linuxdebug/drivers/crypto/allwinner/sun8i-ce/sun8i-ce-core.c

1079 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ce-core.c - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6/R40 SoC
*
* Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
*
* Core file which registers crypto algorithms supported by the CryptoEngine.
*
* You could find a link for the datasheet in Documentation/arm/sunxi.rst
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/internal/rng.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"
/*
* mod clock is lower on H3 than other SoC due to some DMA timeout occurring
* with high value.
* If you want to tune mod clock, loading driver and passing selftest is
* insufficient, you need to test with some LUKS test (mount and write to it)
*/
static const struct ce_variant ce_h3_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ALG_SHA384, CE_ALG_SHA512
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 50000000, 0 },
},
.esr = ESR_H3,
.prng = CE_ALG_PRNG,
.trng = CE_ID_NOTSUPP,
};
static const struct ce_variant ce_h5_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ID_NOTSUPP, CE_ID_NOTSUPP
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
},
.esr = ESR_H5,
.prng = CE_ALG_PRNG,
.trng = CE_ID_NOTSUPP,
};
static const struct ce_variant ce_h6_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ALG_SHA384, CE_ALG_SHA512
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.cipher_t_dlen_in_bytes = true,
.hash_t_dlen_in_bits = true,
.prng_t_dlen_in_bytes = true,
.trng_t_dlen_in_bytes = true,
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
{ "ram", 0, 400000000 },
},
.esr = ESR_H6,
.prng = CE_ALG_PRNG_V2,
.trng = CE_ALG_TRNG_V2,
};
static const struct ce_variant ce_a64_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ID_NOTSUPP, CE_ID_NOTSUPP
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
},
.esr = ESR_A64,
.prng = CE_ALG_PRNG,
.trng = CE_ID_NOTSUPP,
};
static const struct ce_variant ce_d1_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ALG_SHA384, CE_ALG_SHA512
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
{ "ram", 0, 400000000 },
},
.esr = ESR_D1,
.prng = CE_ALG_PRNG,
.trng = CE_ALG_TRNG,
};
static const struct ce_variant ce_r40_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
CE_ID_NOTSUPP, CE_ID_NOTSUPP
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
},
.esr = ESR_R40,
.prng = CE_ALG_PRNG,
.trng = CE_ID_NOTSUPP,
};
/*
* sun8i_ce_get_engine_number() get the next channel slot
* This is a simple round-robin way of getting the next channel
* The flow 3 is reserve for xRNG operations
*/
int sun8i_ce_get_engine_number(struct sun8i_ce_dev *ce)
{
return atomic_inc_return(&ce->flow) % (MAXFLOW - 1);
}
int sun8i_ce_run_task(struct sun8i_ce_dev *ce, int flow, const char *name)
{
u32 v;
int err = 0;
struct ce_task *cet = ce->chanlist[flow].tl;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
ce->chanlist[flow].stat_req++;
#endif
mutex_lock(&ce->mlock);
v = readl(ce->base + CE_ICR);
v |= 1 << flow;
writel(v, ce->base + CE_ICR);
reinit_completion(&ce->chanlist[flow].complete);
writel(ce->chanlist[flow].t_phy, ce->base + CE_TDQ);
ce->chanlist[flow].status = 0;
/* Be sure all data is written before enabling the task */
wmb();
/* Only H6 needs to write a part of t_common_ctl along with "1", but since it is ignored
* on older SoCs, we have no reason to complicate things.
*/
v = 1 | ((le32_to_cpu(ce->chanlist[flow].tl->t_common_ctl) & 0x7F) << 8);
writel(v, ce->base + CE_TLR);
mutex_unlock(&ce->mlock);
wait_for_completion_interruptible_timeout(&ce->chanlist[flow].complete,
msecs_to_jiffies(ce->chanlist[flow].timeout));
if (ce->chanlist[flow].status == 0) {
dev_err(ce->dev, "DMA timeout for %s (tm=%d) on flow %d\n", name,
ce->chanlist[flow].timeout, flow);
err = -EFAULT;
}
/* No need to lock for this read, the channel is locked so
* nothing could modify the error value for this channel
*/
v = readl(ce->base + CE_ESR);
switch (ce->variant->esr) {
case ESR_H3:
/* Sadly, the error bit is not per flow */
if (v) {
dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
err = -EFAULT;
print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
cet, sizeof(struct ce_task), false);
}
if (v & CE_ERR_ALGO_NOTSUP)
dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
if (v & CE_ERR_DATALEN)
dev_err(ce->dev, "CE ERROR: data length error\n");
if (v & CE_ERR_KEYSRAM)
dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
break;
case ESR_A64:
case ESR_D1:
case ESR_H5:
case ESR_R40:
v >>= (flow * 4);
v &= 0xF;
if (v) {
dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
err = -EFAULT;
print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
cet, sizeof(struct ce_task), false);
}
if (v & CE_ERR_ALGO_NOTSUP)
dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
if (v & CE_ERR_DATALEN)
dev_err(ce->dev, "CE ERROR: data length error\n");
if (v & CE_ERR_KEYSRAM)
dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
break;
case ESR_H6:
v >>= (flow * 8);
v &= 0xFF;
if (v) {
dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
err = -EFAULT;
print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
cet, sizeof(struct ce_task), false);
}
if (v & CE_ERR_ALGO_NOTSUP)
dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
if (v & CE_ERR_DATALEN)
dev_err(ce->dev, "CE ERROR: data length error\n");
if (v & CE_ERR_KEYSRAM)
dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
if (v & CE_ERR_ADDR_INVALID)
dev_err(ce->dev, "CE ERROR: address invalid\n");
if (v & CE_ERR_KEYLADDER)
dev_err(ce->dev, "CE ERROR: key ladder configuration error\n");
break;
}
return err;
}
static irqreturn_t ce_irq_handler(int irq, void *data)
{
struct sun8i_ce_dev *ce = (struct sun8i_ce_dev *)data;
int flow = 0;
u32 p;
p = readl(ce->base + CE_ISR);
for (flow = 0; flow < MAXFLOW; flow++) {
if (p & (BIT(flow))) {
writel(BIT(flow), ce->base + CE_ISR);
ce->chanlist[flow].status = 1;
complete(&ce->chanlist[flow].complete);
}
}
return IRQ_HANDLED;
}
static struct sun8i_ce_alg_template ce_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_AES,
.ce_blockmode = CE_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun8i_ce_aes_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_AES,
.ce_blockmode = CE_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sun8i_ce_aes_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_DES3,
.ce_blockmode = CE_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun8i_ce_des3_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_DES3,
.ce_blockmode = CE_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = sun8i_ce_des3_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_HASH
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_MD5,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "md5-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_SHA1,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_SHA224,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_SHA256,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_SHA384,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha384",
.cra_driver_name = "sha384-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.ce_algo_id = CE_ID_HASH_SHA512,
.alg.hash = {
.init = sun8i_ce_hash_init,
.update = sun8i_ce_hash_update,
.final = sun8i_ce_hash_final,
.finup = sun8i_ce_hash_finup,
.digest = sun8i_ce_hash_digest,
.export = sun8i_ce_hash_export,
.import = sun8i_ce_hash_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-sun8i-ce",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_hash_crainit,
.cra_exit = sun8i_ce_hash_craexit,
}
}
}
},
#endif
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_PRNG
{
.type = CRYPTO_ALG_TYPE_RNG,
.alg.rng = {
.base = {
.cra_name = "stdrng",
.cra_driver_name = "sun8i-ce-prng",
.cra_priority = 300,
.cra_ctxsize = sizeof(struct sun8i_ce_rng_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sun8i_ce_prng_init,
.cra_exit = sun8i_ce_prng_exit,
},
.generate = sun8i_ce_prng_generate,
.seed = sun8i_ce_prng_seed,
.seedsize = PRNG_SEED_SIZE,
}
},
#endif
};
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
static int sun8i_ce_debugfs_show(struct seq_file *seq, void *v)
{
struct sun8i_ce_dev *ce = seq->private;
unsigned int i;
for (i = 0; i < MAXFLOW; i++)
seq_printf(seq, "Channel %d: nreq %lu\n", i, ce->chanlist[i].stat_req);
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
if (!ce_algs[i].ce)
continue;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
ce_algs[i].alg.skcipher.base.cra_driver_name,
ce_algs[i].alg.skcipher.base.cra_name,
ce_algs[i].stat_req, ce_algs[i].stat_fb);
seq_printf(seq, "\tLast fallback is: %s\n",
ce_algs[i].fbname);
seq_printf(seq, "\tFallback due to 0 length: %lu\n",
ce_algs[i].stat_fb_len0);
seq_printf(seq, "\tFallback due to length !mod16: %lu\n",
ce_algs[i].stat_fb_mod16);
seq_printf(seq, "\tFallback due to length < IV: %lu\n",
ce_algs[i].stat_fb_leniv);
seq_printf(seq, "\tFallback due to source alignment: %lu\n",
ce_algs[i].stat_fb_srcali);
seq_printf(seq, "\tFallback due to dest alignment: %lu\n",
ce_algs[i].stat_fb_dstali);
seq_printf(seq, "\tFallback due to source length: %lu\n",
ce_algs[i].stat_fb_srclen);
seq_printf(seq, "\tFallback due to dest length: %lu\n",
ce_algs[i].stat_fb_dstlen);
seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
ce_algs[i].stat_fb_maxsg);
break;
case CRYPTO_ALG_TYPE_AHASH:
seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
ce_algs[i].alg.hash.halg.base.cra_driver_name,
ce_algs[i].alg.hash.halg.base.cra_name,
ce_algs[i].stat_req, ce_algs[i].stat_fb);
seq_printf(seq, "\tLast fallback is: %s\n",
ce_algs[i].fbname);
seq_printf(seq, "\tFallback due to 0 length: %lu\n",
ce_algs[i].stat_fb_len0);
seq_printf(seq, "\tFallback due to length: %lu\n",
ce_algs[i].stat_fb_srclen);
seq_printf(seq, "\tFallback due to alignment: %lu\n",
ce_algs[i].stat_fb_srcali);
seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
ce_algs[i].stat_fb_maxsg);
break;
case CRYPTO_ALG_TYPE_RNG:
seq_printf(seq, "%s %s reqs=%lu bytes=%lu\n",
ce_algs[i].alg.rng.base.cra_driver_name,
ce_algs[i].alg.rng.base.cra_name,
ce_algs[i].stat_req, ce_algs[i].stat_bytes);
break;
}
}
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG
seq_printf(seq, "HWRNG %lu %lu\n",
ce->hwrng_stat_req, ce->hwrng_stat_bytes);
#endif
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sun8i_ce_debugfs);
#endif
static void sun8i_ce_free_chanlist(struct sun8i_ce_dev *ce, int i)
{
while (i >= 0) {
crypto_engine_exit(ce->chanlist[i].engine);
if (ce->chanlist[i].tl)
dma_free_coherent(ce->dev, sizeof(struct ce_task),
ce->chanlist[i].tl,
ce->chanlist[i].t_phy);
i--;
}
}
/*
* Allocate the channel list structure
*/
static int sun8i_ce_allocate_chanlist(struct sun8i_ce_dev *ce)
{
int i, err;
ce->chanlist = devm_kcalloc(ce->dev, MAXFLOW,
sizeof(struct sun8i_ce_flow), GFP_KERNEL);
if (!ce->chanlist)
return -ENOMEM;
for (i = 0; i < MAXFLOW; i++) {
init_completion(&ce->chanlist[i].complete);
ce->chanlist[i].engine = crypto_engine_alloc_init(ce->dev, true);
if (!ce->chanlist[i].engine) {
dev_err(ce->dev, "Cannot allocate engine\n");
i--;
err = -ENOMEM;
goto error_engine;
}
err = crypto_engine_start(ce->chanlist[i].engine);
if (err) {
dev_err(ce->dev, "Cannot start engine\n");
goto error_engine;
}
ce->chanlist[i].tl = dma_alloc_coherent(ce->dev,
sizeof(struct ce_task),
&ce->chanlist[i].t_phy,
GFP_KERNEL);
if (!ce->chanlist[i].tl) {
dev_err(ce->dev, "Cannot get DMA memory for task %d\n",
i);
err = -ENOMEM;
goto error_engine;
}
ce->chanlist[i].bounce_iv = devm_kmalloc(ce->dev, AES_BLOCK_SIZE,
GFP_KERNEL | GFP_DMA);
if (!ce->chanlist[i].bounce_iv) {
err = -ENOMEM;
goto error_engine;
}
ce->chanlist[i].backup_iv = devm_kmalloc(ce->dev, AES_BLOCK_SIZE,
GFP_KERNEL);
if (!ce->chanlist[i].backup_iv) {
err = -ENOMEM;
goto error_engine;
}
}
return 0;
error_engine:
sun8i_ce_free_chanlist(ce, i);
return err;
}
/*
* Power management strategy: The device is suspended unless a TFM exists for
* one of the algorithms proposed by this driver.
*/
static int sun8i_ce_pm_suspend(struct device *dev)
{
struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
int i;
reset_control_assert(ce->reset);
for (i = 0; i < CE_MAX_CLOCKS; i++)
clk_disable_unprepare(ce->ceclks[i]);
return 0;
}
static int sun8i_ce_pm_resume(struct device *dev)
{
struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
int err, i;
for (i = 0; i < CE_MAX_CLOCKS; i++) {
if (!ce->variant->ce_clks[i].name)
continue;
err = clk_prepare_enable(ce->ceclks[i]);
if (err) {
dev_err(ce->dev, "Cannot prepare_enable %s\n",
ce->variant->ce_clks[i].name);
goto error;
}
}
err = reset_control_deassert(ce->reset);
if (err) {
dev_err(ce->dev, "Cannot deassert reset control\n");
goto error;
}
return 0;
error:
sun8i_ce_pm_suspend(dev);
return err;
}
static const struct dev_pm_ops sun8i_ce_pm_ops = {
SET_RUNTIME_PM_OPS(sun8i_ce_pm_suspend, sun8i_ce_pm_resume, NULL)
};
static int sun8i_ce_pm_init(struct sun8i_ce_dev *ce)
{
int err;
pm_runtime_use_autosuspend(ce->dev);
pm_runtime_set_autosuspend_delay(ce->dev, 2000);
err = pm_runtime_set_suspended(ce->dev);
if (err)
return err;
pm_runtime_enable(ce->dev);
return err;
}
static void sun8i_ce_pm_exit(struct sun8i_ce_dev *ce)
{
pm_runtime_disable(ce->dev);
}
static int sun8i_ce_get_clks(struct sun8i_ce_dev *ce)
{
unsigned long cr;
int err, i;
for (i = 0; i < CE_MAX_CLOCKS; i++) {
if (!ce->variant->ce_clks[i].name)
continue;
ce->ceclks[i] = devm_clk_get(ce->dev, ce->variant->ce_clks[i].name);
if (IS_ERR(ce->ceclks[i])) {
err = PTR_ERR(ce->ceclks[i]);
dev_err(ce->dev, "Cannot get %s CE clock err=%d\n",
ce->variant->ce_clks[i].name, err);
return err;
}
cr = clk_get_rate(ce->ceclks[i]);
if (!cr)
return -EINVAL;
if (ce->variant->ce_clks[i].freq > 0 &&
cr != ce->variant->ce_clks[i].freq) {
dev_info(ce->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
ce->variant->ce_clks[i].name,
ce->variant->ce_clks[i].freq,
ce->variant->ce_clks[i].freq / 1000000,
cr, cr / 1000000);
err = clk_set_rate(ce->ceclks[i], ce->variant->ce_clks[i].freq);
if (err)
dev_err(ce->dev, "Fail to set %s clk speed to %lu hz\n",
ce->variant->ce_clks[i].name,
ce->variant->ce_clks[i].freq);
}
if (ce->variant->ce_clks[i].max_freq > 0 &&
cr > ce->variant->ce_clks[i].max_freq)
dev_warn(ce->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommendation (%lu hz)",
ce->variant->ce_clks[i].name, cr,
ce->variant->ce_clks[i].max_freq);
}
return 0;
}
static int sun8i_ce_register_algs(struct sun8i_ce_dev *ce)
{
int ce_method, err, id;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
ce_algs[i].ce = ce;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
id = ce_algs[i].ce_algo_id;
ce_method = ce->variant->alg_cipher[id];
if (ce_method == CE_ID_NOTSUPP) {
dev_dbg(ce->dev,
"DEBUG: Algo of %s not supported\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
id = ce_algs[i].ce_blockmode;
ce_method = ce->variant->op_mode[id];
if (ce_method == CE_ID_NOTSUPP) {
dev_dbg(ce->dev, "DEBUG: Blockmode of %s not supported\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
dev_info(ce->dev, "Register %s\n",
ce_algs[i].alg.skcipher.base.cra_name);
err = crypto_register_skcipher(&ce_algs[i].alg.skcipher);
if (err) {
dev_err(ce->dev, "ERROR: Fail to register %s\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
return err;
}
break;
case CRYPTO_ALG_TYPE_AHASH:
id = ce_algs[i].ce_algo_id;
ce_method = ce->variant->alg_hash[id];
if (ce_method == CE_ID_NOTSUPP) {
dev_info(ce->dev,
"DEBUG: Algo of %s not supported\n",
ce_algs[i].alg.hash.halg.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
dev_info(ce->dev, "Register %s\n",
ce_algs[i].alg.hash.halg.base.cra_name);
err = crypto_register_ahash(&ce_algs[i].alg.hash);
if (err) {
dev_err(ce->dev, "ERROR: Fail to register %s\n",
ce_algs[i].alg.hash.halg.base.cra_name);
ce_algs[i].ce = NULL;
return err;
}
break;
case CRYPTO_ALG_TYPE_RNG:
if (ce->variant->prng == CE_ID_NOTSUPP) {
dev_info(ce->dev,
"DEBUG: Algo of %s not supported\n",
ce_algs[i].alg.rng.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
dev_info(ce->dev, "Register %s\n",
ce_algs[i].alg.rng.base.cra_name);
err = crypto_register_rng(&ce_algs[i].alg.rng);
if (err) {
dev_err(ce->dev, "Fail to register %s\n",
ce_algs[i].alg.rng.base.cra_name);
ce_algs[i].ce = NULL;
}
break;
default:
ce_algs[i].ce = NULL;
dev_err(ce->dev, "ERROR: tried to register an unknown algo\n");
}
}
return 0;
}
static void sun8i_ce_unregister_algs(struct sun8i_ce_dev *ce)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
if (!ce_algs[i].ce)
continue;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
dev_info(ce->dev, "Unregister %d %s\n", i,
ce_algs[i].alg.skcipher.base.cra_name);
crypto_unregister_skcipher(&ce_algs[i].alg.skcipher);
break;
case CRYPTO_ALG_TYPE_AHASH:
dev_info(ce->dev, "Unregister %d %s\n", i,
ce_algs[i].alg.hash.halg.base.cra_name);
crypto_unregister_ahash(&ce_algs[i].alg.hash);
break;
case CRYPTO_ALG_TYPE_RNG:
dev_info(ce->dev, "Unregister %d %s\n", i,
ce_algs[i].alg.rng.base.cra_name);
crypto_unregister_rng(&ce_algs[i].alg.rng);
break;
}
}
}
static int sun8i_ce_probe(struct platform_device *pdev)
{
struct sun8i_ce_dev *ce;
int err, irq;
u32 v;
ce = devm_kzalloc(&pdev->dev, sizeof(*ce), GFP_KERNEL);
if (!ce)
return -ENOMEM;
ce->dev = &pdev->dev;
platform_set_drvdata(pdev, ce);
ce->variant = of_device_get_match_data(&pdev->dev);
if (!ce->variant) {
dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
return -EINVAL;
}
ce->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ce->base))
return PTR_ERR(ce->base);
err = sun8i_ce_get_clks(ce);
if (err)
return err;
/* Get Non Secure IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ce->reset = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(ce->reset))
return dev_err_probe(&pdev->dev, PTR_ERR(ce->reset),
"No reset control found\n");
mutex_init(&ce->mlock);
mutex_init(&ce->rnglock);
err = sun8i_ce_allocate_chanlist(ce);
if (err)
return err;
err = sun8i_ce_pm_init(ce);
if (err)
goto error_pm;
err = devm_request_irq(&pdev->dev, irq, ce_irq_handler, 0,
"sun8i-ce-ns", ce);
if (err) {
dev_err(ce->dev, "Cannot request CryptoEngine Non-secure IRQ (err=%d)\n", err);
goto error_irq;
}
err = sun8i_ce_register_algs(ce);
if (err)
goto error_alg;
err = pm_runtime_resume_and_get(ce->dev);
if (err < 0)
goto error_alg;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG
sun8i_ce_hwrng_register(ce);
#endif
v = readl(ce->base + CE_CTR);
v >>= CE_DIE_ID_SHIFT;
v &= CE_DIE_ID_MASK;
dev_info(&pdev->dev, "CryptoEngine Die ID %x\n", v);
pm_runtime_put_sync(ce->dev);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
/* Ignore error of debugfs */
ce->dbgfs_dir = debugfs_create_dir("sun8i-ce", NULL);
ce->dbgfs_stats = debugfs_create_file("stats", 0444,
ce->dbgfs_dir, ce,
&sun8i_ce_debugfs_fops);
#endif
return 0;
error_alg:
sun8i_ce_unregister_algs(ce);
error_irq:
sun8i_ce_pm_exit(ce);
error_pm:
sun8i_ce_free_chanlist(ce, MAXFLOW - 1);
return err;
}
static int sun8i_ce_remove(struct platform_device *pdev)
{
struct sun8i_ce_dev *ce = platform_get_drvdata(pdev);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG
sun8i_ce_hwrng_unregister(ce);
#endif
sun8i_ce_unregister_algs(ce);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
debugfs_remove_recursive(ce->dbgfs_dir);
#endif
sun8i_ce_free_chanlist(ce, MAXFLOW - 1);
sun8i_ce_pm_exit(ce);
return 0;
}
static const struct of_device_id sun8i_ce_crypto_of_match_table[] = {
{ .compatible = "allwinner,sun8i-h3-crypto",
.data = &ce_h3_variant },
{ .compatible = "allwinner,sun8i-r40-crypto",
.data = &ce_r40_variant },
{ .compatible = "allwinner,sun20i-d1-crypto",
.data = &ce_d1_variant },
{ .compatible = "allwinner,sun50i-a64-crypto",
.data = &ce_a64_variant },
{ .compatible = "allwinner,sun50i-h5-crypto",
.data = &ce_h5_variant },
{ .compatible = "allwinner,sun50i-h6-crypto",
.data = &ce_h6_variant },
{}
};
MODULE_DEVICE_TABLE(of, sun8i_ce_crypto_of_match_table);
static struct platform_driver sun8i_ce_driver = {
.probe = sun8i_ce_probe,
.remove = sun8i_ce_remove,
.driver = {
.name = "sun8i-ce",
.pm = &sun8i_ce_pm_ops,
.of_match_table = sun8i_ce_crypto_of_match_table,
},
};
module_platform_driver(sun8i_ce_driver);
MODULE_DESCRIPTION("Allwinner Crypto Engine cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");