306 lines
9.0 KiB
C
306 lines
9.0 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
|
|
#include "intel_breadcrumbs.h"
|
|
#include "intel_context.h"
|
|
#include "intel_engine.h"
|
|
#include "intel_engine_heartbeat.h"
|
|
#include "intel_engine_pm.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_pm.h"
|
|
#include "intel_rc6.h"
|
|
#include "intel_ring.h"
|
|
#include "shmem_utils.h"
|
|
|
|
static void dbg_poison_ce(struct intel_context *ce)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return;
|
|
|
|
if (ce->state) {
|
|
struct drm_i915_gem_object *obj = ce->state->obj;
|
|
int type = i915_coherent_map_type(ce->engine->i915, obj, true);
|
|
void *map;
|
|
|
|
if (!i915_gem_object_trylock(obj, NULL))
|
|
return;
|
|
|
|
map = i915_gem_object_pin_map(obj, type);
|
|
if (!IS_ERR(map)) {
|
|
memset(map, CONTEXT_REDZONE, obj->base.size);
|
|
i915_gem_object_flush_map(obj);
|
|
i915_gem_object_unpin_map(obj);
|
|
}
|
|
i915_gem_object_unlock(obj);
|
|
}
|
|
}
|
|
|
|
static int __engine_unpark(struct intel_wakeref *wf)
|
|
{
|
|
struct intel_engine_cs *engine =
|
|
container_of(wf, typeof(*engine), wakeref);
|
|
struct intel_context *ce;
|
|
|
|
ENGINE_TRACE(engine, "\n");
|
|
|
|
intel_gt_pm_get(engine->gt);
|
|
|
|
/* Discard stale context state from across idling */
|
|
ce = engine->kernel_context;
|
|
if (ce) {
|
|
GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
|
|
|
|
/* Flush all pending HW writes before we touch the context */
|
|
while (unlikely(intel_context_inflight(ce)))
|
|
intel_engine_flush_submission(engine);
|
|
|
|
/* First poison the image to verify we never fully trust it */
|
|
dbg_poison_ce(ce);
|
|
|
|
/* Scrub the context image after our loss of control */
|
|
ce->ops->reset(ce);
|
|
|
|
CE_TRACE(ce, "reset { seqno:%x, *hwsp:%x, ring:%x }\n",
|
|
ce->timeline->seqno,
|
|
READ_ONCE(*ce->timeline->hwsp_seqno),
|
|
ce->ring->emit);
|
|
GEM_BUG_ON(ce->timeline->seqno !=
|
|
READ_ONCE(*ce->timeline->hwsp_seqno));
|
|
}
|
|
|
|
if (engine->unpark)
|
|
engine->unpark(engine);
|
|
|
|
intel_breadcrumbs_unpark(engine->breadcrumbs);
|
|
intel_engine_unpark_heartbeat(engine);
|
|
return 0;
|
|
}
|
|
|
|
static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
|
|
{
|
|
struct i915_request *rq = to_request(fence);
|
|
|
|
ewma__engine_latency_add(&rq->engine->latency,
|
|
ktime_us_delta(rq->fence.timestamp,
|
|
rq->duration.emitted));
|
|
}
|
|
|
|
static void
|
|
__queue_and_release_pm(struct i915_request *rq,
|
|
struct intel_timeline *tl,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_gt_timelines *timelines = &engine->gt->timelines;
|
|
|
|
ENGINE_TRACE(engine, "parking\n");
|
|
|
|
/*
|
|
* We have to serialise all potential retirement paths with our
|
|
* submission, as we don't want to underflow either the
|
|
* engine->wakeref.counter or our timeline->active_count.
|
|
*
|
|
* Equally, we cannot allow a new submission to start until
|
|
* after we finish queueing, nor could we allow that submitter
|
|
* to retire us before we are ready!
|
|
*/
|
|
spin_lock(&timelines->lock);
|
|
|
|
/* Let intel_gt_retire_requests() retire us (acquired under lock) */
|
|
if (!atomic_fetch_inc(&tl->active_count))
|
|
list_add_tail(&tl->link, &timelines->active_list);
|
|
|
|
/* Hand the request over to HW and so engine_retire() */
|
|
__i915_request_queue_bh(rq);
|
|
|
|
/* Let new submissions commence (and maybe retire this timeline) */
|
|
__intel_wakeref_defer_park(&engine->wakeref);
|
|
|
|
spin_unlock(&timelines->lock);
|
|
}
|
|
|
|
static bool switch_to_kernel_context(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce = engine->kernel_context;
|
|
struct i915_request *rq;
|
|
bool result = true;
|
|
|
|
/*
|
|
* This is execlist specific behaviour intended to ensure the GPU is
|
|
* idle by switching to a known 'safe' context. With GuC submission, the
|
|
* same idle guarantee is achieved by other means (disabling
|
|
* scheduling). Further, switching to a 'safe' context has no effect
|
|
* with GuC submission as the scheduler can just switch back again.
|
|
*
|
|
* FIXME: Move this backend scheduler specific behaviour into the
|
|
* scheduler backend.
|
|
*/
|
|
if (intel_engine_uses_guc(engine))
|
|
return true;
|
|
|
|
/* GPU is pointing to the void, as good as in the kernel context. */
|
|
if (intel_gt_is_wedged(engine->gt))
|
|
return true;
|
|
|
|
GEM_BUG_ON(!intel_context_is_barrier(ce));
|
|
GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma);
|
|
|
|
/* Already inside the kernel context, safe to power down. */
|
|
if (engine->wakeref_serial == engine->serial)
|
|
return true;
|
|
|
|
/*
|
|
* Note, we do this without taking the timeline->mutex. We cannot
|
|
* as we may be called while retiring the kernel context and so
|
|
* already underneath the timeline->mutex. Instead we rely on the
|
|
* exclusive property of the __engine_park that prevents anyone
|
|
* else from creating a request on this engine. This also requires
|
|
* that the ring is empty and we avoid any waits while constructing
|
|
* the context, as they assume protection by the timeline->mutex.
|
|
* This should hold true as we can only park the engine after
|
|
* retiring the last request, thus all rings should be empty and
|
|
* all timelines idle.
|
|
*
|
|
* For unlocking, there are 2 other parties and the GPU who have a
|
|
* stake here.
|
|
*
|
|
* A new gpu user will be waiting on the engine-pm to start their
|
|
* engine_unpark. New waiters are predicated on engine->wakeref.count
|
|
* and so intel_wakeref_defer_park() acts like a mutex_unlock of the
|
|
* engine->wakeref.
|
|
*
|
|
* The other party is intel_gt_retire_requests(), which is walking the
|
|
* list of active timelines looking for completions. Meanwhile as soon
|
|
* as we call __i915_request_queue(), the GPU may complete our request.
|
|
* Ergo, if we put ourselves on the timelines.active_list
|
|
* (se intel_timeline_enter()) before we increment the
|
|
* engine->wakeref.count, we may see the request completion and retire
|
|
* it causing an underflow of the engine->wakeref.
|
|
*/
|
|
set_bit(CONTEXT_IS_PARKING, &ce->flags);
|
|
GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
|
|
|
|
rq = __i915_request_create(ce, GFP_NOWAIT);
|
|
if (IS_ERR(rq))
|
|
/* Context switch failed, hope for the best! Maybe reset? */
|
|
goto out_unlock;
|
|
|
|
/* Check again on the next retirement. */
|
|
engine->wakeref_serial = engine->serial + 1;
|
|
i915_request_add_active_barriers(rq);
|
|
|
|
/* Install ourselves as a preemption barrier */
|
|
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
|
|
if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
|
|
/*
|
|
* Use an interrupt for precise measurement of duration,
|
|
* otherwise we rely on someone else retiring all the requests
|
|
* which may delay the signaling (i.e. we will likely wait
|
|
* until the background request retirement running every
|
|
* second or two).
|
|
*/
|
|
BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
|
|
dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
|
|
rq->duration.emitted = ktime_get();
|
|
}
|
|
|
|
/* Expose ourselves to the world */
|
|
__queue_and_release_pm(rq, ce->timeline, engine);
|
|
|
|
result = false;
|
|
out_unlock:
|
|
clear_bit(CONTEXT_IS_PARKING, &ce->flags);
|
|
return result;
|
|
}
|
|
|
|
static void call_idle_barriers(struct intel_engine_cs *engine)
|
|
{
|
|
struct llist_node *node, *next;
|
|
|
|
llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
|
|
struct dma_fence_cb *cb =
|
|
container_of((struct list_head *)node,
|
|
typeof(*cb), node);
|
|
|
|
cb->func(ERR_PTR(-EAGAIN), cb);
|
|
}
|
|
}
|
|
|
|
static int __engine_park(struct intel_wakeref *wf)
|
|
{
|
|
struct intel_engine_cs *engine =
|
|
container_of(wf, typeof(*engine), wakeref);
|
|
|
|
engine->saturated = 0;
|
|
|
|
/*
|
|
* If one and only one request is completed between pm events,
|
|
* we know that we are inside the kernel context and it is
|
|
* safe to power down. (We are paranoid in case that runtime
|
|
* suspend causes corruption to the active context image, and
|
|
* want to avoid that impacting userspace.)
|
|
*/
|
|
if (!switch_to_kernel_context(engine))
|
|
return -EBUSY;
|
|
|
|
ENGINE_TRACE(engine, "parked\n");
|
|
|
|
call_idle_barriers(engine); /* cleanup after wedging */
|
|
|
|
intel_engine_park_heartbeat(engine);
|
|
intel_breadcrumbs_park(engine->breadcrumbs);
|
|
|
|
/* Must be reset upon idling, or we may miss the busy wakeup. */
|
|
GEM_BUG_ON(engine->sched_engine->queue_priority_hint != INT_MIN);
|
|
|
|
if (engine->park)
|
|
engine->park(engine);
|
|
|
|
/* While gt calls i915_vma_parked(), we have to break the lock cycle */
|
|
intel_gt_pm_put_async(engine->gt);
|
|
return 0;
|
|
}
|
|
|
|
static const struct intel_wakeref_ops wf_ops = {
|
|
.get = __engine_unpark,
|
|
.put = __engine_park,
|
|
};
|
|
|
|
void intel_engine_init__pm(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_runtime_pm *rpm = engine->uncore->rpm;
|
|
|
|
intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
|
|
intel_engine_init_heartbeat(engine);
|
|
}
|
|
|
|
/**
|
|
* intel_engine_reset_pinned_contexts - Reset the pinned contexts of
|
|
* an engine.
|
|
* @engine: The engine whose pinned contexts we want to reset.
|
|
*
|
|
* Typically the pinned context LMEM images lose or get their content
|
|
* corrupted on suspend. This function resets their images.
|
|
*/
|
|
void intel_engine_reset_pinned_contexts(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_context *ce;
|
|
|
|
list_for_each_entry(ce, &engine->pinned_contexts_list,
|
|
pinned_contexts_link) {
|
|
/* kernel context gets reset at __engine_unpark() */
|
|
if (ce == engine->kernel_context)
|
|
continue;
|
|
|
|
dbg_poison_ce(ce);
|
|
ce->ops->reset(ce);
|
|
}
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftest_engine_pm.c"
|
|
#endif
|