linuxdebug/drivers/crypto/qat/qat_common/adf_transport.c

578 lines
16 KiB
C

// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/delay.h>
#include <linux/nospec.h>
#include "adf_accel_devices.h"
#include "adf_transport_internal.h"
#include "adf_transport_access_macros.h"
#include "adf_cfg.h"
#include "adf_common_drv.h"
#define ADF_MAX_RING_THRESHOLD 80
#define ADF_PERCENT(tot, percent) (((tot) * (percent)) / 100)
static inline u32 adf_modulo(u32 data, u32 shift)
{
u32 div = data >> shift;
u32 mult = div << shift;
return data - mult;
}
static inline int adf_check_ring_alignment(u64 addr, u64 size)
{
if (((size - 1) & addr) != 0)
return -EFAULT;
return 0;
}
static int adf_verify_ring_size(u32 msg_size, u32 msg_num)
{
int i = ADF_MIN_RING_SIZE;
for (; i <= ADF_MAX_RING_SIZE; i++)
if ((msg_size * msg_num) == ADF_SIZE_TO_RING_SIZE_IN_BYTES(i))
return i;
return ADF_DEFAULT_RING_SIZE;
}
static int adf_reserve_ring(struct adf_etr_bank_data *bank, u32 ring)
{
spin_lock(&bank->lock);
if (bank->ring_mask & (1 << ring)) {
spin_unlock(&bank->lock);
return -EFAULT;
}
bank->ring_mask |= (1 << ring);
spin_unlock(&bank->lock);
return 0;
}
static void adf_unreserve_ring(struct adf_etr_bank_data *bank, u32 ring)
{
spin_lock(&bank->lock);
bank->ring_mask &= ~(1 << ring);
spin_unlock(&bank->lock);
}
static void adf_enable_ring_irq(struct adf_etr_bank_data *bank, u32 ring)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
spin_lock_bh(&bank->lock);
bank->irq_mask |= (1 << ring);
spin_unlock_bh(&bank->lock);
csr_ops->write_csr_int_col_en(bank->csr_addr, bank->bank_number,
bank->irq_mask);
csr_ops->write_csr_int_col_ctl(bank->csr_addr, bank->bank_number,
bank->irq_coalesc_timer);
}
static void adf_disable_ring_irq(struct adf_etr_bank_data *bank, u32 ring)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
spin_lock_bh(&bank->lock);
bank->irq_mask &= ~(1 << ring);
spin_unlock_bh(&bank->lock);
csr_ops->write_csr_int_col_en(bank->csr_addr, bank->bank_number,
bank->irq_mask);
}
bool adf_ring_nearly_full(struct adf_etr_ring_data *ring)
{
return atomic_read(ring->inflights) > ring->threshold;
}
int adf_send_message(struct adf_etr_ring_data *ring, u32 *msg)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev);
if (atomic_add_return(1, ring->inflights) >
ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size)) {
atomic_dec(ring->inflights);
return -EAGAIN;
}
spin_lock_bh(&ring->lock);
memcpy((void *)((uintptr_t)ring->base_addr + ring->tail), msg,
ADF_MSG_SIZE_TO_BYTES(ring->msg_size));
ring->tail = adf_modulo(ring->tail +
ADF_MSG_SIZE_TO_BYTES(ring->msg_size),
ADF_RING_SIZE_MODULO(ring->ring_size));
csr_ops->write_csr_ring_tail(ring->bank->csr_addr,
ring->bank->bank_number, ring->ring_number,
ring->tail);
spin_unlock_bh(&ring->lock);
return 0;
}
static int adf_handle_response(struct adf_etr_ring_data *ring)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev);
u32 msg_counter = 0;
u32 *msg = (u32 *)((uintptr_t)ring->base_addr + ring->head);
while (*msg != ADF_RING_EMPTY_SIG) {
ring->callback((u32 *)msg);
atomic_dec(ring->inflights);
*msg = ADF_RING_EMPTY_SIG;
ring->head = adf_modulo(ring->head +
ADF_MSG_SIZE_TO_BYTES(ring->msg_size),
ADF_RING_SIZE_MODULO(ring->ring_size));
msg_counter++;
msg = (u32 *)((uintptr_t)ring->base_addr + ring->head);
}
if (msg_counter > 0) {
csr_ops->write_csr_ring_head(ring->bank->csr_addr,
ring->bank->bank_number,
ring->ring_number, ring->head);
}
return 0;
}
static void adf_configure_tx_ring(struct adf_etr_ring_data *ring)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev);
u32 ring_config = BUILD_RING_CONFIG(ring->ring_size);
csr_ops->write_csr_ring_config(ring->bank->csr_addr,
ring->bank->bank_number,
ring->ring_number, ring_config);
}
static void adf_configure_rx_ring(struct adf_etr_ring_data *ring)
{
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev);
u32 ring_config =
BUILD_RESP_RING_CONFIG(ring->ring_size,
ADF_RING_NEAR_WATERMARK_512,
ADF_RING_NEAR_WATERMARK_0);
csr_ops->write_csr_ring_config(ring->bank->csr_addr,
ring->bank->bank_number,
ring->ring_number, ring_config);
}
static int adf_init_ring(struct adf_etr_ring_data *ring)
{
struct adf_etr_bank_data *bank = ring->bank;
struct adf_accel_dev *accel_dev = bank->accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
u64 ring_base;
u32 ring_size_bytes =
ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size);
ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes);
ring->base_addr = dma_alloc_coherent(&GET_DEV(accel_dev),
ring_size_bytes, &ring->dma_addr,
GFP_KERNEL);
if (!ring->base_addr)
return -ENOMEM;
memset(ring->base_addr, 0x7F, ring_size_bytes);
/* The base_addr has to be aligned to the size of the buffer */
if (adf_check_ring_alignment(ring->dma_addr, ring_size_bytes)) {
dev_err(&GET_DEV(accel_dev), "Ring address not aligned\n");
dma_free_coherent(&GET_DEV(accel_dev), ring_size_bytes,
ring->base_addr, ring->dma_addr);
ring->base_addr = NULL;
return -EFAULT;
}
if (hw_data->tx_rings_mask & (1 << ring->ring_number))
adf_configure_tx_ring(ring);
else
adf_configure_rx_ring(ring);
ring_base = csr_ops->build_csr_ring_base_addr(ring->dma_addr,
ring->ring_size);
csr_ops->write_csr_ring_base(ring->bank->csr_addr,
ring->bank->bank_number, ring->ring_number,
ring_base);
spin_lock_init(&ring->lock);
return 0;
}
static void adf_cleanup_ring(struct adf_etr_ring_data *ring)
{
u32 ring_size_bytes =
ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size);
ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes);
if (ring->base_addr) {
memset(ring->base_addr, 0x7F, ring_size_bytes);
dma_free_coherent(&GET_DEV(ring->bank->accel_dev),
ring_size_bytes, ring->base_addr,
ring->dma_addr);
}
}
int adf_create_ring(struct adf_accel_dev *accel_dev, const char *section,
u32 bank_num, u32 num_msgs,
u32 msg_size, const char *ring_name,
adf_callback_fn callback, int poll_mode,
struct adf_etr_ring_data **ring_ptr)
{
struct adf_etr_data *transport_data = accel_dev->transport;
u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(accel_dev);
struct adf_etr_bank_data *bank;
struct adf_etr_ring_data *ring;
char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES];
int max_inflights;
u32 ring_num;
int ret;
if (bank_num >= GET_MAX_BANKS(accel_dev)) {
dev_err(&GET_DEV(accel_dev), "Invalid bank number\n");
return -EFAULT;
}
if (msg_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
dev_err(&GET_DEV(accel_dev), "Invalid msg size\n");
return -EFAULT;
}
if (ADF_MAX_INFLIGHTS(adf_verify_ring_size(msg_size, num_msgs),
ADF_BYTES_TO_MSG_SIZE(msg_size)) < 2) {
dev_err(&GET_DEV(accel_dev),
"Invalid ring size for given msg size\n");
return -EFAULT;
}
if (adf_cfg_get_param_value(accel_dev, section, ring_name, val)) {
dev_err(&GET_DEV(accel_dev), "Section %s, no such entry : %s\n",
section, ring_name);
return -EFAULT;
}
if (kstrtouint(val, 10, &ring_num)) {
dev_err(&GET_DEV(accel_dev), "Can't get ring number\n");
return -EFAULT;
}
if (ring_num >= num_rings_per_bank) {
dev_err(&GET_DEV(accel_dev), "Invalid ring number\n");
return -EFAULT;
}
ring_num = array_index_nospec(ring_num, num_rings_per_bank);
bank = &transport_data->banks[bank_num];
if (adf_reserve_ring(bank, ring_num)) {
dev_err(&GET_DEV(accel_dev), "Ring %d, %s already exists.\n",
ring_num, ring_name);
return -EFAULT;
}
ring = &bank->rings[ring_num];
ring->ring_number = ring_num;
ring->bank = bank;
ring->callback = callback;
ring->msg_size = ADF_BYTES_TO_MSG_SIZE(msg_size);
ring->ring_size = adf_verify_ring_size(msg_size, num_msgs);
ring->head = 0;
ring->tail = 0;
max_inflights = ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size);
ring->threshold = ADF_PERCENT(max_inflights, ADF_MAX_RING_THRESHOLD);
atomic_set(ring->inflights, 0);
ret = adf_init_ring(ring);
if (ret)
goto err;
/* Enable HW arbitration for the given ring */
adf_update_ring_arb(ring);
if (adf_ring_debugfs_add(ring, ring_name)) {
dev_err(&GET_DEV(accel_dev),
"Couldn't add ring debugfs entry\n");
ret = -EFAULT;
goto err;
}
/* Enable interrupts if needed */
if (callback && (!poll_mode))
adf_enable_ring_irq(bank, ring->ring_number);
*ring_ptr = ring;
return 0;
err:
adf_cleanup_ring(ring);
adf_unreserve_ring(bank, ring_num);
adf_update_ring_arb(ring);
return ret;
}
void adf_remove_ring(struct adf_etr_ring_data *ring)
{
struct adf_etr_bank_data *bank = ring->bank;
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
/* Disable interrupts for the given ring */
adf_disable_ring_irq(bank, ring->ring_number);
/* Clear PCI config space */
csr_ops->write_csr_ring_config(bank->csr_addr, bank->bank_number,
ring->ring_number, 0);
csr_ops->write_csr_ring_base(bank->csr_addr, bank->bank_number,
ring->ring_number, 0);
adf_ring_debugfs_rm(ring);
adf_unreserve_ring(bank, ring->ring_number);
/* Disable HW arbitration for the given ring */
adf_update_ring_arb(ring);
adf_cleanup_ring(ring);
}
static void adf_ring_response_handler(struct adf_etr_bank_data *bank)
{
struct adf_accel_dev *accel_dev = bank->accel_dev;
u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
unsigned long empty_rings;
int i;
empty_rings = csr_ops->read_csr_e_stat(bank->csr_addr,
bank->bank_number);
empty_rings = ~empty_rings & bank->irq_mask;
for_each_set_bit(i, &empty_rings, num_rings_per_bank)
adf_handle_response(&bank->rings[i]);
}
void adf_response_handler(uintptr_t bank_addr)
{
struct adf_etr_bank_data *bank = (void *)bank_addr;
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
/* Handle all the responses and reenable IRQs */
adf_ring_response_handler(bank);
csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number,
bank->irq_mask);
}
static inline int adf_get_cfg_int(struct adf_accel_dev *accel_dev,
const char *section, const char *format,
u32 key, u32 *value)
{
char key_buf[ADF_CFG_MAX_KEY_LEN_IN_BYTES];
char val_buf[ADF_CFG_MAX_VAL_LEN_IN_BYTES];
snprintf(key_buf, ADF_CFG_MAX_KEY_LEN_IN_BYTES, format, key);
if (adf_cfg_get_param_value(accel_dev, section, key_buf, val_buf))
return -EFAULT;
if (kstrtouint(val_buf, 10, value))
return -EFAULT;
return 0;
}
static void adf_get_coalesc_timer(struct adf_etr_bank_data *bank,
const char *section,
u32 bank_num_in_accel)
{
if (adf_get_cfg_int(bank->accel_dev, section,
ADF_ETRMGR_COALESCE_TIMER_FORMAT,
bank_num_in_accel, &bank->irq_coalesc_timer))
bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME;
if (ADF_COALESCING_MAX_TIME < bank->irq_coalesc_timer ||
ADF_COALESCING_MIN_TIME > bank->irq_coalesc_timer)
bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME;
}
static int adf_init_bank(struct adf_accel_dev *accel_dev,
struct adf_etr_bank_data *bank,
u32 bank_num, void __iomem *csr_addr)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u8 num_rings_per_bank = hw_data->num_rings_per_bank;
struct adf_hw_csr_ops *csr_ops = &hw_data->csr_ops;
u32 irq_mask = BIT(num_rings_per_bank) - 1;
struct adf_etr_ring_data *ring;
struct adf_etr_ring_data *tx_ring;
u32 i, coalesc_enabled = 0;
unsigned long ring_mask;
int size;
memset(bank, 0, sizeof(*bank));
bank->bank_number = bank_num;
bank->csr_addr = csr_addr;
bank->accel_dev = accel_dev;
spin_lock_init(&bank->lock);
/* Allocate the rings in the bank */
size = num_rings_per_bank * sizeof(struct adf_etr_ring_data);
bank->rings = kzalloc_node(size, GFP_KERNEL,
dev_to_node(&GET_DEV(accel_dev)));
if (!bank->rings)
return -ENOMEM;
/* Enable IRQ coalescing always. This will allow to use
* the optimised flag and coalesc register.
* If it is disabled in the config file just use min time value */
if ((adf_get_cfg_int(accel_dev, "Accelerator0",
ADF_ETRMGR_COALESCING_ENABLED_FORMAT, bank_num,
&coalesc_enabled) == 0) && coalesc_enabled)
adf_get_coalesc_timer(bank, "Accelerator0", bank_num);
else
bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME;
for (i = 0; i < num_rings_per_bank; i++) {
csr_ops->write_csr_ring_config(csr_addr, bank_num, i, 0);
csr_ops->write_csr_ring_base(csr_addr, bank_num, i, 0);
ring = &bank->rings[i];
if (hw_data->tx_rings_mask & (1 << i)) {
ring->inflights =
kzalloc_node(sizeof(atomic_t),
GFP_KERNEL,
dev_to_node(&GET_DEV(accel_dev)));
if (!ring->inflights)
goto err;
} else {
if (i < hw_data->tx_rx_gap) {
dev_err(&GET_DEV(accel_dev),
"Invalid tx rings mask config\n");
goto err;
}
tx_ring = &bank->rings[i - hw_data->tx_rx_gap];
ring->inflights = tx_ring->inflights;
}
}
if (adf_bank_debugfs_add(bank)) {
dev_err(&GET_DEV(accel_dev),
"Failed to add bank debugfs entry\n");
goto err;
}
csr_ops->write_csr_int_flag(csr_addr, bank_num, irq_mask);
csr_ops->write_csr_int_srcsel(csr_addr, bank_num);
return 0;
err:
ring_mask = hw_data->tx_rings_mask;
for_each_set_bit(i, &ring_mask, num_rings_per_bank) {
ring = &bank->rings[i];
kfree(ring->inflights);
ring->inflights = NULL;
}
kfree(bank->rings);
return -ENOMEM;
}
/**
* adf_init_etr_data() - Initialize transport rings for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function is the initializes the communications channels (rings) to the
* acceleration device accel_dev.
* To be used by QAT device specific drivers.
*
* Return: 0 on success, error code otherwise.
*/
int adf_init_etr_data(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *etr_data;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
void __iomem *csr_addr;
u32 size;
u32 num_banks = 0;
int i, ret;
etr_data = kzalloc_node(sizeof(*etr_data), GFP_KERNEL,
dev_to_node(&GET_DEV(accel_dev)));
if (!etr_data)
return -ENOMEM;
num_banks = GET_MAX_BANKS(accel_dev);
size = num_banks * sizeof(struct adf_etr_bank_data);
etr_data->banks = kzalloc_node(size, GFP_KERNEL,
dev_to_node(&GET_DEV(accel_dev)));
if (!etr_data->banks) {
ret = -ENOMEM;
goto err_bank;
}
accel_dev->transport = etr_data;
i = hw_data->get_etr_bar_id(hw_data);
csr_addr = accel_dev->accel_pci_dev.pci_bars[i].virt_addr;
/* accel_dev->debugfs_dir should always be non-NULL here */
etr_data->debug = debugfs_create_dir("transport",
accel_dev->debugfs_dir);
for (i = 0; i < num_banks; i++) {
ret = adf_init_bank(accel_dev, &etr_data->banks[i], i,
csr_addr);
if (ret)
goto err_bank_all;
}
return 0;
err_bank_all:
debugfs_remove(etr_data->debug);
kfree(etr_data->banks);
err_bank:
kfree(etr_data);
accel_dev->transport = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(adf_init_etr_data);
static void cleanup_bank(struct adf_etr_bank_data *bank)
{
struct adf_accel_dev *accel_dev = bank->accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u8 num_rings_per_bank = hw_data->num_rings_per_bank;
u32 i;
for (i = 0; i < num_rings_per_bank; i++) {
struct adf_etr_ring_data *ring = &bank->rings[i];
if (bank->ring_mask & (1 << i))
adf_cleanup_ring(ring);
if (hw_data->tx_rings_mask & (1 << i))
kfree(ring->inflights);
}
kfree(bank->rings);
adf_bank_debugfs_rm(bank);
memset(bank, 0, sizeof(*bank));
}
static void adf_cleanup_etr_handles(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *etr_data = accel_dev->transport;
u32 i, num_banks = GET_MAX_BANKS(accel_dev);
for (i = 0; i < num_banks; i++)
cleanup_bank(&etr_data->banks[i]);
}
/**
* adf_cleanup_etr_data() - Clear transport rings for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function is the clears the communications channels (rings) of the
* acceleration device accel_dev.
* To be used by QAT device specific drivers.
*
* Return: void
*/
void adf_cleanup_etr_data(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *etr_data = accel_dev->transport;
if (etr_data) {
adf_cleanup_etr_handles(accel_dev);
debugfs_remove(etr_data->debug);
kfree(etr_data->banks->rings);
kfree(etr_data->banks);
kfree(etr_data);
accel_dev->transport = NULL;
}
}
EXPORT_SYMBOL_GPL(adf_cleanup_etr_data);