
struct i915_vma *vma;
|
|
u32 *cmd;
|
|
int err;
|
|
|
|
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
vma = i915_vma_instance(obj, to_gt(i915)->vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
err = i915_vma_pin(vma, 0, 0, PIN_USER);
|
|
if (err)
|
|
goto err;
|
|
|
|
cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
|
|
if (IS_ERR(cmd)) {
|
|
err = PTR_ERR(cmd);
|
|
goto err;
|
|
}
|
|
|
|
if (ver >= 8) {
|
|
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
|
|
*cmd++ = lower_32_bits(vma->node.start);
|
|
*cmd++ = upper_32_bits(vma->node.start);
|
|
} else if (ver >= 6) {
|
|
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
|
|
*cmd++ = lower_32_bits(vma->node.start);
|
|
} else {
|
|
*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
|
|
*cmd++ = lower_32_bits(vma->node.start);
|
|
}
|
|
*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
|
|
|
|
__i915_gem_object_flush_map(obj, 0, 64);
|
|
i915_gem_object_unpin_map(obj);
|
|
|
|
intel_gt_chipset_flush(to_gt(i915));
|
|
|
|
return vma;
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static int recursive_batch_resolve(struct i915_vma *batch)
|
|
{
|
|
u32 *cmd;
|
|
|
|
cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
|
|
if (IS_ERR(cmd))
|
|
return PTR_ERR(cmd);
|
|
|
|
*cmd = MI_BATCH_BUFFER_END;
|
|
|
|
__i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
|
|
i915_gem_object_unpin_map(batch->obj);
|
|
|
|
intel_gt_chipset_flush(batch->vm->gt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int live_all_engines(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
struct intel_engine_cs *engine;
|
|
struct i915_request **request;
|
|
struct igt_live_test t;
|
|
struct i915_vma *batch;
|
|
unsigned int idx;
|
|
int err;
|
|
|
|
/*
|
|
* Check we can submit requests to all engines simultaneously. We
|
|
* send a recursive batch to each engine - checking that we don't
|
|
* block doing so, and that they don't complete too soon.
|
|
*/
|
|
|
|
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
err = igt_live_test_begin(&t, i915, __func__, "");
|
|
if (err)
|
|
goto out_free;
|
|
|
|
batch = recursive_batch(i915);
|
|
if (IS_ERR(batch)) {
|
|
err = PTR_ERR(batch);
|
|
pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
|
|
goto out_free;
|
|
}
|
|
|
|
i915_vma_lock(batch);
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
request[idx] = intel_engine_create_kernel_request(engine);
|
|
if (IS_ERR(request[idx])) {
|
|
err = PTR_ERR(request[idx]);
|
|
pr_err("%s: Request allocation failed with err=%d\n",
|
|
__func__, err);
|
|
goto out_request;
|
|
}
|
|
|
|
err = i915_request_await_object(request[idx], batch->obj, 0);
|
|
if (err == 0)
|
|
err = i915_vma_move_to_active(batch, request[idx], 0);
|
|
GEM_BUG_ON(err);
|
|
|
|
err = engine->emit_bb_start(request[idx],
|
|
batch->node.start,
|
|
batch->node.size,
|
|
0);
|
|
GEM_BUG_ON(err);
|
|
request[idx]->batch = batch;
|
|
|
|
i915_request_get(request[idx]);
|
|
i915_request_add(request[idx]);
|
|
idx++;
|
|
}
|
|
|
|
i915_vma_unlock(batch);
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
if (i915_request_completed(request[idx])) {
|
|
pr_err("%s(%s): request completed too early!\n",
|
|
__func__, engine->name);
|
|
err = -EINVAL;
|
|
goto out_request;
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
err = recursive_batch_resolve(batch);
|
|
if (err) {
|
|
pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
|
|
goto out_request;
|
|
}
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
long timeout;
|
|
|
|
timeout = i915_request_wait(request[idx], 0,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (timeout < 0) {
|
|
err = timeout;
|
|
pr_err("%s: error waiting for request on %s, err=%d\n",
|
|
__func__, engine->name, err);
|
|
goto out_request;
|
|
}
|
|
|
|
GEM_BUG_ON(!i915_request_completed(request[idx]));
|
|
i915_request_put(request[idx]);
|
|
request[idx] = NULL;
|
|
idx++;
|
|
}
|
|
|
|
err = igt_live_test_end(&t);
|
|
|
|
out_request:
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
if (request[idx])
|
|
i915_request_put(request[idx]);
|
|
idx++;
|
|
}
|
|
i915_vma_unpin(batch);
|
|
i915_vma_put(batch);
|
|
out_free:
|
|
kfree(request);
|
|
return err;
|
|
}
|
|
|
|
static int live_sequential_engines(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
struct i915_request **request;
|
|
struct i915_request *prev = NULL;
|
|
struct intel_engine_cs *engine;
|
|
struct igt_live_test t;
|
|
unsigned int idx;
|
|
int err;
|
|
|
|
/*
|
|
* Check we can submit requests to all engines sequentially, such
|
|
* that each successive request waits for the earlier ones. This
|
|
* tests that we don't execute requests out of order, even though
|
|
* they are running on independent engines.
|
|
*/
|
|
|
|
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
err = igt_live_test_begin(&t, i915, __func__, "");
|
|
if (err)
|
|
goto out_free;
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct i915_vma *batch;
|
|
|
|
batch = recursive_batch(i915);
|
|
if (IS_ERR(batch)) {
|
|
err = PTR_ERR(batch);
|
|
pr_err("%s: Unable to create batch for %s, err=%d\n",
|
|
__func__, engine->name, err);
|
|
goto out_free;
|
|
}
|
|
|
|
i915_vma_lock(batch);
|
|
request[idx] = intel_engine_create_kernel_request(engine);
|
|
if (IS_ERR(request[idx])) {
|
|
err = PTR_ERR(request[idx]);
|
|
pr_err("%s: Request allocation failed for %s with err=%d\n",
|
|
__func__, engine->name, err);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (prev) {
|
|
err = i915_request_await_dma_fence(request[idx],
|
|
&prev->fence);
|
|
if (err) {
|
|
i915_request_add(request[idx]);
|
|
pr_err("%s: Request await failed for %s with err=%d\n",
|
|
__func__, engine->name, err);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
err = i915_request_await_object(request[idx],
|
|
batch->obj, false);
|
|
if (err == 0)
|
|
err = i915_vma_move_to_active(batch, request[idx], 0);
|
|
GEM_BUG_ON(err);
|
|
|
|
err = engine->emit_bb_start(request[idx],
|
|
batch->node.start,
|
|
batch->node.size,
|
|
0);
|
|
GEM_BUG_ON(err);
|
|
request[idx]->batch = batch;
|
|
|
|
i915_request_get(request[idx]);
|
|
i915_request_add(request[idx]);
|
|
|
|
prev = request[idx];
|
|
idx++;
|
|
|
|
out_unlock:
|
|
i915_vma_unlock(batch);
|
|
if (err)
|
|
goto out_request;
|
|
}
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
long timeout;
|
|
|
|
if (i915_request_completed(request[idx])) {
|
|
pr_err("%s(%s): request completed too early!\n",
|
|
__func__, engine->name);
|
|
err = -EINVAL;
|
|
goto out_request;
|
|
}
|
|
|
|
err = recursive_batch_resolve(request[idx]->batch);
|
|
if (err) {
|
|
pr_err("%s: failed to resolve batch, err=%d\n",
|
|
__func__, err);
|
|
goto out_request;
|
|
}
|
|
|
|
timeout = i915_request_wait(request[idx], 0,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (timeout < 0) {
|
|
err = timeout;
|
|
pr_err("%s: error waiting for request on %s, err=%d\n",
|
|
__func__, engine->name, err);
|
|
goto out_request;
|
|
}
|
|
|
|
GEM_BUG_ON(!i915_request_completed(request[idx]));
|
|
idx++;
|
|
}
|
|
|
|
err = igt_live_test_end(&t);
|
|
|
|
out_request:
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
u32 *cmd;
|
|
|
|
if (!request[idx])
|
|
break;
|
|
|
|
cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
|
|
I915_MAP_WC);
|
|
if (!IS_ERR(cmd)) {
|
|
*cmd = MI_BATCH_BUFFER_END;
|
|
|
|
__i915_gem_object_flush_map(request[idx]->batch->obj,
|
|
0, sizeof(*cmd));
|
|
i915_gem_object_unpin_map(request[idx]->batch->obj);
|
|
|
|
intel_gt_chipset_flush(engine->gt);
|
|
}
|
|
|
|
i915_vma_put(request[idx]->batch);
|
|
i915_request_put(request[idx]);
|
|
idx++;
|
|
}
|
|
out_free:
|
|
kfree(request);
|
|
return err;
|
|
}
|
|
|
|
struct parallel_thread {
|
|
struct kthread_worker *worker;
|
|
struct kthread_work work;
|
|
struct intel_engine_cs *engine;
|
|
int result;
|
|
};
|
|
|
|
static void __live_parallel_engine1(struct kthread_work *work)
|
|
{
|
|
struct parallel_thread *thread =
|
|
container_of(work, typeof(*thread), work);
|
|
struct intel_engine_cs *engine = thread->engine;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned long count;
|
|
int err = 0;
|
|
|
|
count = 0;
|
|
intel_engine_pm_get(engine);
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(engine->kernel_context);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
err = 0;
|
|
if (i915_request_wait(rq, 0, HZ) < 0)
|
|
err = -ETIME;
|
|
i915_request_put(rq);
|
|
if (err)
|
|
break;
|
|
|
|
count++;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
intel_engine_pm_put(engine);
|
|
|
|
pr_info("%s: %lu request + sync\n", engine->name, count);
|
|
thread->result = err;
|
|
}
|
|
|
|
static void __live_parallel_engineN(struct kthread_work *work)
|
|
{
|
|
struct parallel_thread *thread =
|
|
container_of(work, typeof(*thread), work);
|
|
struct intel_engine_cs *engine = thread->engine;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned long count;
|
|
int err = 0;
|
|
|
|
count = 0;
|
|
intel_engine_pm_get(engine);
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(engine->kernel_context);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
count++;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
intel_engine_pm_put(engine);
|
|
|
|
pr_info("%s: %lu requests\n", engine->name, count);
|
|
thread->result = err;
|
|
}
|
|
|
|
static bool wake_all(struct drm_i915_private *i915)
|
|
{
|
|
if (atomic_dec_and_test(&i915->selftest.counter)) {
|
|
wake_up_var(&i915->selftest.counter);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int wait_for_all(struct drm_i915_private *i915)
|
|
{
|
|
if (wake_all(i915))
|
|
return 0;
|
|
|
|
if (wait_var_event_timeout(&i915->selftest.counter,
|
|
!atomic_read(&i915->selftest.counter),
|
|
i915_selftest.timeout_jiffies))
|
|
return 0;
|
|
|
|
return -ETIME;
|
|
}
|
|
|
|
static void __live_parallel_spin(struct kthread_work *work)
|
|
{
|
|
struct parallel_thread *thread =
|
|
container_of(work, typeof(*thread), work);
|
|
struct intel_engine_cs *engine = thread->engine;
|
|
struct igt_spinner spin;
|
|
struct i915_request *rq;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Create a spinner running for eternity on each engine. If a second
|
|
* spinner is incorrectly placed on the same engine, it will not be
|
|
* able to start in time.
|
|
*/
|
|
|
|
if (igt_spinner_init(&spin, engine->gt)) {
|
|
wake_all(engine->i915);
|
|
thread->result = -ENOMEM;
|
|
return;
|
|
}
|
|
|
|
intel_engine_pm_get(engine);
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP); /* no preemption */
|
|
intel_engine_pm_put(engine);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
if (err == -ENODEV)
|
|
err = 0;
|
|
wake_all(engine->i915);
|
|
goto out_spin;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
if (igt_wait_for_spinner(&spin, rq)) {
|
|
/* Occupy this engine for the whole test */
|
|
err = wait_for_all(engine->i915);
|
|
} else {
|
|
pr_err("Failed to start spinner on %s\n", engine->name);
|
|
err = -EINVAL;
|
|
}
|
|
igt_spinner_end(&spin);
|
|
|
|
if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
|
|
err = -EIO;
|
|
i915_request_put(rq);
|
|
|
|
out_spin:
|
|
igt_spinner_fini(&spin);
|
|
thread->result = err;
|
|
}
|
|
|
|
static int live_parallel_engines(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
static void (* const func[])(struct kthread_work *) = {
|
|
__live_parallel_engine1,
|
|
__live_parallel_engineN,
|
|
__live_parallel_spin,
|
|
NULL,
|
|
};
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
struct parallel_thread *threads;
|
|
struct intel_engine_cs *engine;
|
|
void (* const *fn)(struct kthread_work *);
|
|
int err = 0;
|
|
|
|
/*
|
|
* Check we can submit requests to all engines concurrently. This
|
|
* tests that we load up the system maximally.
|
|
*/
|
|
|
|
threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL);
|
|
if (!threads)
|
|
return -ENOMEM;
|
|
|
|
for (fn = func; !err && *fn; fn++) {
|
|
char name[KSYM_NAME_LEN];
|
|
struct igt_live_test t;
|
|
unsigned int idx;
|
|
|
|
snprintf(name, sizeof(name), "%ps", *fn);
|
|
err = igt_live_test_begin(&t, i915, __func__, name);
|
|
if (err)
|
|
break;
|
|
|
|
atomic_set(&i915->selftest.counter, nengines);
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct kthread_worker *worker;
|
|
|
|
worker = kthread_create_worker(0, "igt/parallel:%s",
|
|
engine->name);
|
|
if (IS_ERR(worker)) {
|
|
err = PTR_ERR(worker);
|
|
break;
|
|
}
|
|
|
|
threads[idx].worker = worker;
|
|
threads[idx].result = 0;
|
|
threads[idx].engine = engine;
|
|
|
|
kthread_init_work(&threads[idx].work, *fn);
|
|
kthread_queue_work(worker, &threads[idx].work);
|
|
idx++;
|
|
}
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
int status;
|
|
|
|
if (!threads[idx].worker)
|
|
break;
|
|
|
|
kthread_flush_work(&threads[idx].work);
|
|
status = READ_ONCE(threads[idx].result);
|
|
if (status && !err)
|
|
err = status;
|
|
|
|
kthread_destroy_worker(threads[idx++].worker);
|
|
}
|
|
|
|
if (igt_live_test_end(&t))
|
|
err = -EIO;
|
|
}
|
|
|
|
kfree(threads);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
|
|
{
|
|
struct i915_request *rq;
|
|
int ret;
|
|
|
|
/*
|
|
* Before execlists, all contexts share the same ringbuffer. With
|
|
* execlists, each context/engine has a separate ringbuffer and
|
|
* for the purposes of this test, inexhaustible.
|
|
*
|
|
* For the global ringbuffer though, we have to be very careful
|
|
* that we do not wrap while preventing the execution of requests
|
|
* with a unsignaled fence.
|
|
*/
|
|
if (HAS_EXECLISTS(ctx->i915))
|
|
return INT_MAX;
|
|
|
|
rq = igt_request_alloc(ctx, engine);
|
|
if (IS_ERR(rq)) {
|
|
ret = PTR_ERR(rq);
|
|
} else {
|
|
int sz;
|
|
|
|
ret = rq->ring->size - rq->reserved_space;
|
|
i915_request_add(rq);
|
|
|
|
sz = rq->ring->emit - rq->head;
|
|
if (sz < 0)
|
|
sz += rq->ring->size;
|
|
ret /= sz;
|
|
ret /= 2; /* leave half spare, in case of emergency! */
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int live_breadcrumbs_smoketest(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
const unsigned int ncpus = num_online_cpus();
|
|
unsigned long num_waits, num_fences;
|
|
struct intel_engine_cs *engine;
|
|
struct smoke_thread *threads;
|
|
struct igt_live_test live;
|
|
intel_wakeref_t wakeref;
|
|
struct smoketest *smoke;
|
|
unsigned int n, idx;
|
|
struct file *file;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Smoketest our breadcrumb/signal handling for requests across multiple
|
|
* threads. A very simple test to only catch the most egregious of bugs.
|
|
* See __igt_breadcrumbs_smoketest();
|
|
*
|
|
* On real hardware this time.
|
|
*/
|
|
|
|
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
|
|
|
|
file = mock_file(i915);
|
|
if (IS_ERR(file)) {
|
|
ret = PTR_ERR(file);
|
|
goto out_rpm;
|
|
}
|
|
|
|
smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
|
|
if (!smoke) {
|
|
ret = -ENOMEM;
|
|
goto out_file;
|
|
}
|
|
|
|
threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
|
|
if (!threads) {
|
|
ret = -ENOMEM;
|
|
goto out_smoke;
|
|
}
|
|
|
|
smoke[0].request_alloc = __live_request_alloc;
|
|
smoke[0].ncontexts = 64;
|
|
smoke[0].contexts = kcalloc(smoke[0].ncontexts,
|
|
sizeof(*smoke[0].contexts),
|
|
GFP_KERNEL);
|
|
if (!smoke[0].contexts) {
|
|
ret = -ENOMEM;
|
|
goto out_threads;
|
|
}
|
|
|
|
for (n = 0; n < smoke[0].ncontexts; n++) {
|
|
smoke[0].contexts[n] = live_context(i915, file);
|
|
if (IS_ERR(smoke[0].contexts[n])) {
|
|
ret = PTR_ERR(smoke[0].contexts[n]);
|
|
goto out_contexts;
|
|
}
|
|
}
|
|
|
|
ret = igt_live_test_begin(&live, i915, __func__, "");
|
|
if (ret)
|
|
goto out_contexts;
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
smoke[idx] = smoke[0];
|
|
smoke[idx].engine = engine;
|
|
smoke[idx].max_batch =
|
|
max_batches(smoke[0].contexts[0], engine);
|
|
if (smoke[idx].max_batch < 0) {
|
|
ret = smoke[idx].max_batch;
|
|
goto out_flush;
|
|
}
|
|
/* One ring interleaved between requests from all cpus */
|
|
smoke[idx].max_batch /= num_online_cpus() + 1;
|
|
pr_debug("Limiting batches to %d requests on %s\n",
|
|
smoke[idx].max_batch, engine->name);
|
|
|
|
for (n = 0; n < ncpus; n++) {
|
|
unsigned int i = idx * ncpus + n;
|
|
struct kthread_worker *worker;
|
|
|
|
worker = kthread_create_worker(0, "igt/%d.%d", idx, n);
|
|
if (IS_ERR(worker)) {
|
|
ret = PTR_ERR(worker);
|
|
goto out_flush;
|
|
}
|
|
|
|
threads[i].worker = worker;
|
|
threads[i].t = &smoke[idx];
|
|
|
|
kthread_init_work(&threads[i].work,
|
|
__igt_breadcrumbs_smoketest);
|
|
kthread_queue_work(worker, &threads[i].work);
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
|
|
|
|
out_flush:
|
|
idx = 0;
|
|
num_waits = 0;
|
|
num_fences = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
for (n = 0; n < ncpus; n++) {
|
|
unsigned int i = idx * ncpus + n;
|
|
int err;
|
|
|
|
if (!threads[i].worker)
|
|
continue;
|
|
|
|
WRITE_ONCE(threads[i].stop, true);
|
|
kthread_flush_work(&threads[i].work);
|
|
err = READ_ONCE(threads[i].result);
|
|
if (err < 0 && !ret)
|
|
ret = err;
|
|
|
|
kthread_destroy_worker(threads[i].worker);
|
|
}
|
|
|
|
num_waits += atomic_long_read(&smoke[idx].num_waits);
|
|
num_fences += atomic_long_read(&smoke[idx].num_fences);
|
|
idx++;
|
|
}
|
|
pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
|
|
num_waits, num_fences, idx, ncpus);
|
|
|
|
ret = igt_live_test_end(&live) ?: ret;
|
|
out_contexts:
|
|
kfree(smoke[0].contexts);
|
|
out_threads:
|
|
kfree(threads);
|
|
out_smoke:
|
|
kfree(smoke);
|
|
out_file:
|
|
fput(file);
|
|
out_rpm:
|
|
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_request_live_selftests(struct drm_i915_private *i915)
|
|
{
|
|
static const struct i915_subtest tests[] = {
|
|
SUBTEST(live_nop_request),
|
|
SUBTEST(live_all_engines),
|
|
SUBTEST(live_sequential_engines),
|
|
SUBTEST(live_parallel_engines),
|
|
SUBTEST(live_empty_request),
|
|
SUBTEST(live_cancel_request),
|
|
SUBTEST(live_breadcrumbs_smoketest),
|
|
};
|
|
|
|
if (intel_gt_is_wedged(to_gt(i915)))
|
|
return 0;
|
|
|
|
return i915_live_subtests(tests, i915);
|
|
}
|
|
|
|
static int switch_to_kernel_sync(struct intel_context *ce, int err)
|
|
{
|
|
struct i915_request *rq;
|
|
struct dma_fence *fence;
|
|
|
|
rq = intel_engine_create_kernel_request(ce->engine);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
fence = i915_active_fence_get(&ce->timeline->last_request);
|
|
if (fence) {
|
|
i915_request_await_dma_fence(rq, fence);
|
|
dma_fence_put(fence);
|
|
}
|
|
|
|
rq = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
|
|
err = -ETIME;
|
|
i915_request_put(rq);
|
|
|
|
while (!err && !intel_engine_is_idle(ce->engine))
|
|
intel_engine_flush_submission(ce->engine);
|
|
|
|
return err;
|
|
}
|
|
|
|
struct perf_stats {
|
|
struct intel_engine_cs *engine;
|
|
unsigned long count;
|
|
ktime_t time;
|
|
ktime_t busy;
|
|
u64 runtime;
|
|
};
|
|
|
|
struct perf_series {
|
|
struct drm_i915_private *i915;
|
|
unsigned int nengines;
|
|
struct intel_context *ce[];
|
|
};
|
|
|
|
static int cmp_u32(const void *A, const void *B)
|
|
{
|
|
const u32 *a = A, *b = B;
|
|
|
|
return *a - *b;
|
|
}
|
|
|
|
static u32 trifilter(u32 *a)
|
|
{
|
|
u64 sum;
|
|
|
|
#define TF_COUNT 5
|
|
sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
|
|
|
|
sum = mul_u32_u32(a[2], 2);
|
|
sum += a[1];
|
|
sum += a[3];
|
|
|
|
GEM_BUG_ON(sum > U32_MAX);
|
|
return sum;
|
|
#define TF_BIAS 2
|
|
}
|
|
|
|
static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
|
|
{
|
|
u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
|
|
|
|
return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
|
|
}
|
|
|
|
static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
|
|
{
|
|
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
|
|
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
|
|
{
|
|
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
|
|
{
|
|
*cs++ = MI_SEMAPHORE_WAIT |
|
|
MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_POLL |
|
|
mode;
|
|
*cs++ = value;
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
|
|
{
|
|
return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
|
|
}
|
|
|
|
static void semaphore_set(u32 *sema, u32 value)
|
|
{
|
|
WRITE_ONCE(*sema, value);
|
|
wmb(); /* flush the update to the cache, and beyond */
|
|
}
|
|
|
|
static u32 *hwsp_scratch(const struct intel_context *ce)
|
|
{
|
|
return memset32(ce->engine->status_page.addr + 1000, 0, 21);
|
|
}
|
|
|
|
static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
|
|
{
|
|
return (i915_ggtt_offset(ce->engine->status_page.vma) +
|
|
offset_in_page(dw));
|
|
}
|
|
|
|
static int measure_semaphore_response(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT], cycles;
|
|
struct i915_request *rq;
|
|
u32 *cs;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* Measure how many cycles it takes for the HW to detect the change
|
|
* in a semaphore value.
|
|
*
|
|
* A: read CS_TIMESTAMP from CPU
|
|
* poke semaphore
|
|
* B: read CS_TIMESTAMP on GPU
|
|
*
|
|
* Semaphore latency: B - A
|
|
*/
|
|
|
|
semaphore_set(sema, -1);
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_store_dw(cs, offset, 0);
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
cs = emit_semaphore_poll_until(cs, offset, i);
|
|
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
|
|
cs = emit_store_dw(cs, offset, 0);
|
|
}
|
|
|
|
intel_ring_advance(rq, cs);
|
|
i915_request_add(rq);
|
|
|
|
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
preempt_disable();
|
|
cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
|
|
semaphore_set(sema, i);
|
|
preempt_enable();
|
|
|
|
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
elapsed[i - 1] = sema[i] - cycles;
|
|
}
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: semaphore response %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static int measure_idle_dispatch(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT], cycles;
|
|
u32 *cs;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* Measure how long it takes for us to submit a request while the
|
|
* engine is idle, but is resting in our context.
|
|
*
|
|
* A: read CS_TIMESTAMP from CPU
|
|
* submit request
|
|
* B: read CS_TIMESTAMP on GPU
|
|
*
|
|
* Submission latency: B - A
|
|
*/
|
|
|
|
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
|
|
struct i915_request *rq;
|
|
|
|
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
|
|
if (err)
|
|
return err;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
preempt_disable();
|
|
local_bh_disable();
|
|
elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
|
|
i915_request_add(rq);
|
|
local_bh_enable();
|
|
preempt_enable();
|
|
}
|
|
|
|
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
|
|
if (err)
|
|
goto err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(elapsed); i++)
|
|
elapsed[i] = sema[i] - elapsed[i];
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static int measure_busy_dispatch(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT + 1], cycles;
|
|
u32 *cs;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* Measure how long it takes for us to submit a request while the
|
|
* engine is busy, polling on a semaphore in our context. With
|
|
* direct submission, this will include the cost of a lite restore.
|
|
*
|
|
* A: read CS_TIMESTAMP from CPU
|
|
* submit request
|
|
* B: read CS_TIMESTAMP on GPU
|
|
*
|
|
* Submission latency: B - A
|
|
*/
|
|
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 12);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
|
|
cs = emit_semaphore_poll_until(cs, offset, i);
|
|
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
preempt_disable();
|
|
local_bh_disable();
|
|
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
|
|
i915_request_add(rq);
|
|
local_bh_enable();
|
|
semaphore_set(sema, i - 1);
|
|
preempt_enable();
|
|
}
|
|
|
|
wait_for(READ_ONCE(sema[i - 1]), 500);
|
|
semaphore_set(sema, i - 1);
|
|
|
|
for (i = 1; i <= TF_COUNT; i++) {
|
|
GEM_BUG_ON(sema[i] == -1);
|
|
elapsed[i - 1] = sema[i] - elapsed[i];
|
|
}
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
|
|
{
|
|
const u32 offset =
|
|
i915_ggtt_offset(engine->status_page.vma) +
|
|
offset_in_page(sema);
|
|
struct i915_request *rq;
|
|
u32 *cs;
|
|
|
|
rq = i915_request_create(engine->kernel_context);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
return PTR_ERR(cs);
|
|
}
|
|
|
|
cs = emit_semaphore_poll(cs, mode, value, offset);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
i915_request_add(rq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int measure_inter_request(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT + 1], cycles;
|
|
struct i915_sw_fence *submit;
|
|
int i, err;
|
|
|
|
/*
|
|
* Measure how long it takes to advance from one request into the
|
|
* next. Between each request we flush the GPU caches to memory,
|
|
* update the breadcrumbs, and then invalidate those caches.
|
|
* We queue up all the requests to be submitted in one batch so
|
|
* it should be one set of contiguous measurements.
|
|
*
|
|
* A: read CS_TIMESTAMP on GPU
|
|
* advance request
|
|
* B: read CS_TIMESTAMP on GPU
|
|
*
|
|
* Request latency: B - A
|
|
*/
|
|
|
|
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
submit = heap_fence_create(GFP_KERNEL);
|
|
if (!submit) {
|
|
semaphore_set(sema, 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
intel_engine_flush_submission(ce->engine);
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
struct i915_request *rq;
|
|
u32 *cs;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_submit;
|
|
}
|
|
|
|
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
|
|
submit,
|
|
GFP_KERNEL);
|
|
if (err < 0) {
|
|
i915_request_add(rq);
|
|
goto err_submit;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err_submit;
|
|
}
|
|
|
|
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
|
|
|
|
intel_ring_advance(rq, cs);
|
|
i915_request_add(rq);
|
|
}
|
|
i915_sw_fence_commit(submit);
|
|
intel_engine_flush_submission(ce->engine);
|
|
heap_fence_put(submit);
|
|
|
|
semaphore_set(sema, 1);
|
|
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
|
|
if (err)
|
|
goto err;
|
|
|
|
for (i = 1; i <= TF_COUNT; i++)
|
|
elapsed[i - 1] = sema[i + 1] - sema[i];
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: inter-request latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err_submit:
|
|
i915_sw_fence_commit(submit);
|
|
heap_fence_put(submit);
|
|
semaphore_set(sema, 1);
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static int measure_context_switch(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
struct i915_request *fence = NULL;
|
|
u32 elapsed[TF_COUNT + 1], cycles;
|
|
int i, j, err;
|
|
u32 *cs;
|
|
|
|
/*
|
|
* Measure how long it takes to advance from one request in one
|
|
* context to a request in another context. This allows us to
|
|
* measure how long the context save/restore take, along with all
|
|
* the inter-context setup we require.
|
|
*
|
|
* A: read CS_TIMESTAMP on GPU
|
|
* switch context
|
|
* B: read CS_TIMESTAMP on GPU
|
|
*
|
|
* Context switch latency: B - A
|
|
*/
|
|
|
|
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
struct intel_context *arr[] = {
|
|
ce, ce->engine->kernel_context
|
|
};
|
|
u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(arr); j++) {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(arr[j]);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_fence;
|
|
}
|
|
|
|
if (fence) {
|
|
err = i915_request_await_dma_fence(rq,
|
|
&fence->fence);
|
|
if (err) {
|
|
i915_request_add(rq);
|
|
goto err_fence;
|
|
}
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err_fence;
|
|
}
|
|
|
|
cs = emit_timestamp_store(cs, ce, addr);
|
|
addr += sizeof(u32);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
i915_request_put(fence);
|
|
fence = i915_request_get(rq);
|
|
|
|
i915_request_add(rq);
|
|
}
|
|
}
|
|
i915_request_put(fence);
|
|
intel_engine_flush_submission(ce->engine);
|
|
|
|
semaphore_set(sema, 1);
|
|
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
|
|
if (err)
|
|
goto err;
|
|
|
|
for (i = 1; i <= TF_COUNT; i++)
|
|
elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: context switch latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err_fence:
|
|
i915_request_put(fence);
|
|
semaphore_set(sema, 1);
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static int measure_preemption(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT], cycles;
|
|
u32 *cs;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* We measure two latencies while triggering preemption. The first
|
|
* latency is how long it takes for us to submit a preempting request.
|
|
* The second latency is how it takes for us to return from the
|
|
* preemption back to the original context.
|
|
*
|
|
* A: read CS_TIMESTAMP from CPU
|
|
* submit preemption
|
|
* B: read CS_TIMESTAMP on GPU (in preempting context)
|
|
* context switch
|
|
* C: read CS_TIMESTAMP on GPU (in original context)
|
|
*
|
|
* Preemption dispatch latency: B - A
|
|
* Preemption switch latency: C - B
|
|
*/
|
|
|
|
if (!intel_engine_has_preemption(ce->engine))
|
|
return 0;
|
|
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
u32 addr = offset + 2 * i * sizeof(u32);
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 12);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_store_dw(cs, addr, -1);
|
|
cs = emit_semaphore_poll_until(cs, offset, i);
|
|
cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
|
|
|
|
intel_ring_advance(rq, cs);
|
|
i915_request_add(rq);
|
|
|
|
if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
rq = i915_request_create(ce->engine->kernel_context);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 8);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_timestamp_store(cs, ce, addr);
|
|
cs = emit_store_dw(cs, offset, i);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
|
|
|
|
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
|
|
i915_request_add(rq);
|
|
}
|
|
|
|
if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
for (i = 1; i <= TF_COUNT; i++)
|
|
elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
for (i = 1; i <= TF_COUNT; i++)
|
|
elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: preemption switch latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
struct signal_cb {
|
|
struct dma_fence_cb base;
|
|
bool seen;
|
|
};
|
|
|
|
static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
|
|
{
|
|
struct signal_cb *s = container_of(cb, typeof(*s), base);
|
|
|
|
smp_store_mb(s->seen, true); /* be safe, be strong */
|
|
}
|
|
|
|
static int measure_completion(struct intel_context *ce)
|
|
{
|
|
u32 *sema = hwsp_scratch(ce);
|
|
const u32 offset = hwsp_offset(ce, sema);
|
|
u32 elapsed[TF_COUNT], cycles;
|
|
u32 *cs;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* Measure how long it takes for the signal (interrupt) to be
|
|
* sent from the GPU to be processed by the CPU.
|
|
*
|
|
* A: read CS_TIMESTAMP on GPU
|
|
* signal
|
|
* B: read CS_TIMESTAMP from CPU
|
|
*
|
|
* Completion latency: B - A
|
|
*/
|
|
|
|
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
|
|
struct signal_cb cb = { .seen = false };
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 12);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
err = PTR_ERR(cs);
|
|
goto err;
|
|
}
|
|
|
|
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
|
|
cs = emit_semaphore_poll_until(cs, offset, i);
|
|
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
|
|
i915_request_add(rq);
|
|
|
|
intel_engine_flush_submission(ce->engine);
|
|
if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
|
|
err = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
preempt_disable();
|
|
semaphore_set(sema, i);
|
|
while (!READ_ONCE(cb.seen))
|
|
cpu_relax();
|
|
|
|
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
|
|
preempt_enable();
|
|
}
|
|
|
|
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
|
|
if (err)
|
|
goto err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
|
|
GEM_BUG_ON(sema[i + 1] == -1);
|
|
elapsed[i] = elapsed[i] - sema[i + 1];
|
|
}
|
|
|
|
cycles = trifilter(elapsed);
|
|
pr_info("%s: completion latency %d cycles, %lluns\n",
|
|
ce->engine->name, cycles >> TF_BIAS,
|
|
cycles_to_ns(ce->engine, cycles));
|
|
|
|
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
|
|
|
|
err:
|
|
intel_gt_set_wedged(ce->engine->gt);
|
|
return err;
|
|
}
|
|
|
|
static void rps_pin(struct intel_gt *gt)
|
|
{
|
|
/* Pin the frequency to max */
|
|
atomic_inc(>->rps.num_waiters);
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
mutex_lock(>->rps.lock);
|
|
intel_rps_set(>->rps, gt->rps.max_freq);
|
|
mutex_unlock(>->rps.lock);
|
|
}
|
|
|
|
static void rps_unpin(struct intel_gt *gt)
|
|
{
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
atomic_dec(>->rps.num_waiters);
|
|
}
|
|
|
|
static int perf_request_latency(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
struct intel_engine_cs *engine;
|
|
struct pm_qos_request qos;
|
|
int err = 0;
|
|
|
|
if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
|
|
return 0;
|
|
|
|
cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
|
|
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct intel_context *ce;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out;
|
|
}
|
|
|
|
err = intel_context_pin(ce);
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
goto out;
|
|
}
|
|
|
|
st_engine_heartbeat_disable(engine);
|
|
rps_pin(engine->gt);
|
|
|
|
if (err == 0)
|
|
err = measure_semaphore_response(ce);
|
|
if (err == 0)
|
|
err = measure_idle_dispatch(ce);
|
|
if (err == 0)
|
|
err = measure_busy_dispatch(ce);
|
|
if (err == 0)
|
|
err = measure_inter_request(ce);
|
|
if (err == 0)
|
|
err = measure_context_switch(ce);
|
|
if (err == 0)
|
|
err = measure_preemption(ce);
|
|
if (err == 0)
|
|
err = measure_completion(ce);
|
|
|
|
rps_unpin(engine->gt);
|
|
st_engine_heartbeat_enable(engine);
|
|
|
|
intel_context_unpin(ce);
|
|
intel_context_put(ce);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (igt_flush_test(i915))
|
|
err = -EIO;
|
|
|
|
cpu_latency_qos_remove_request(&qos);
|
|
return err;
|
|
}
|
|
|
|
static int s_sync0(void *arg)
|
|
{
|
|
struct perf_series *ps = arg;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned int idx = 0;
|
|
int err = 0;
|
|
|
|
GEM_BUG_ON(!ps->nengines);
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ps->ce[idx]);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (i915_request_wait(rq, 0, HZ / 5) < 0)
|
|
err = -ETIME;
|
|
i915_request_put(rq);
|
|
if (err)
|
|
break;
|
|
|
|
if (++idx == ps->nengines)
|
|
idx = 0;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int s_sync1(void *arg)
|
|
{
|
|
struct perf_series *ps = arg;
|
|
struct i915_request *prev = NULL;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned int idx = 0;
|
|
int err = 0;
|
|
|
|
GEM_BUG_ON(!ps->nengines);
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ps->ce[idx]);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
|
|
err = -ETIME;
|
|
i915_request_put(prev);
|
|
prev = rq;
|
|
if (err)
|
|
break;
|
|
|
|
if (++idx == ps->nengines)
|
|
idx = 0;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
i915_request_put(prev);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int s_many(void *arg)
|
|
{
|
|
struct perf_series *ps = arg;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned int idx = 0;
|
|
|
|
GEM_BUG_ON(!ps->nengines);
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ps->ce[idx]);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
i915_request_add(rq);
|
|
|
|
if (++idx == ps->nengines)
|
|
idx = 0;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int perf_series_engines(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
static int (* const func[])(void *arg) = {
|
|
s_sync0,
|
|
s_sync1,
|
|
s_many,
|
|
NULL,
|
|
};
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
struct intel_engine_cs *engine;
|
|
int (* const *fn)(void *arg);
|
|
struct pm_qos_request qos;
|
|
struct perf_stats *stats;
|
|
struct perf_series *ps;
|
|
unsigned int idx;
|
|
int err = 0;
|
|
|
|
stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
|
|
if (!stats)
|
|
return -ENOMEM;
|
|
|
|
ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
|
|
if (!ps) {
|
|
kfree(stats);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
|
|
|
|
ps->i915 = i915;
|
|
ps->nengines = nengines;
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct intel_context *ce;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out;
|
|
}
|
|
|
|
err = intel_context_pin(ce);
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
goto out;
|
|
}
|
|
|
|
ps->ce[idx++] = ce;
|
|
}
|
|
GEM_BUG_ON(idx != ps->nengines);
|
|
|
|
for (fn = func; *fn && !err; fn++) {
|
|
char name[KSYM_NAME_LEN];
|
|
struct igt_live_test t;
|
|
|
|
snprintf(name, sizeof(name), "%ps", *fn);
|
|
err = igt_live_test_begin(&t, i915, __func__, name);
|
|
if (err)
|
|
break;
|
|
|
|
for (idx = 0; idx < nengines; idx++) {
|
|
struct perf_stats *p =
|
|
memset(&stats[idx], 0, sizeof(stats[idx]));
|
|
struct intel_context *ce = ps->ce[idx];
|
|
|
|
p->engine = ps->ce[idx]->engine;
|
|
intel_engine_pm_get(p->engine);
|
|
|
|
if (intel_engine_supports_stats(p->engine))
|
|
p->busy = intel_engine_get_busy_time(p->engine,
|
|
&p->time) + 1;
|
|
else
|
|
p->time = ktime_get();
|
|
p->runtime = -intel_context_get_total_runtime_ns(ce);
|
|
}
|
|
|
|
err = (*fn)(ps);
|
|
if (igt_live_test_end(&t))
|
|
err = -EIO;
|
|
|
|
for (idx = 0; idx < nengines; idx++) {
|
|
struct perf_stats *p = &stats[idx];
|
|
struct intel_context *ce = ps->ce[idx];
|
|
int integer, decimal;
|
|
u64 busy, dt, now;
|
|
|
|
if (p->busy)
|
|
p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
|
|
&now),
|
|
p->busy - 1);
|
|
else
|
|
now = ktime_get();
|
|
p->time = ktime_sub(now, p->time);
|
|
|
|
err = switch_to_kernel_sync(ce, err);
|
|
p->runtime += intel_context_get_total_runtime_ns(ce);
|
|
intel_engine_pm_put(p->engine);
|
|
|
|
busy = 100 * ktime_to_ns(p->busy);
|
|
dt = ktime_to_ns(p->time);
|
|
if (dt) {
|
|
integer = div64_u64(busy, dt);
|
|
busy -= integer * dt;
|
|
decimal = div64_u64(100 * busy, dt);
|
|
} else {
|
|
integer = 0;
|
|
decimal = 0;
|
|
}
|
|
|
|
pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
|
|
name, p->engine->name, ce->timeline->seqno,
|
|
integer, decimal,
|
|
div_u64(p->runtime, 1000 * 1000),
|
|
div_u64(ktime_to_ns(p->time), 1000 * 1000));
|
|
}
|
|
}
|
|
|
|
out:
|
|
for (idx = 0; idx < nengines; idx++) {
|
|
if (IS_ERR_OR_NULL(ps->ce[idx]))
|
|
break;
|
|
|
|
intel_context_unpin(ps->ce[idx]);
|
|
intel_context_put(ps->ce[idx]);
|
|
}
|
|
kfree(ps);
|
|
|
|
cpu_latency_qos_remove_request(&qos);
|
|
kfree(stats);
|
|
return err;
|
|
}
|
|
|
|
struct p_thread {
|
|
struct perf_stats p;
|
|
struct kthread_worker *worker;
|
|
struct kthread_work work;
|
|
struct intel_engine_cs *engine;
|
|
int result;
|
|
};
|
|
|
|
static void p_sync0(struct kthread_work *work)
|
|
{
|
|
struct p_thread *thread = container_of(work, typeof(*thread), work);
|
|
struct perf_stats *p = &thread->p;
|
|
struct intel_engine_cs *engine = p->engine;
|
|
struct intel_context *ce;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned long count;
|
|
bool busy;
|
|
int err = 0;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
thread->result = PTR_ERR(ce);
|
|
return;
|
|
}
|
|
|
|
err = intel_context_pin(ce);
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
return;
|
|
}
|
|
|
|
if (intel_engine_supports_stats(engine)) {
|
|
p->busy = intel_engine_get_busy_time(engine, &p->time);
|
|
busy = true;
|
|
} else {
|
|
p->time = ktime_get();
|
|
busy = false;
|
|
}
|
|
|
|
count = 0;
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
err = 0;
|
|
if (i915_request_wait(rq, 0, HZ) < 0)
|
|
err = -ETIME;
|
|
i915_request_put(rq);
|
|
if (err)
|
|
break;
|
|
|
|
count++;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
|
|
if (busy) {
|
|
ktime_t now;
|
|
|
|
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
|
|
p->busy);
|
|
p->time = ktime_sub(now, p->time);
|
|
} else {
|
|
p->time = ktime_sub(ktime_get(), p->time);
|
|
}
|
|
|
|
err = switch_to_kernel_sync(ce, err);
|
|
p->runtime = intel_context_get_total_runtime_ns(ce);
|
|
p->count = count;
|
|
|
|
intel_context_unpin(ce);
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
}
|
|
|
|
static void p_sync1(struct kthread_work *work)
|
|
{
|
|
struct p_thread *thread = container_of(work, typeof(*thread), work);
|
|
struct perf_stats *p = &thread->p;
|
|
struct intel_engine_cs *engine = p->engine;
|
|
struct i915_request *prev = NULL;
|
|
struct intel_context *ce;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned long count;
|
|
bool busy;
|
|
int err = 0;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
thread->result = PTR_ERR(ce);
|
|
return;
|
|
}
|
|
|
|
err = intel_context_pin(ce);
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
return;
|
|
}
|
|
|
|
if (intel_engine_supports_stats(engine)) {
|
|
p->busy = intel_engine_get_busy_time(engine, &p->time);
|
|
busy = true;
|
|
} else {
|
|
p->time = ktime_get();
|
|
busy = false;
|
|
}
|
|
|
|
count = 0;
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
err = 0;
|
|
if (prev && i915_request_wait(prev, 0, HZ) < 0)
|
|
err = -ETIME;
|
|
i915_request_put(prev);
|
|
prev = rq;
|
|
if (err)
|
|
break;
|
|
|
|
count++;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
i915_request_put(prev);
|
|
|
|
if (busy) {
|
|
ktime_t now;
|
|
|
|
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
|
|
p->busy);
|
|
p->time = ktime_sub(now, p->time);
|
|
} else {
|
|
p->time = ktime_sub(ktime_get(), p->time);
|
|
}
|
|
|
|
err = switch_to_kernel_sync(ce, err);
|
|
p->runtime = intel_context_get_total_runtime_ns(ce);
|
|
p->count = count;
|
|
|
|
intel_context_unpin(ce);
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
}
|
|
|
|
static void p_many(struct kthread_work *work)
|
|
{
|
|
struct p_thread *thread = container_of(work, typeof(*thread), work);
|
|
struct perf_stats *p = &thread->p;
|
|
struct intel_engine_cs *engine = p->engine;
|
|
struct intel_context *ce;
|
|
IGT_TIMEOUT(end_time);
|
|
unsigned long count;
|
|
int err = 0;
|
|
bool busy;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
thread->result = PTR_ERR(ce);
|
|
return;
|
|
}
|
|
|
|
err = intel_context_pin(ce);
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
return;
|
|
}
|
|
|
|
if (intel_engine_supports_stats(engine)) {
|
|
p->busy = intel_engine_get_busy_time(engine, &p->time);
|
|
busy = true;
|
|
} else {
|
|
p->time = ktime_get();
|
|
busy = false;
|
|
}
|
|
|
|
count = 0;
|
|
do {
|
|
struct i915_request *rq;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
count++;
|
|
} while (!__igt_timeout(end_time, NULL));
|
|
|
|
if (busy) {
|
|
ktime_t now;
|
|
|
|
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
|
|
p->busy);
|
|
p->time = ktime_sub(now, p->time);
|
|
} else {
|
|
p->time = ktime_sub(ktime_get(), p->time);
|
|
}
|
|
|
|
err = switch_to_kernel_sync(ce, err);
|
|
p->runtime = intel_context_get_total_runtime_ns(ce);
|
|
p->count = count;
|
|
|
|
intel_context_unpin(ce);
|
|
intel_context_put(ce);
|
|
thread->result = err;
|
|
}
|
|
|
|
static int perf_parallel_engines(void *arg)
|
|
{
|
|
struct drm_i915_private *i915 = arg;
|
|
static void (* const func[])(struct kthread_work *) = {
|
|
p_sync0,
|
|
p_sync1,
|
|
p_many,
|
|
NULL,
|
|
};
|
|
const unsigned int nengines = num_uabi_engines(i915);
|
|
void (* const *fn)(struct kthread_work *);
|
|
struct intel_engine_cs *engine;
|
|
struct pm_qos_request qos;
|
|
struct p_thread *engines;
|
|
int err = 0;
|
|
|
|
engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
|
|
if (!engines)
|
|
return -ENOMEM;
|
|
|
|
cpu_latency_qos_add_request(&qos, 0);
|
|
|
|
for (fn = func; *fn; fn++) {
|
|
char name[KSYM_NAME_LEN];
|
|
struct igt_live_test t;
|
|
unsigned int idx;
|
|
|
|
snprintf(name, sizeof(name), "%ps", *fn);
|
|
err = igt_live_test_begin(&t, i915, __func__, name);
|
|
if (err)
|
|
break;
|
|
|
|
atomic_set(&i915->selftest.counter, nengines);
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct kthread_worker *worker;
|
|
|
|
intel_engine_pm_get(engine);
|
|
|
|
memset(&engines[idx].p, 0, sizeof(engines[idx].p));
|
|
|
|
worker = kthread_create_worker(0, "igt:%s",
|
|
engine->name);
|
|
if (IS_ERR(worker)) {
|
|
err = PTR_ERR(worker);
|
|
intel_engine_pm_put(engine);
|
|
break;
|
|
}
|
|
engines[idx].worker = worker;
|
|
engines[idx].result = 0;
|
|
engines[idx].p.engine = engine;
|
|
engines[idx].engine = engine;
|
|
|
|
kthread_init_work(&engines[idx].work, *fn);
|
|
kthread_queue_work(worker, &engines[idx].work);
|
|
idx++;
|
|
}
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
int status;
|
|
|
|
if (!engines[idx].worker)
|
|
break;
|
|
|
|
kthread_flush_work(&engines[idx].work);
|
|
status = READ_ONCE(engines[idx].result);
|
|
if (status && !err)
|
|
err = status;
|
|
|
|
intel_engine_pm_put(engine);
|
|
|
|
kthread_destroy_worker(engines[idx].worker);
|
|
idx++;
|
|
}
|
|
|
|
if (igt_live_test_end(&t))
|
|
err = -EIO;
|
|
if (err)
|
|
break;
|
|
|
|
idx = 0;
|
|
for_each_uabi_engine(engine, i915) {
|
|
struct perf_stats *p = &engines[idx].p;
|
|
u64 busy = 100 * ktime_to_ns(p->busy);
|
|
u64 dt = ktime_to_ns(p->time);
|
|
int integer, decimal;
|
|
|
|
if (dt) {
|
|
integer = div64_u64(busy, dt);
|
|
busy -= integer * dt;
|
|
decimal = div64_u64(100 * busy, dt);
|
|
} else {
|
|
integer = 0;
|
|
decimal = 0;
|
|
}
|
|
|
|
GEM_BUG_ON(engine != p->engine);
|
|
pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
|
|
name, engine->name, p->count, integer, decimal,
|
|
div_u64(p->runtime, 1000 * 1000),
|
|
div_u64(ktime_to_ns(p->time), 1000 * 1000));
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
cpu_latency_qos_remove_request(&qos);
|
|
kfree(engines);
|
|
return err;
|
|
}
|
|
|
|
int i915_request_perf_selftests(struct drm_i915_private *i915)
|
|
{
|
|
static const struct i915_subtest tests[] = {
|
|
SUBTEST(perf_request_latency),
|
|
SUBTEST(perf_series_engines),
|
|
SUBTEST(perf_parallel_engines),
|
|
};
|
|
|
|
if (intel_gt_is_wedged(to_gt(i915)))
|
|
return 0;
|
|
|
|
return i915_subtests(tests, i915);
|
|
}
|