2663 lines
69 KiB
C
2663 lines
69 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Bluetooth support for Intel devices
|
|
*
|
|
* Copyright (C) 2015 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/regmap.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
|
|
#include "btintel.h"
|
|
|
|
#define VERSION "0.1"
|
|
|
|
#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
|
|
#define RSA_HEADER_LEN 644
|
|
#define CSS_HEADER_OFFSET 8
|
|
#define ECDSA_OFFSET 644
|
|
#define ECDSA_HEADER_LEN 320
|
|
|
|
#define CMD_WRITE_BOOT_PARAMS 0xfc0e
|
|
struct cmd_write_boot_params {
|
|
u32 boot_addr;
|
|
u8 fw_build_num;
|
|
u8 fw_build_ww;
|
|
u8 fw_build_yy;
|
|
} __packed;
|
|
|
|
int btintel_check_bdaddr(struct hci_dev *hdev)
|
|
{
|
|
struct hci_rp_read_bd_addr *bda;
|
|
struct sk_buff *skb;
|
|
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
|
|
HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
int err = PTR_ERR(skb);
|
|
bt_dev_err(hdev, "Reading Intel device address failed (%d)",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
if (skb->len != sizeof(*bda)) {
|
|
bt_dev_err(hdev, "Intel device address length mismatch");
|
|
kfree_skb(skb);
|
|
return -EIO;
|
|
}
|
|
|
|
bda = (struct hci_rp_read_bd_addr *)skb->data;
|
|
|
|
/* For some Intel based controllers, the default Bluetooth device
|
|
* address 00:03:19:9E:8B:00 can be found. These controllers are
|
|
* fully operational, but have the danger of duplicate addresses
|
|
* and that in turn can cause problems with Bluetooth operation.
|
|
*/
|
|
if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
|
|
bt_dev_err(hdev, "Found Intel default device address (%pMR)",
|
|
&bda->bdaddr);
|
|
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
|
|
|
|
int btintel_enter_mfg(struct hci_dev *hdev)
|
|
{
|
|
static const u8 param[] = { 0x01, 0x00 };
|
|
struct sk_buff *skb;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_enter_mfg);
|
|
|
|
int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
|
|
{
|
|
u8 param[] = { 0x00, 0x00 };
|
|
struct sk_buff *skb;
|
|
|
|
/* The 2nd command parameter specifies the manufacturing exit method:
|
|
* 0x00: Just disable the manufacturing mode (0x00).
|
|
* 0x01: Disable manufacturing mode and reset with patches deactivated.
|
|
* 0x02: Disable manufacturing mode and reset with patches activated.
|
|
*/
|
|
if (reset)
|
|
param[1] |= patched ? 0x02 : 0x01;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_exit_mfg);
|
|
|
|
int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
err = PTR_ERR(skb);
|
|
bt_dev_err(hdev, "Changing Intel device address failed (%d)",
|
|
err);
|
|
return err;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
|
|
|
|
static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
|
|
{
|
|
u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
if (debug)
|
|
mask[1] |= 0x62;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
err = PTR_ERR(skb);
|
|
bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
|
|
return err;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btintel_set_diag(struct hci_dev *hdev, bool enable)
|
|
{
|
|
struct sk_buff *skb;
|
|
u8 param[3];
|
|
int err;
|
|
|
|
if (enable) {
|
|
param[0] = 0x03;
|
|
param[1] = 0x03;
|
|
param[2] = 0x03;
|
|
} else {
|
|
param[0] = 0x00;
|
|
param[1] = 0x00;
|
|
param[2] = 0x00;
|
|
}
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
err = PTR_ERR(skb);
|
|
if (err == -ENODATA)
|
|
goto done;
|
|
bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
|
|
err);
|
|
return err;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
done:
|
|
btintel_set_event_mask(hdev, enable);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_set_diag);
|
|
|
|
static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
|
|
{
|
|
int err, ret;
|
|
|
|
err = btintel_enter_mfg(hdev);
|
|
if (err)
|
|
return err;
|
|
|
|
ret = btintel_set_diag(hdev, enable);
|
|
|
|
err = btintel_exit_mfg(hdev, false, false);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
|
|
{
|
|
int ret;
|
|
|
|
/* Legacy ROM device needs to be in the manufacturer mode to apply
|
|
* diagnostic setting
|
|
*
|
|
* This flag is set after reading the Intel version.
|
|
*/
|
|
if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
|
|
ret = btintel_set_diag_mfg(hdev, enable);
|
|
else
|
|
ret = btintel_set_diag(hdev, enable);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btintel_hw_error(struct hci_dev *hdev, u8 code)
|
|
{
|
|
struct sk_buff *skb;
|
|
u8 type = 0x00;
|
|
|
|
bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
|
|
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return;
|
|
}
|
|
|
|
if (skb->len != 13) {
|
|
bt_dev_err(hdev, "Exception info size mismatch");
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
|
|
{
|
|
const char *variant;
|
|
|
|
/* The hardware platform number has a fixed value of 0x37 and
|
|
* for now only accept this single value.
|
|
*/
|
|
if (ver->hw_platform != 0x37) {
|
|
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
|
|
ver->hw_platform);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come along.
|
|
*/
|
|
switch (ver->hw_variant) {
|
|
case 0x07: /* WP - Legacy ROM */
|
|
case 0x08: /* StP - Legacy ROM */
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
case 0x11: /* JfP */
|
|
case 0x12: /* ThP */
|
|
case 0x13: /* HrP */
|
|
case 0x14: /* CcP */
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
|
|
ver->hw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (ver->fw_variant) {
|
|
case 0x01:
|
|
variant = "Legacy ROM 2.5";
|
|
break;
|
|
case 0x06:
|
|
variant = "Bootloader";
|
|
break;
|
|
case 0x22:
|
|
variant = "Legacy ROM 2.x";
|
|
break;
|
|
case 0x23:
|
|
variant = "Firmware";
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
|
|
variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
|
|
ver->fw_build_num, ver->fw_build_ww,
|
|
2000 + ver->fw_build_yy);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_version_info);
|
|
|
|
static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
|
|
const void *param)
|
|
{
|
|
while (plen > 0) {
|
|
struct sk_buff *skb;
|
|
u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
|
|
|
|
cmd_param[0] = fragment_type;
|
|
memcpy(cmd_param + 1, param, fragment_len);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
|
|
cmd_param, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb))
|
|
return PTR_ERR(skb);
|
|
|
|
kfree_skb(skb);
|
|
|
|
plen -= fragment_len;
|
|
param += fragment_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
|
|
{
|
|
const struct firmware *fw;
|
|
struct sk_buff *skb;
|
|
const u8 *fw_ptr;
|
|
int err;
|
|
|
|
err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
|
|
ddc_name, err);
|
|
return err;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
|
|
|
|
fw_ptr = fw->data;
|
|
|
|
/* DDC file contains one or more DDC structure which has
|
|
* Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
|
|
*/
|
|
while (fw->size > fw_ptr - fw->data) {
|
|
u8 cmd_plen = fw_ptr[0] + sizeof(u8);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
|
|
HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
|
|
PTR_ERR(skb));
|
|
release_firmware(fw);
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
fw_ptr += cmd_plen;
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
release_firmware(fw);
|
|
|
|
bt_dev_info(hdev, "Applying Intel DDC parameters completed");
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
|
|
|
|
int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
|
|
{
|
|
int err, ret;
|
|
|
|
err = btintel_enter_mfg(hdev);
|
|
if (err)
|
|
return err;
|
|
|
|
ret = btintel_set_event_mask(hdev, debug);
|
|
|
|
err = btintel_exit_mfg(hdev, false, false);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
|
|
|
|
int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
if (skb->len != sizeof(*ver)) {
|
|
bt_dev_err(hdev, "Intel version event size mismatch");
|
|
kfree_skb(skb);
|
|
return -EILSEQ;
|
|
}
|
|
|
|
memcpy(ver, skb->data, sizeof(*ver));
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_read_version);
|
|
|
|
static int btintel_version_info_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *version)
|
|
{
|
|
const char *variant;
|
|
|
|
/* The hardware platform number has a fixed value of 0x37 and
|
|
* for now only accept this single value.
|
|
*/
|
|
if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
|
|
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
|
|
INTEL_HW_PLATFORM(version->cnvi_bt));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come along.
|
|
*/
|
|
switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
|
|
case 0x17: /* TyP */
|
|
case 0x18: /* Slr */
|
|
case 0x19: /* Slr-F */
|
|
case 0x1b: /* Mgr */
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
|
|
INTEL_HW_VARIANT(version->cnvi_bt));
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (version->img_type) {
|
|
case 0x01:
|
|
variant = "Bootloader";
|
|
/* It is required that every single firmware fragment is acknowledged
|
|
* with a command complete event. If the boot parameters indicate
|
|
* that this bootloader does not send them, then abort the setup.
|
|
*/
|
|
if (version->limited_cce != 0x00) {
|
|
bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
|
|
version->limited_cce);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
|
|
if (version->sbe_type > 0x01) {
|
|
bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
|
|
version->sbe_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
|
|
bt_dev_info(hdev, "Secure boot is %s",
|
|
version->secure_boot ? "enabled" : "disabled");
|
|
bt_dev_info(hdev, "OTP lock is %s",
|
|
version->otp_lock ? "enabled" : "disabled");
|
|
bt_dev_info(hdev, "API lock is %s",
|
|
version->api_lock ? "enabled" : "disabled");
|
|
bt_dev_info(hdev, "Debug lock is %s",
|
|
version->debug_lock ? "enabled" : "disabled");
|
|
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
|
|
version->min_fw_build_nn, version->min_fw_build_cw,
|
|
2000 + version->min_fw_build_yy);
|
|
break;
|
|
case 0x03:
|
|
variant = "Firmware";
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
|
|
2000 + (version->timestamp >> 8), version->timestamp & 0xff,
|
|
version->build_type, version->build_num);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_parse_version_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *version,
|
|
struct sk_buff *skb)
|
|
{
|
|
/* Consume Command Complete Status field */
|
|
skb_pull(skb, 1);
|
|
|
|
/* Event parameters contatin multiple TLVs. Read each of them
|
|
* and only keep the required data. Also, it use existing legacy
|
|
* version field like hw_platform, hw_variant, and fw_variant
|
|
* to keep the existing setup flow
|
|
*/
|
|
while (skb->len) {
|
|
struct intel_tlv *tlv;
|
|
|
|
/* Make sure skb has a minimum length of the header */
|
|
if (skb->len < sizeof(*tlv))
|
|
return -EINVAL;
|
|
|
|
tlv = (struct intel_tlv *)skb->data;
|
|
|
|
/* Make sure skb has a enough data */
|
|
if (skb->len < tlv->len + sizeof(*tlv))
|
|
return -EINVAL;
|
|
|
|
switch (tlv->type) {
|
|
case INTEL_TLV_CNVI_TOP:
|
|
version->cnvi_top = get_unaligned_le32(tlv->val);
|
|
break;
|
|
case INTEL_TLV_CNVR_TOP:
|
|
version->cnvr_top = get_unaligned_le32(tlv->val);
|
|
break;
|
|
case INTEL_TLV_CNVI_BT:
|
|
version->cnvi_bt = get_unaligned_le32(tlv->val);
|
|
break;
|
|
case INTEL_TLV_CNVR_BT:
|
|
version->cnvr_bt = get_unaligned_le32(tlv->val);
|
|
break;
|
|
case INTEL_TLV_DEV_REV_ID:
|
|
version->dev_rev_id = get_unaligned_le16(tlv->val);
|
|
break;
|
|
case INTEL_TLV_IMAGE_TYPE:
|
|
version->img_type = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_TIME_STAMP:
|
|
/* If image type is Operational firmware (0x03), then
|
|
* running FW Calendar Week and Year information can
|
|
* be extracted from Timestamp information
|
|
*/
|
|
version->min_fw_build_cw = tlv->val[0];
|
|
version->min_fw_build_yy = tlv->val[1];
|
|
version->timestamp = get_unaligned_le16(tlv->val);
|
|
break;
|
|
case INTEL_TLV_BUILD_TYPE:
|
|
version->build_type = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_BUILD_NUM:
|
|
/* If image type is Operational firmware (0x03), then
|
|
* running FW build number can be extracted from the
|
|
* Build information
|
|
*/
|
|
version->min_fw_build_nn = tlv->val[0];
|
|
version->build_num = get_unaligned_le32(tlv->val);
|
|
break;
|
|
case INTEL_TLV_SECURE_BOOT:
|
|
version->secure_boot = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_OTP_LOCK:
|
|
version->otp_lock = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_API_LOCK:
|
|
version->api_lock = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_DEBUG_LOCK:
|
|
version->debug_lock = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_MIN_FW:
|
|
version->min_fw_build_nn = tlv->val[0];
|
|
version->min_fw_build_cw = tlv->val[1];
|
|
version->min_fw_build_yy = tlv->val[2];
|
|
break;
|
|
case INTEL_TLV_LIMITED_CCE:
|
|
version->limited_cce = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_SBE_TYPE:
|
|
version->sbe_type = tlv->val[0];
|
|
break;
|
|
case INTEL_TLV_OTP_BDADDR:
|
|
memcpy(&version->otp_bd_addr, tlv->val,
|
|
sizeof(bdaddr_t));
|
|
break;
|
|
default:
|
|
/* Ignore rest of information */
|
|
break;
|
|
}
|
|
/* consume the current tlv and move to next*/
|
|
skb_pull(skb, tlv->len + sizeof(*tlv));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_read_version_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *version)
|
|
{
|
|
struct sk_buff *skb;
|
|
const u8 param[1] = { 0xFF };
|
|
|
|
if (!version)
|
|
return -EINVAL;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
if (skb->data[0]) {
|
|
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
|
|
skb->data[0]);
|
|
kfree_skb(skb);
|
|
return -EIO;
|
|
}
|
|
|
|
btintel_parse_version_tlv(hdev, version, skb);
|
|
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
/* ------- REGMAP IBT SUPPORT ------- */
|
|
|
|
#define IBT_REG_MODE_8BIT 0x00
|
|
#define IBT_REG_MODE_16BIT 0x01
|
|
#define IBT_REG_MODE_32BIT 0x02
|
|
|
|
struct regmap_ibt_context {
|
|
struct hci_dev *hdev;
|
|
__u16 op_write;
|
|
__u16 op_read;
|
|
};
|
|
|
|
struct ibt_cp_reg_access {
|
|
__le32 addr;
|
|
__u8 mode;
|
|
__u8 len;
|
|
__u8 data[];
|
|
} __packed;
|
|
|
|
struct ibt_rp_reg_access {
|
|
__u8 status;
|
|
__le32 addr;
|
|
__u8 data[];
|
|
} __packed;
|
|
|
|
static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
|
|
void *val, size_t val_size)
|
|
{
|
|
struct regmap_ibt_context *ctx = context;
|
|
struct ibt_cp_reg_access cp;
|
|
struct ibt_rp_reg_access *rp;
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
|
|
if (reg_size != sizeof(__le32))
|
|
return -EINVAL;
|
|
|
|
switch (val_size) {
|
|
case 1:
|
|
cp.mode = IBT_REG_MODE_8BIT;
|
|
break;
|
|
case 2:
|
|
cp.mode = IBT_REG_MODE_16BIT;
|
|
break;
|
|
case 4:
|
|
cp.mode = IBT_REG_MODE_32BIT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* regmap provides a little-endian formatted addr */
|
|
cp.addr = *(__le32 *)addr;
|
|
cp.len = val_size;
|
|
|
|
bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
|
|
|
|
skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
|
|
HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
err = PTR_ERR(skb);
|
|
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
|
|
le32_to_cpu(cp.addr), err);
|
|
return err;
|
|
}
|
|
|
|
if (skb->len != sizeof(*rp) + val_size) {
|
|
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
|
|
le32_to_cpu(cp.addr));
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
rp = (struct ibt_rp_reg_access *)skb->data;
|
|
|
|
if (rp->addr != cp.addr) {
|
|
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
|
|
le32_to_cpu(rp->addr));
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
memcpy(val, rp->data, val_size);
|
|
|
|
done:
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
|
|
static int regmap_ibt_gather_write(void *context,
|
|
const void *addr, size_t reg_size,
|
|
const void *val, size_t val_size)
|
|
{
|
|
struct regmap_ibt_context *ctx = context;
|
|
struct ibt_cp_reg_access *cp;
|
|
struct sk_buff *skb;
|
|
int plen = sizeof(*cp) + val_size;
|
|
u8 mode;
|
|
int err = 0;
|
|
|
|
if (reg_size != sizeof(__le32))
|
|
return -EINVAL;
|
|
|
|
switch (val_size) {
|
|
case 1:
|
|
mode = IBT_REG_MODE_8BIT;
|
|
break;
|
|
case 2:
|
|
mode = IBT_REG_MODE_16BIT;
|
|
break;
|
|
case 4:
|
|
mode = IBT_REG_MODE_32BIT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
cp = kmalloc(plen, GFP_KERNEL);
|
|
if (!cp)
|
|
return -ENOMEM;
|
|
|
|
/* regmap provides a little-endian formatted addr/value */
|
|
cp->addr = *(__le32 *)addr;
|
|
cp->mode = mode;
|
|
cp->len = val_size;
|
|
memcpy(&cp->data, val, val_size);
|
|
|
|
bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
|
|
|
|
skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
err = PTR_ERR(skb);
|
|
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
|
|
le32_to_cpu(cp->addr), err);
|
|
goto done;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
done:
|
|
kfree(cp);
|
|
return err;
|
|
}
|
|
|
|
static int regmap_ibt_write(void *context, const void *data, size_t count)
|
|
{
|
|
/* data contains register+value, since we only support 32bit addr,
|
|
* minimum data size is 4 bytes.
|
|
*/
|
|
if (WARN_ONCE(count < 4, "Invalid register access"))
|
|
return -EINVAL;
|
|
|
|
return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
|
|
}
|
|
|
|
static void regmap_ibt_free_context(void *context)
|
|
{
|
|
kfree(context);
|
|
}
|
|
|
|
static const struct regmap_bus regmap_ibt = {
|
|
.read = regmap_ibt_read,
|
|
.write = regmap_ibt_write,
|
|
.gather_write = regmap_ibt_gather_write,
|
|
.free_context = regmap_ibt_free_context,
|
|
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
|
|
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
|
|
};
|
|
|
|
/* Config is the same for all register regions */
|
|
static const struct regmap_config regmap_ibt_cfg = {
|
|
.name = "btintel_regmap",
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
};
|
|
|
|
struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
|
|
u16 opcode_write)
|
|
{
|
|
struct regmap_ibt_context *ctx;
|
|
|
|
bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
|
|
opcode_write);
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ctx->op_read = opcode_read;
|
|
ctx->op_write = opcode_write;
|
|
ctx->hdev = hdev;
|
|
|
|
return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_regmap_init);
|
|
|
|
int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
|
|
{
|
|
struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
|
|
struct sk_buff *skb;
|
|
|
|
params.boot_param = cpu_to_le32(boot_param);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms,
|
|
HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Failed to send Intel Reset command");
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
|
|
|
|
int btintel_read_boot_params(struct hci_dev *hdev,
|
|
struct intel_boot_params *params)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
if (skb->len != sizeof(*params)) {
|
|
bt_dev_err(hdev, "Intel boot parameters size mismatch");
|
|
kfree_skb(skb);
|
|
return -EILSEQ;
|
|
}
|
|
|
|
memcpy(params, skb->data, sizeof(*params));
|
|
|
|
kfree_skb(skb);
|
|
|
|
if (params->status) {
|
|
bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
|
|
params->status);
|
|
return -bt_to_errno(params->status);
|
|
}
|
|
|
|
bt_dev_info(hdev, "Device revision is %u",
|
|
le16_to_cpu(params->dev_revid));
|
|
|
|
bt_dev_info(hdev, "Secure boot is %s",
|
|
params->secure_boot ? "enabled" : "disabled");
|
|
|
|
bt_dev_info(hdev, "OTP lock is %s",
|
|
params->otp_lock ? "enabled" : "disabled");
|
|
|
|
bt_dev_info(hdev, "API lock is %s",
|
|
params->api_lock ? "enabled" : "disabled");
|
|
|
|
bt_dev_info(hdev, "Debug lock is %s",
|
|
params->debug_lock ? "enabled" : "disabled");
|
|
|
|
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
|
|
params->min_fw_build_nn, params->min_fw_build_cw,
|
|
2000 + params->min_fw_build_yy);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_read_boot_params);
|
|
|
|
static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
|
|
const struct firmware *fw)
|
|
{
|
|
int err;
|
|
|
|
/* Start the firmware download transaction with the Init fragment
|
|
* represented by the 128 bytes of CSS header.
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
|
|
goto done;
|
|
}
|
|
|
|
/* Send the 256 bytes of public key information from the firmware
|
|
* as the PKey fragment.
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
|
|
goto done;
|
|
}
|
|
|
|
/* Send the 256 bytes of signature information from the firmware
|
|
* as the Sign fragment.
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
return err;
|
|
}
|
|
|
|
static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
|
|
const struct firmware *fw)
|
|
{
|
|
int err;
|
|
|
|
/* Start the firmware download transaction with the Init fragment
|
|
* represented by the 128 bytes of CSS header.
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
|
|
return err;
|
|
}
|
|
|
|
/* Send the 96 bytes of public key information from the firmware
|
|
* as the PKey fragment.
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
|
|
return err;
|
|
}
|
|
|
|
/* Send the 96 bytes of signature information from the firmware
|
|
* as the Sign fragment
|
|
*/
|
|
err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to send firmware signature (%d)",
|
|
err);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_download_firmware_payload(struct hci_dev *hdev,
|
|
const struct firmware *fw,
|
|
size_t offset)
|
|
{
|
|
int err;
|
|
const u8 *fw_ptr;
|
|
u32 frag_len;
|
|
|
|
fw_ptr = fw->data + offset;
|
|
frag_len = 0;
|
|
err = -EINVAL;
|
|
|
|
while (fw_ptr - fw->data < fw->size) {
|
|
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
|
|
|
|
frag_len += sizeof(*cmd) + cmd->plen;
|
|
|
|
/* The parameter length of the secure send command requires
|
|
* a 4 byte alignment. It happens so that the firmware file
|
|
* contains proper Intel_NOP commands to align the fragments
|
|
* as needed.
|
|
*
|
|
* Send set of commands with 4 byte alignment from the
|
|
* firmware data buffer as a single Data fragement.
|
|
*/
|
|
if (!(frag_len % 4)) {
|
|
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev,
|
|
"Failed to send firmware data (%d)",
|
|
err);
|
|
goto done;
|
|
}
|
|
|
|
fw_ptr += frag_len;
|
|
frag_len = 0;
|
|
}
|
|
}
|
|
|
|
done:
|
|
return err;
|
|
}
|
|
|
|
static bool btintel_firmware_version(struct hci_dev *hdev,
|
|
u8 num, u8 ww, u8 yy,
|
|
const struct firmware *fw,
|
|
u32 *boot_addr)
|
|
{
|
|
const u8 *fw_ptr;
|
|
|
|
fw_ptr = fw->data;
|
|
|
|
while (fw_ptr - fw->data < fw->size) {
|
|
struct hci_command_hdr *cmd = (void *)(fw_ptr);
|
|
|
|
/* Each SKU has a different reset parameter to use in the
|
|
* HCI_Intel_Reset command and it is embedded in the firmware
|
|
* data. So, instead of using static value per SKU, check
|
|
* the firmware data and save it for later use.
|
|
*/
|
|
if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
|
|
struct cmd_write_boot_params *params;
|
|
|
|
params = (void *)(fw_ptr + sizeof(*cmd));
|
|
|
|
*boot_addr = le32_to_cpu(params->boot_addr);
|
|
|
|
bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
|
|
|
|
bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
|
|
params->fw_build_num, params->fw_build_ww,
|
|
params->fw_build_yy);
|
|
|
|
return (num == params->fw_build_num &&
|
|
ww == params->fw_build_ww &&
|
|
yy == params->fw_build_yy);
|
|
}
|
|
|
|
fw_ptr += sizeof(*cmd) + cmd->plen;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int btintel_download_firmware(struct hci_dev *hdev,
|
|
struct intel_version *ver,
|
|
const struct firmware *fw,
|
|
u32 *boot_param)
|
|
{
|
|
int err;
|
|
|
|
/* SfP and WsP don't seem to update the firmware version on file
|
|
* so version checking is currently not possible.
|
|
*/
|
|
switch (ver->hw_variant) {
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
/* Skip version checking */
|
|
break;
|
|
default:
|
|
|
|
/* Skip download if firmware has the same version */
|
|
if (btintel_firmware_version(hdev, ver->fw_build_num,
|
|
ver->fw_build_ww, ver->fw_build_yy,
|
|
fw, boot_param)) {
|
|
bt_dev_info(hdev, "Firmware already loaded");
|
|
/* Return -EALREADY to indicate that the firmware has
|
|
* already been loaded.
|
|
*/
|
|
return -EALREADY;
|
|
}
|
|
}
|
|
|
|
/* The firmware variant determines if the device is in bootloader
|
|
* mode or is running operational firmware. The value 0x06 identifies
|
|
* the bootloader and the value 0x23 identifies the operational
|
|
* firmware.
|
|
*
|
|
* If the firmware version has changed that means it needs to be reset
|
|
* to bootloader when operational so the new firmware can be loaded.
|
|
*/
|
|
if (ver->fw_variant == 0x23)
|
|
return -EINVAL;
|
|
|
|
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
|
|
if (err)
|
|
return err;
|
|
|
|
return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_download_firmware);
|
|
|
|
static int btintel_download_fw_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *ver,
|
|
const struct firmware *fw, u32 *boot_param,
|
|
u8 hw_variant, u8 sbe_type)
|
|
{
|
|
int err;
|
|
u32 css_header_ver;
|
|
|
|
/* Skip download if firmware has the same version */
|
|
if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
|
|
ver->min_fw_build_cw,
|
|
ver->min_fw_build_yy,
|
|
fw, boot_param)) {
|
|
bt_dev_info(hdev, "Firmware already loaded");
|
|
/* Return -EALREADY to indicate that firmware has
|
|
* already been loaded.
|
|
*/
|
|
return -EALREADY;
|
|
}
|
|
|
|
/* The firmware variant determines if the device is in bootloader
|
|
* mode or is running operational firmware. The value 0x01 identifies
|
|
* the bootloader and the value 0x03 identifies the operational
|
|
* firmware.
|
|
*
|
|
* If the firmware version has changed that means it needs to be reset
|
|
* to bootloader when operational so the new firmware can be loaded.
|
|
*/
|
|
if (ver->img_type == 0x03)
|
|
return -EINVAL;
|
|
|
|
/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
|
|
* only RSA secure boot engine. Hence, the corresponding sfi file will
|
|
* have RSA header of 644 bytes followed by Command Buffer.
|
|
*
|
|
* iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
|
|
* secure boot engine. As a result, the corresponding sfi file will
|
|
* have RSA header of 644, ECDSA header of 320 bytes followed by
|
|
* Command Buffer.
|
|
*
|
|
* CSS Header byte positions 0x08 to 0x0B represent the CSS Header
|
|
* version: RSA(0x00010000) , ECDSA (0x00020000)
|
|
*/
|
|
css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
|
|
if (css_header_ver != 0x00010000) {
|
|
bt_dev_err(hdev, "Invalid CSS Header version");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hw_variant <= 0x14) {
|
|
if (sbe_type != 0x00) {
|
|
bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
|
|
hw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
|
|
if (err)
|
|
return err;
|
|
|
|
err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
|
|
if (err)
|
|
return err;
|
|
} else if (hw_variant >= 0x17) {
|
|
/* Check if CSS header for ECDSA follows the RSA header */
|
|
if (fw->data[ECDSA_OFFSET] != 0x06)
|
|
return -EINVAL;
|
|
|
|
/* Check if the CSS Header version is ECDSA(0x00020000) */
|
|
css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
|
|
if (css_header_ver != 0x00020000) {
|
|
bt_dev_err(hdev, "Invalid CSS Header version");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sbe_type == 0x00) {
|
|
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
|
|
if (err)
|
|
return err;
|
|
|
|
err = btintel_download_firmware_payload(hdev, fw,
|
|
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
|
|
if (err)
|
|
return err;
|
|
} else if (sbe_type == 0x01) {
|
|
err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
|
|
if (err)
|
|
return err;
|
|
|
|
err = btintel_download_firmware_payload(hdev, fw,
|
|
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_reset_to_bootloader(struct hci_dev *hdev)
|
|
{
|
|
struct intel_reset params;
|
|
struct sk_buff *skb;
|
|
|
|
/* Send Intel Reset command. This will result in
|
|
* re-enumeration of BT controller.
|
|
*
|
|
* Intel Reset parameter description:
|
|
* reset_type : 0x00 (Soft reset),
|
|
* 0x01 (Hard reset)
|
|
* patch_enable : 0x00 (Do not enable),
|
|
* 0x01 (Enable)
|
|
* ddc_reload : 0x00 (Do not reload),
|
|
* 0x01 (Reload)
|
|
* boot_option: 0x00 (Current image),
|
|
* 0x01 (Specified boot address)
|
|
* boot_param: Boot address
|
|
*
|
|
*/
|
|
params.reset_type = 0x01;
|
|
params.patch_enable = 0x01;
|
|
params.ddc_reload = 0x01;
|
|
params.boot_option = 0x00;
|
|
params.boot_param = cpu_to_le32(0x00000000);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
|
|
¶ms, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "FW download error recovery failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return;
|
|
}
|
|
bt_dev_info(hdev, "Intel reset sent to retry FW download");
|
|
kfree_skb(skb);
|
|
|
|
/* Current Intel BT controllers(ThP/JfP) hold the USB reset
|
|
* lines for 2ms when it receives Intel Reset in bootloader mode.
|
|
* Whereas, the upcoming Intel BT controllers will hold USB reset
|
|
* for 150ms. To keep the delay generic, 150ms is chosen here.
|
|
*/
|
|
msleep(150);
|
|
}
|
|
|
|
static int btintel_read_debug_features(struct hci_dev *hdev,
|
|
struct intel_debug_features *features)
|
|
{
|
|
struct sk_buff *skb;
|
|
u8 page_no = 1;
|
|
|
|
/* Intel controller supports two pages, each page is of 128-bit
|
|
* feature bit mask. And each bit defines specific feature support
|
|
*/
|
|
skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
|
|
HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading supported features failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
if (skb->len != (sizeof(features->page1) + 3)) {
|
|
bt_dev_err(hdev, "Supported features event size mismatch");
|
|
kfree_skb(skb);
|
|
return -EILSEQ;
|
|
}
|
|
|
|
memcpy(features->page1, skb->data + 3, sizeof(features->page1));
|
|
|
|
/* Read the supported features page2 if required in future.
|
|
*/
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_set_debug_features(struct hci_dev *hdev,
|
|
const struct intel_debug_features *features)
|
|
{
|
|
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00 };
|
|
u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
|
|
u8 trace_enable = 0x02;
|
|
struct sk_buff *skb;
|
|
|
|
if (!features) {
|
|
bt_dev_warn(hdev, "Debug features not read");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(features->page1[0] & 0x3f)) {
|
|
bt_dev_info(hdev, "Telemetry exception format not supported");
|
|
return 0;
|
|
}
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
|
|
trace_enable, mask[3]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_reset_debug_features(struct hci_dev *hdev,
|
|
const struct intel_debug_features *features)
|
|
{
|
|
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00 };
|
|
u8 trace_enable = 0x00;
|
|
struct sk_buff *skb;
|
|
|
|
if (!features) {
|
|
bt_dev_warn(hdev, "Debug features not read");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(features->page1[0] & 0x3f)) {
|
|
bt_dev_info(hdev, "Telemetry exception format not supported");
|
|
return 0;
|
|
}
|
|
|
|
/* Should stop the trace before writing ddc event mask. */
|
|
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
|
|
trace_enable, mask[3]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
|
|
{
|
|
struct intel_debug_features features;
|
|
int err;
|
|
|
|
bt_dev_dbg(hdev, "enable %d", enable);
|
|
|
|
/* Read the Intel supported features and if new exception formats
|
|
* supported, need to load the additional DDC config to enable.
|
|
*/
|
|
err = btintel_read_debug_features(hdev, &features);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Set or reset the debug features. */
|
|
if (enable)
|
|
err = btintel_set_debug_features(hdev, &features);
|
|
else
|
|
err = btintel_reset_debug_features(hdev, &features);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_set_quality_report);
|
|
|
|
static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
|
|
struct intel_version *ver)
|
|
{
|
|
const struct firmware *fw;
|
|
char fwname[64];
|
|
int ret;
|
|
|
|
snprintf(fwname, sizeof(fwname),
|
|
"intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
|
|
ver->hw_platform, ver->hw_variant, ver->hw_revision,
|
|
ver->fw_variant, ver->fw_revision, ver->fw_build_num,
|
|
ver->fw_build_ww, ver->fw_build_yy);
|
|
|
|
ret = request_firmware(&fw, fwname, &hdev->dev);
|
|
if (ret < 0) {
|
|
if (ret == -EINVAL) {
|
|
bt_dev_err(hdev, "Intel firmware file request failed (%d)",
|
|
ret);
|
|
return NULL;
|
|
}
|
|
|
|
bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
|
|
fwname, ret);
|
|
|
|
/* If the correct firmware patch file is not found, use the
|
|
* default firmware patch file instead
|
|
*/
|
|
snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
|
|
ver->hw_platform, ver->hw_variant);
|
|
if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
|
|
bt_dev_err(hdev, "failed to open default fw file: %s",
|
|
fwname);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
|
|
|
|
return fw;
|
|
}
|
|
|
|
static int btintel_legacy_rom_patching(struct hci_dev *hdev,
|
|
const struct firmware *fw,
|
|
const u8 **fw_ptr, int *disable_patch)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct hci_command_hdr *cmd;
|
|
const u8 *cmd_param;
|
|
struct hci_event_hdr *evt = NULL;
|
|
const u8 *evt_param = NULL;
|
|
int remain = fw->size - (*fw_ptr - fw->data);
|
|
|
|
/* The first byte indicates the types of the patch command or event.
|
|
* 0x01 means HCI command and 0x02 is HCI event. If the first bytes
|
|
* in the current firmware buffer doesn't start with 0x01 or
|
|
* the size of remain buffer is smaller than HCI command header,
|
|
* the firmware file is corrupted and it should stop the patching
|
|
* process.
|
|
*/
|
|
if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
|
|
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
|
|
return -EINVAL;
|
|
}
|
|
(*fw_ptr)++;
|
|
remain--;
|
|
|
|
cmd = (struct hci_command_hdr *)(*fw_ptr);
|
|
*fw_ptr += sizeof(*cmd);
|
|
remain -= sizeof(*cmd);
|
|
|
|
/* Ensure that the remain firmware data is long enough than the length
|
|
* of command parameter. If not, the firmware file is corrupted.
|
|
*/
|
|
if (remain < cmd->plen) {
|
|
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* If there is a command that loads a patch in the firmware
|
|
* file, then enable the patch upon success, otherwise just
|
|
* disable the manufacturer mode, for example patch activation
|
|
* is not required when the default firmware patch file is used
|
|
* because there are no patch data to load.
|
|
*/
|
|
if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
|
|
*disable_patch = 0;
|
|
|
|
cmd_param = *fw_ptr;
|
|
*fw_ptr += cmd->plen;
|
|
remain -= cmd->plen;
|
|
|
|
/* This reads the expected events when the above command is sent to the
|
|
* device. Some vendor commands expects more than one events, for
|
|
* example command status event followed by vendor specific event.
|
|
* For this case, it only keeps the last expected event. so the command
|
|
* can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
|
|
* last expected event.
|
|
*/
|
|
while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
|
|
(*fw_ptr)++;
|
|
remain--;
|
|
|
|
evt = (struct hci_event_hdr *)(*fw_ptr);
|
|
*fw_ptr += sizeof(*evt);
|
|
remain -= sizeof(*evt);
|
|
|
|
if (remain < evt->plen) {
|
|
bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
|
|
return -EFAULT;
|
|
}
|
|
|
|
evt_param = *fw_ptr;
|
|
*fw_ptr += evt->plen;
|
|
remain -= evt->plen;
|
|
}
|
|
|
|
/* Every HCI commands in the firmware file has its correspond event.
|
|
* If event is not found or remain is smaller than zero, the firmware
|
|
* file is corrupted.
|
|
*/
|
|
if (!evt || !evt_param || remain < 0) {
|
|
bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
|
|
return -EFAULT;
|
|
}
|
|
|
|
skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
|
|
cmd_param, evt->evt, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
|
|
cmd->opcode, PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
/* It ensures that the returned event matches the event data read from
|
|
* the firmware file. At fist, it checks the length and then
|
|
* the contents of the event.
|
|
*/
|
|
if (skb->len != evt->plen) {
|
|
bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
|
|
le16_to_cpu(cmd->opcode));
|
|
kfree_skb(skb);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (memcmp(skb->data, evt_param, evt->plen)) {
|
|
bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
|
|
le16_to_cpu(cmd->opcode));
|
|
kfree_skb(skb);
|
|
return -EFAULT;
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_legacy_rom_setup(struct hci_dev *hdev,
|
|
struct intel_version *ver)
|
|
{
|
|
const struct firmware *fw;
|
|
const u8 *fw_ptr;
|
|
int disable_patch, err;
|
|
struct intel_version new_ver;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
/* fw_patch_num indicates the version of patch the device currently
|
|
* have. If there is no patch data in the device, it is always 0x00.
|
|
* So, if it is other than 0x00, no need to patch the device again.
|
|
*/
|
|
if (ver->fw_patch_num) {
|
|
bt_dev_info(hdev,
|
|
"Intel device is already patched. patch num: %02x",
|
|
ver->fw_patch_num);
|
|
goto complete;
|
|
}
|
|
|
|
/* Opens the firmware patch file based on the firmware version read
|
|
* from the controller. If it fails to open the matching firmware
|
|
* patch file, it tries to open the default firmware patch file.
|
|
* If no patch file is found, allow the device to operate without
|
|
* a patch.
|
|
*/
|
|
fw = btintel_legacy_rom_get_fw(hdev, ver);
|
|
if (!fw)
|
|
goto complete;
|
|
fw_ptr = fw->data;
|
|
|
|
/* Enable the manufacturer mode of the controller.
|
|
* Only while this mode is enabled, the driver can download the
|
|
* firmware patch data and configuration parameters.
|
|
*/
|
|
err = btintel_enter_mfg(hdev);
|
|
if (err) {
|
|
release_firmware(fw);
|
|
return err;
|
|
}
|
|
|
|
disable_patch = 1;
|
|
|
|
/* The firmware data file consists of list of Intel specific HCI
|
|
* commands and its expected events. The first byte indicates the
|
|
* type of the message, either HCI command or HCI event.
|
|
*
|
|
* It reads the command and its expected event from the firmware file,
|
|
* and send to the controller. Once __hci_cmd_sync_ev() returns,
|
|
* the returned event is compared with the event read from the firmware
|
|
* file and it will continue until all the messages are downloaded to
|
|
* the controller.
|
|
*
|
|
* Once the firmware patching is completed successfully,
|
|
* the manufacturer mode is disabled with reset and activating the
|
|
* downloaded patch.
|
|
*
|
|
* If the firmware patching fails, the manufacturer mode is
|
|
* disabled with reset and deactivating the patch.
|
|
*
|
|
* If the default patch file is used, no reset is done when disabling
|
|
* the manufacturer.
|
|
*/
|
|
while (fw->size > fw_ptr - fw->data) {
|
|
int ret;
|
|
|
|
ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
|
|
&disable_patch);
|
|
if (ret < 0)
|
|
goto exit_mfg_deactivate;
|
|
}
|
|
|
|
release_firmware(fw);
|
|
|
|
if (disable_patch)
|
|
goto exit_mfg_disable;
|
|
|
|
/* Patching completed successfully and disable the manufacturer mode
|
|
* with reset and activate the downloaded firmware patches.
|
|
*/
|
|
err = btintel_exit_mfg(hdev, true, true);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Need build number for downloaded fw patches in
|
|
* every power-on boot
|
|
*/
|
|
err = btintel_read_version(hdev, &new_ver);
|
|
if (err)
|
|
return err;
|
|
|
|
bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
|
|
new_ver.fw_patch_num);
|
|
|
|
goto complete;
|
|
|
|
exit_mfg_disable:
|
|
/* Disable the manufacturer mode without reset */
|
|
err = btintel_exit_mfg(hdev, false, false);
|
|
if (err)
|
|
return err;
|
|
|
|
bt_dev_info(hdev, "Intel firmware patch completed");
|
|
|
|
goto complete;
|
|
|
|
exit_mfg_deactivate:
|
|
release_firmware(fw);
|
|
|
|
/* Patching failed. Disable the manufacturer mode with reset and
|
|
* deactivate the downloaded firmware patches.
|
|
*/
|
|
err = btintel_exit_mfg(hdev, true, false);
|
|
if (err)
|
|
return err;
|
|
|
|
bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
|
|
|
|
complete:
|
|
/* Set the event mask for Intel specific vendor events. This enables
|
|
* a few extra events that are useful during general operation.
|
|
*/
|
|
btintel_set_event_mask_mfg(hdev, false);
|
|
|
|
btintel_check_bdaddr(hdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
|
|
{
|
|
ktime_t delta, rettime;
|
|
unsigned long long duration;
|
|
int err;
|
|
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
|
|
bt_dev_info(hdev, "Waiting for firmware download to complete");
|
|
|
|
err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
|
|
TASK_INTERRUPTIBLE,
|
|
msecs_to_jiffies(msec));
|
|
if (err == -EINTR) {
|
|
bt_dev_err(hdev, "Firmware loading interrupted");
|
|
return err;
|
|
}
|
|
|
|
if (err) {
|
|
bt_dev_err(hdev, "Firmware loading timeout");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
|
|
bt_dev_err(hdev, "Firmware loading failed");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
rettime = ktime_get();
|
|
delta = ktime_sub(rettime, calltime);
|
|
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
|
|
|
|
bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
|
|
{
|
|
ktime_t delta, rettime;
|
|
unsigned long long duration;
|
|
int err;
|
|
|
|
bt_dev_info(hdev, "Waiting for device to boot");
|
|
|
|
err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
|
|
TASK_INTERRUPTIBLE,
|
|
msecs_to_jiffies(msec));
|
|
if (err == -EINTR) {
|
|
bt_dev_err(hdev, "Device boot interrupted");
|
|
return -EINTR;
|
|
}
|
|
|
|
if (err) {
|
|
bt_dev_err(hdev, "Device boot timeout");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rettime = ktime_get();
|
|
delta = ktime_sub(rettime, calltime);
|
|
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
|
|
|
|
bt_dev_info(hdev, "Device booted in %llu usecs", duration);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
|
|
{
|
|
ktime_t calltime;
|
|
int err;
|
|
|
|
calltime = ktime_get();
|
|
|
|
btintel_set_flag(hdev, INTEL_BOOTING);
|
|
|
|
err = btintel_send_intel_reset(hdev, boot_addr);
|
|
if (err) {
|
|
bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
|
|
btintel_reset_to_bootloader(hdev);
|
|
return err;
|
|
}
|
|
|
|
/* The bootloader will not indicate when the device is ready. This
|
|
* is done by the operational firmware sending bootup notification.
|
|
*
|
|
* Booting into operational firmware should not take longer than
|
|
* 1 second. However if that happens, then just fail the setup
|
|
* since something went wrong.
|
|
*/
|
|
err = btintel_boot_wait(hdev, calltime, 1000);
|
|
if (err == -ETIMEDOUT)
|
|
btintel_reset_to_bootloader(hdev);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int btintel_get_fw_name(struct intel_version *ver,
|
|
struct intel_boot_params *params,
|
|
char *fw_name, size_t len,
|
|
const char *suffix)
|
|
{
|
|
switch (ver->hw_variant) {
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
|
|
le16_to_cpu(ver->hw_variant),
|
|
le16_to_cpu(params->dev_revid),
|
|
suffix);
|
|
break;
|
|
case 0x11: /* JfP */
|
|
case 0x12: /* ThP */
|
|
case 0x13: /* HrP */
|
|
case 0x14: /* CcP */
|
|
snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
|
|
le16_to_cpu(ver->hw_variant),
|
|
le16_to_cpu(ver->hw_revision),
|
|
le16_to_cpu(ver->fw_revision),
|
|
suffix);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_download_fw(struct hci_dev *hdev,
|
|
struct intel_version *ver,
|
|
struct intel_boot_params *params,
|
|
u32 *boot_param)
|
|
{
|
|
const struct firmware *fw;
|
|
char fwname[64];
|
|
int err;
|
|
ktime_t calltime;
|
|
|
|
if (!ver || !params)
|
|
return -EINVAL;
|
|
|
|
/* The firmware variant determines if the device is in bootloader
|
|
* mode or is running operational firmware. The value 0x06 identifies
|
|
* the bootloader and the value 0x23 identifies the operational
|
|
* firmware.
|
|
*
|
|
* When the operational firmware is already present, then only
|
|
* the check for valid Bluetooth device address is needed. This
|
|
* determines if the device will be added as configured or
|
|
* unconfigured controller.
|
|
*
|
|
* It is not possible to use the Secure Boot Parameters in this
|
|
* case since that command is only available in bootloader mode.
|
|
*/
|
|
if (ver->fw_variant == 0x23) {
|
|
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
|
|
btintel_check_bdaddr(hdev);
|
|
|
|
/* SfP and WsP don't seem to update the firmware version on file
|
|
* so version checking is currently possible.
|
|
*/
|
|
switch (ver->hw_variant) {
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
return 0;
|
|
}
|
|
|
|
/* Proceed to download to check if the version matches */
|
|
goto download;
|
|
}
|
|
|
|
/* Read the secure boot parameters to identify the operating
|
|
* details of the bootloader.
|
|
*/
|
|
err = btintel_read_boot_params(hdev, params);
|
|
if (err)
|
|
return err;
|
|
|
|
/* It is required that every single firmware fragment is acknowledged
|
|
* with a command complete event. If the boot parameters indicate
|
|
* that this bootloader does not send them, then abort the setup.
|
|
*/
|
|
if (params->limited_cce != 0x00) {
|
|
bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
|
|
params->limited_cce);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the OTP has no valid Bluetooth device address, then there will
|
|
* also be no valid address for the operational firmware.
|
|
*/
|
|
if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
|
|
bt_dev_info(hdev, "No device address configured");
|
|
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
|
|
}
|
|
|
|
download:
|
|
/* With this Intel bootloader only the hardware variant and device
|
|
* revision information are used to select the right firmware for SfP
|
|
* and WsP.
|
|
*
|
|
* The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
|
|
*
|
|
* Currently the supported hardware variants are:
|
|
* 11 (0x0b) for iBT3.0 (LnP/SfP)
|
|
* 12 (0x0c) for iBT3.5 (WsP)
|
|
*
|
|
* For ThP/JfP and for future SKU's, the FW name varies based on HW
|
|
* variant, HW revision and FW revision, as these are dependent on CNVi
|
|
* and RF Combination.
|
|
*
|
|
* 17 (0x11) for iBT3.5 (JfP)
|
|
* 18 (0x12) for iBT3.5 (ThP)
|
|
*
|
|
* The firmware file name for these will be
|
|
* ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
|
|
*
|
|
*/
|
|
err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
|
|
if (err < 0) {
|
|
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
|
|
/* Firmware has already been loaded */
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
return 0;
|
|
}
|
|
|
|
bt_dev_err(hdev, "Unsupported Intel firmware naming");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
|
|
if (err < 0) {
|
|
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
|
|
/* Firmware has already been loaded */
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
return 0;
|
|
}
|
|
|
|
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
|
|
fwname, err);
|
|
return err;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Found device firmware: %s", fwname);
|
|
|
|
if (fw->size < 644) {
|
|
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
|
|
fw->size);
|
|
err = -EBADF;
|
|
goto done;
|
|
}
|
|
|
|
calltime = ktime_get();
|
|
|
|
btintel_set_flag(hdev, INTEL_DOWNLOADING);
|
|
|
|
/* Start firmware downloading and get boot parameter */
|
|
err = btintel_download_firmware(hdev, ver, fw, boot_param);
|
|
if (err < 0) {
|
|
if (err == -EALREADY) {
|
|
/* Firmware has already been loaded */
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
err = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* When FW download fails, send Intel Reset to retry
|
|
* FW download.
|
|
*/
|
|
btintel_reset_to_bootloader(hdev);
|
|
goto done;
|
|
}
|
|
|
|
/* Before switching the device into operational mode and with that
|
|
* booting the loaded firmware, wait for the bootloader notification
|
|
* that all fragments have been successfully received.
|
|
*
|
|
* When the event processing receives the notification, then the
|
|
* INTEL_DOWNLOADING flag will be cleared.
|
|
*
|
|
* The firmware loading should not take longer than 5 seconds
|
|
* and thus just timeout if that happens and fail the setup
|
|
* of this device.
|
|
*/
|
|
err = btintel_download_wait(hdev, calltime, 5000);
|
|
if (err == -ETIMEDOUT)
|
|
btintel_reset_to_bootloader(hdev);
|
|
|
|
done:
|
|
release_firmware(fw);
|
|
return err;
|
|
}
|
|
|
|
static int btintel_bootloader_setup(struct hci_dev *hdev,
|
|
struct intel_version *ver)
|
|
{
|
|
struct intel_version new_ver;
|
|
struct intel_boot_params params;
|
|
u32 boot_param;
|
|
char ddcname[64];
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
/* Set the default boot parameter to 0x0 and it is updated to
|
|
* SKU specific boot parameter after reading Intel_Write_Boot_Params
|
|
* command while downloading the firmware.
|
|
*/
|
|
boot_param = 0x00000000;
|
|
|
|
btintel_set_flag(hdev, INTEL_BOOTLOADER);
|
|
|
|
err = btintel_download_fw(hdev, ver, ¶ms, &boot_param);
|
|
if (err)
|
|
return err;
|
|
|
|
/* controller is already having an operational firmware */
|
|
if (ver->fw_variant == 0x23)
|
|
goto finish;
|
|
|
|
err = btintel_boot(hdev, boot_param);
|
|
if (err)
|
|
return err;
|
|
|
|
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
|
|
|
|
err = btintel_get_fw_name(ver, ¶ms, ddcname,
|
|
sizeof(ddcname), "ddc");
|
|
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Unsupported Intel firmware naming");
|
|
} else {
|
|
/* Once the device is running in operational mode, it needs to
|
|
* apply the device configuration (DDC) parameters.
|
|
*
|
|
* The device can work without DDC parameters, so even if it
|
|
* fails to load the file, no need to fail the setup.
|
|
*/
|
|
btintel_load_ddc_config(hdev, ddcname);
|
|
}
|
|
|
|
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
|
|
|
|
/* Read the Intel version information after loading the FW */
|
|
err = btintel_read_version(hdev, &new_ver);
|
|
if (err)
|
|
return err;
|
|
|
|
btintel_version_info(hdev, &new_ver);
|
|
|
|
finish:
|
|
/* Set the event mask for Intel specific vendor events. This enables
|
|
* a few extra events that are useful during general operation. It
|
|
* does not enable any debugging related events.
|
|
*
|
|
* The device will function correctly without these events enabled
|
|
* and thus no need to fail the setup.
|
|
*/
|
|
btintel_set_event_mask(hdev, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
|
|
char *fw_name, size_t len,
|
|
const char *suffix)
|
|
{
|
|
/* The firmware file name for new generation controllers will be
|
|
* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
|
|
*/
|
|
snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s",
|
|
INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
|
|
INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
|
|
INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
|
|
INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
|
|
suffix);
|
|
}
|
|
|
|
static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *ver,
|
|
u32 *boot_param)
|
|
{
|
|
const struct firmware *fw;
|
|
char fwname[64];
|
|
int err;
|
|
ktime_t calltime;
|
|
|
|
if (!ver || !boot_param)
|
|
return -EINVAL;
|
|
|
|
/* The firmware variant determines if the device is in bootloader
|
|
* mode or is running operational firmware. The value 0x03 identifies
|
|
* the bootloader and the value 0x23 identifies the operational
|
|
* firmware.
|
|
*
|
|
* When the operational firmware is already present, then only
|
|
* the check for valid Bluetooth device address is needed. This
|
|
* determines if the device will be added as configured or
|
|
* unconfigured controller.
|
|
*
|
|
* It is not possible to use the Secure Boot Parameters in this
|
|
* case since that command is only available in bootloader mode.
|
|
*/
|
|
if (ver->img_type == 0x03) {
|
|
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
|
|
btintel_check_bdaddr(hdev);
|
|
} else {
|
|
/*
|
|
* Check for valid bd address in boot loader mode. Device
|
|
* will be marked as unconfigured if empty bd address is
|
|
* found.
|
|
*/
|
|
if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
|
|
bt_dev_info(hdev, "No device address configured");
|
|
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
|
|
}
|
|
}
|
|
|
|
btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
|
|
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
|
|
if (err < 0) {
|
|
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
|
|
/* Firmware has already been loaded */
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
return 0;
|
|
}
|
|
|
|
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
|
|
fwname, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Found device firmware: %s", fwname);
|
|
|
|
if (fw->size < 644) {
|
|
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
|
|
fw->size);
|
|
err = -EBADF;
|
|
goto done;
|
|
}
|
|
|
|
calltime = ktime_get();
|
|
|
|
btintel_set_flag(hdev, INTEL_DOWNLOADING);
|
|
|
|
/* Start firmware downloading and get boot parameter */
|
|
err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
|
|
INTEL_HW_VARIANT(ver->cnvi_bt),
|
|
ver->sbe_type);
|
|
if (err < 0) {
|
|
if (err == -EALREADY) {
|
|
/* Firmware has already been loaded */
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
|
|
err = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* When FW download fails, send Intel Reset to retry
|
|
* FW download.
|
|
*/
|
|
btintel_reset_to_bootloader(hdev);
|
|
goto done;
|
|
}
|
|
|
|
/* Before switching the device into operational mode and with that
|
|
* booting the loaded firmware, wait for the bootloader notification
|
|
* that all fragments have been successfully received.
|
|
*
|
|
* When the event processing receives the notification, then the
|
|
* BTUSB_DOWNLOADING flag will be cleared.
|
|
*
|
|
* The firmware loading should not take longer than 5 seconds
|
|
* and thus just timeout if that happens and fail the setup
|
|
* of this device.
|
|
*/
|
|
err = btintel_download_wait(hdev, calltime, 5000);
|
|
if (err == -ETIMEDOUT)
|
|
btintel_reset_to_bootloader(hdev);
|
|
|
|
done:
|
|
release_firmware(fw);
|
|
return err;
|
|
}
|
|
|
|
static int btintel_get_codec_config_data(struct hci_dev *hdev,
|
|
__u8 link, struct bt_codec *codec,
|
|
__u8 *ven_len, __u8 **ven_data)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!ven_data || !ven_len)
|
|
return -EINVAL;
|
|
|
|
*ven_len = 0;
|
|
*ven_data = NULL;
|
|
|
|
if (link != ESCO_LINK) {
|
|
bt_dev_err(hdev, "Invalid link type(%u)", link);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
|
|
if (!*ven_data) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
/* supports only CVSD and mSBC offload codecs */
|
|
switch (codec->id) {
|
|
case 0x02:
|
|
**ven_data = 0x00;
|
|
break;
|
|
case 0x05:
|
|
**ven_data = 0x01;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
|
|
goto error;
|
|
}
|
|
/* codec and its capabilities are pre-defined to ids
|
|
* preset id = 0x00 represents CVSD codec with sampling rate 8K
|
|
* preset id = 0x01 represents mSBC codec with sampling rate 16K
|
|
*/
|
|
*ven_len = sizeof(__u8);
|
|
return err;
|
|
|
|
error:
|
|
kfree(*ven_data);
|
|
*ven_data = NULL;
|
|
return err;
|
|
}
|
|
|
|
static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
|
|
{
|
|
/* Intel uses 1 as data path id for all the usecases */
|
|
*data_path_id = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int btintel_configure_offload(struct hci_dev *hdev)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
struct intel_offload_use_cases *use_cases;
|
|
|
|
skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
if (skb->len < sizeof(*use_cases)) {
|
|
err = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
use_cases = (void *)skb->data;
|
|
|
|
if (use_cases->status) {
|
|
err = -bt_to_errno(skb->data[0]);
|
|
goto error;
|
|
}
|
|
|
|
if (use_cases->preset[0] & 0x03) {
|
|
hdev->get_data_path_id = btintel_get_data_path_id;
|
|
hdev->get_codec_config_data = btintel_get_codec_config_data;
|
|
}
|
|
error:
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
|
|
static int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
|
|
struct intel_version_tlv *ver)
|
|
{
|
|
u32 boot_param;
|
|
char ddcname[64];
|
|
int err;
|
|
struct intel_version_tlv new_ver;
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
/* Set the default boot parameter to 0x0 and it is updated to
|
|
* SKU specific boot parameter after reading Intel_Write_Boot_Params
|
|
* command while downloading the firmware.
|
|
*/
|
|
boot_param = 0x00000000;
|
|
|
|
btintel_set_flag(hdev, INTEL_BOOTLOADER);
|
|
|
|
err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check if controller is already having an operational firmware */
|
|
if (ver->img_type == 0x03)
|
|
goto finish;
|
|
|
|
err = btintel_boot(hdev, boot_param);
|
|
if (err)
|
|
return err;
|
|
|
|
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
|
|
|
|
btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
|
|
/* Once the device is running in operational mode, it needs to
|
|
* apply the device configuration (DDC) parameters.
|
|
*
|
|
* The device can work without DDC parameters, so even if it
|
|
* fails to load the file, no need to fail the setup.
|
|
*/
|
|
btintel_load_ddc_config(hdev, ddcname);
|
|
|
|
/* Read supported use cases and set callbacks to fetch datapath id */
|
|
btintel_configure_offload(hdev);
|
|
|
|
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
|
|
|
|
/* Read the Intel version information after loading the FW */
|
|
err = btintel_read_version_tlv(hdev, &new_ver);
|
|
if (err)
|
|
return err;
|
|
|
|
btintel_version_info_tlv(hdev, &new_ver);
|
|
|
|
finish:
|
|
/* Set the event mask for Intel specific vendor events. This enables
|
|
* a few extra events that are useful during general operation. It
|
|
* does not enable any debugging related events.
|
|
*
|
|
* The device will function correctly without these events enabled
|
|
* and thus no need to fail the setup.
|
|
*/
|
|
btintel_set_event_mask(hdev, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
|
|
{
|
|
switch (hw_variant) {
|
|
/* Legacy bootloader devices that supports MSFT Extension */
|
|
case 0x11: /* JfP */
|
|
case 0x12: /* ThP */
|
|
case 0x13: /* HrP */
|
|
case 0x14: /* CcP */
|
|
/* All Intel new genration controllers support the Microsoft vendor
|
|
* extension are using 0xFC1E for VsMsftOpCode.
|
|
*/
|
|
case 0x17:
|
|
case 0x18:
|
|
case 0x19:
|
|
case 0x1b:
|
|
hci_set_msft_opcode(hdev, 0xFC1E);
|
|
break;
|
|
default:
|
|
/* Not supported */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int btintel_setup_combined(struct hci_dev *hdev)
|
|
{
|
|
const u8 param[1] = { 0xFF };
|
|
struct intel_version ver;
|
|
struct intel_version_tlv ver_tlv;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
/* The some controllers have a bug with the first HCI command sent to it
|
|
* returning number of completed commands as zero. This would stall the
|
|
* command processing in the Bluetooth core.
|
|
*
|
|
* As a workaround, send HCI Reset command first which will reset the
|
|
* number of completed commands and allow normal command processing
|
|
* from now on.
|
|
*
|
|
* Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
|
|
* in the SW_RFKILL ON state as a workaround of fixing LED issue during
|
|
* the shutdown() procedure, and once the device is in SW_RFKILL ON
|
|
* state, the only way to exit out of it is sending the HCI_Reset
|
|
* command.
|
|
*/
|
|
if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
|
|
btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
|
|
HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev,
|
|
"sending initial HCI reset failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/* Starting from TyP device, the command parameter and response are
|
|
* changed even though the OCF for HCI_Intel_Read_Version command
|
|
* remains same. The legacy devices can handle even if the
|
|
* command has a parameter and returns a correct version information.
|
|
* So, it uses new format to support both legacy and new format.
|
|
*/
|
|
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
|
|
/* Check the status */
|
|
if (skb->data[0]) {
|
|
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
|
|
skb->data[0]);
|
|
err = -EIO;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Apply the common HCI quirks for Intel device */
|
|
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
|
|
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
|
|
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
|
|
|
|
/* Set up the quality report callback for Intel devices */
|
|
hdev->set_quality_report = btintel_set_quality_report;
|
|
|
|
/* For Legacy device, check the HW platform value and size */
|
|
if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
|
|
bt_dev_dbg(hdev, "Read the legacy Intel version information");
|
|
|
|
memcpy(&ver, skb->data, sizeof(ver));
|
|
|
|
/* Display version information */
|
|
btintel_version_info(hdev, &ver);
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come
|
|
* along.
|
|
*/
|
|
switch (ver.hw_variant) {
|
|
case 0x07: /* WP */
|
|
case 0x08: /* StP */
|
|
/* Legacy ROM product */
|
|
btintel_set_flag(hdev, INTEL_ROM_LEGACY);
|
|
|
|
/* Apply the device specific HCI quirks
|
|
*
|
|
* WBS for SdP - For the Legacy ROM products, only SdP
|
|
* supports the WBS. But the version information is not
|
|
* enough to use here because the StP2 and SdP have same
|
|
* hw_variant and fw_variant. So, this flag is set by
|
|
* the transport driver (btusb) based on the HW info
|
|
* (idProduct)
|
|
*/
|
|
if (!btintel_test_flag(hdev,
|
|
INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
|
|
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
|
|
&hdev->quirks);
|
|
if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
|
|
set_bit(HCI_QUIRK_VALID_LE_STATES,
|
|
&hdev->quirks);
|
|
|
|
err = btintel_legacy_rom_setup(hdev, &ver);
|
|
break;
|
|
case 0x0b: /* SfP */
|
|
case 0x11: /* JfP */
|
|
case 0x12: /* ThP */
|
|
case 0x13: /* HrP */
|
|
case 0x14: /* CcP */
|
|
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
|
|
fallthrough;
|
|
case 0x0c: /* WsP */
|
|
/* Apply the device specific HCI quirks
|
|
*
|
|
* All Legacy bootloader devices support WBS
|
|
*/
|
|
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
|
|
&hdev->quirks);
|
|
|
|
/* Setup MSFT Extension support */
|
|
btintel_set_msft_opcode(hdev, ver.hw_variant);
|
|
|
|
err = btintel_bootloader_setup(hdev, &ver);
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
|
|
ver.hw_variant);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
goto exit_error;
|
|
}
|
|
|
|
/* memset ver_tlv to start with clean state as few fields are exclusive
|
|
* to bootloader mode and are not populated in operational mode
|
|
*/
|
|
memset(&ver_tlv, 0, sizeof(ver_tlv));
|
|
/* For TLV type device, parse the tlv data */
|
|
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
|
|
if (err) {
|
|
bt_dev_err(hdev, "Failed to parse TLV version information");
|
|
goto exit_error;
|
|
}
|
|
|
|
if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
|
|
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
|
|
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
|
|
err = -EINVAL;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come
|
|
* along.
|
|
*/
|
|
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
|
|
case 0x11: /* JfP */
|
|
case 0x12: /* ThP */
|
|
case 0x13: /* HrP */
|
|
case 0x14: /* CcP */
|
|
/* Some legacy bootloader devices starting from JfP,
|
|
* the operational firmware supports both old and TLV based
|
|
* HCI_Intel_Read_Version command based on the command
|
|
* parameter.
|
|
*
|
|
* For upgrading firmware case, the TLV based version cannot
|
|
* be used because the firmware filename for legacy bootloader
|
|
* is based on the old format.
|
|
*
|
|
* Also, it is not easy to convert TLV based version from the
|
|
* legacy version format.
|
|
*
|
|
* So, as a workaround for those devices, use the legacy
|
|
* HCI_Intel_Read_Version to get the version information and
|
|
* run the legacy bootloader setup.
|
|
*/
|
|
err = btintel_read_version(hdev, &ver);
|
|
if (err)
|
|
break;
|
|
|
|
/* Apply the device specific HCI quirks
|
|
*
|
|
* All Legacy bootloader devices support WBS
|
|
*/
|
|
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
|
|
|
|
/* Set Valid LE States quirk */
|
|
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
|
|
|
|
/* Setup MSFT Extension support */
|
|
btintel_set_msft_opcode(hdev, ver.hw_variant);
|
|
|
|
err = btintel_bootloader_setup(hdev, &ver);
|
|
break;
|
|
case 0x17:
|
|
case 0x18:
|
|
case 0x19:
|
|
case 0x1b:
|
|
/* Display version information of TLV type */
|
|
btintel_version_info_tlv(hdev, &ver_tlv);
|
|
|
|
/* Apply the device specific HCI quirks for TLV based devices
|
|
*
|
|
* All TLV based devices support WBS
|
|
*/
|
|
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
|
|
|
|
/* Apply LE States quirk from solar onwards */
|
|
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
|
|
|
|
/* Setup MSFT Extension support */
|
|
btintel_set_msft_opcode(hdev,
|
|
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
|
|
|
|
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
|
|
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
exit_error:
|
|
kfree_skb(skb);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int btintel_shutdown_combined(struct hci_dev *hdev)
|
|
{
|
|
struct sk_buff *skb;
|
|
int ret;
|
|
|
|
/* Send HCI Reset to the controller to stop any BT activity which
|
|
* were triggered. This will help to save power and maintain the
|
|
* sync b/w Host and controller
|
|
*/
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "HCI reset during shutdown failed");
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
|
|
/* Some platforms have an issue with BT LED when the interface is
|
|
* down or BT radio is turned off, which takes 5 seconds to BT LED
|
|
* goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
|
|
* device in the RFKILL ON state which turns off the BT LED immediately.
|
|
*/
|
|
if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
|
|
skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
ret = PTR_ERR(skb);
|
|
bt_dev_err(hdev, "turning off Intel device LED failed");
|
|
return ret;
|
|
}
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btintel_configure_setup(struct hci_dev *hdev)
|
|
{
|
|
hdev->manufacturer = 2;
|
|
hdev->setup = btintel_setup_combined;
|
|
hdev->shutdown = btintel_shutdown_combined;
|
|
hdev->hw_error = btintel_hw_error;
|
|
hdev->set_diag = btintel_set_diag_combined;
|
|
hdev->set_bdaddr = btintel_set_bdaddr;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_configure_setup);
|
|
|
|
void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
|
|
{
|
|
const struct intel_bootup *evt = ptr;
|
|
|
|
if (len != sizeof(*evt))
|
|
return;
|
|
|
|
if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
|
|
btintel_wake_up_flag(hdev, INTEL_BOOTING);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_bootup);
|
|
|
|
void btintel_secure_send_result(struct hci_dev *hdev,
|
|
const void *ptr, unsigned int len)
|
|
{
|
|
const struct intel_secure_send_result *evt = ptr;
|
|
|
|
if (len != sizeof(*evt))
|
|
return;
|
|
|
|
if (evt->result)
|
|
btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
|
|
|
|
if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
|
|
btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
|
|
btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btintel_secure_send_result);
|
|
|
|
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
|
|
MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
|
|
MODULE_VERSION(VERSION);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_FIRMWARE("intel/ibt-11-5.sfi");
|
|
MODULE_FIRMWARE("intel/ibt-11-5.ddc");
|
|
MODULE_FIRMWARE("intel/ibt-12-16.sfi");
|
|
MODULE_FIRMWARE("intel/ibt-12-16.ddc");
|