1257 lines
34 KiB
C
1257 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* AMD SVM support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "SVM: " fmt
|
|
|
|
#include <linux/kvm_types.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/irq_remapping.h>
|
|
|
|
#include "trace.h"
|
|
#include "lapic.h"
|
|
#include "x86.h"
|
|
#include "irq.h"
|
|
#include "svm.h"
|
|
|
|
/*
|
|
* Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
|
|
* into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
|
|
* if an interrupt can't be delivered, e.g. because the vCPU isn't running.
|
|
*
|
|
* For the vCPU ID, use however many bits are currently allowed for the max
|
|
* guest physical APIC ID (limited by the size of the physical ID table), and
|
|
* use whatever bits remain to assign arbitrary AVIC IDs to VMs. Note, the
|
|
* size of the GATag is defined by hardware (32 bits), but is an opaque value
|
|
* as far as hardware is concerned.
|
|
*/
|
|
#define AVIC_VCPU_ID_MASK AVIC_PHYSICAL_MAX_INDEX_MASK
|
|
|
|
#define AVIC_VM_ID_SHIFT HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
|
|
#define AVIC_VM_ID_MASK (GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
|
|
|
|
#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
|
|
(y & AVIC_VCPU_ID_MASK))
|
|
#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
|
|
#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
|
|
|
|
static_assert(AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
|
|
|
|
static bool force_avic;
|
|
module_param_unsafe(force_avic, bool, 0444);
|
|
|
|
/* Note:
|
|
* This hash table is used to map VM_ID to a struct kvm_svm,
|
|
* when handling AMD IOMMU GALOG notification to schedule in
|
|
* a particular vCPU.
|
|
*/
|
|
#define SVM_VM_DATA_HASH_BITS 8
|
|
static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
|
|
static u32 next_vm_id = 0;
|
|
static bool next_vm_id_wrapped = 0;
|
|
static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
|
|
enum avic_modes avic_mode;
|
|
|
|
/*
|
|
* This is a wrapper of struct amd_iommu_ir_data.
|
|
*/
|
|
struct amd_svm_iommu_ir {
|
|
struct list_head node; /* Used by SVM for per-vcpu ir_list */
|
|
void *data; /* Storing pointer to struct amd_ir_data */
|
|
};
|
|
|
|
static void avic_activate_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
|
|
vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
|
|
vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
|
|
|
|
vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
|
|
|
|
/* Note:
|
|
* KVM can support hybrid-AVIC mode, where KVM emulates x2APIC
|
|
* MSR accesses, while interrupt injection to a running vCPU
|
|
* can be achieved using AVIC doorbell. The AVIC hardware still
|
|
* accelerate MMIO accesses, but this does not cause any harm
|
|
* as the guest is not supposed to access xAPIC mmio when uses x2APIC.
|
|
*/
|
|
if (apic_x2apic_mode(svm->vcpu.arch.apic) &&
|
|
avic_mode == AVIC_MODE_X2) {
|
|
vmcb->control.int_ctl |= X2APIC_MODE_MASK;
|
|
vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
|
|
/* Disabling MSR intercept for x2APIC registers */
|
|
svm_set_x2apic_msr_interception(svm, false);
|
|
} else {
|
|
/*
|
|
* Flush the TLB, the guest may have inserted a non-APIC
|
|
* mapping into the TLB while AVIC was disabled.
|
|
*/
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
|
|
|
|
/* For xAVIC and hybrid-xAVIC modes */
|
|
vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
|
|
/* Enabling MSR intercept for x2APIC registers */
|
|
svm_set_x2apic_msr_interception(svm, true);
|
|
}
|
|
}
|
|
|
|
static void avic_deactivate_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
|
|
vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
|
|
vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
|
|
|
|
/*
|
|
* If running nested and the guest uses its own MSR bitmap, there
|
|
* is no need to update L0's msr bitmap
|
|
*/
|
|
if (is_guest_mode(&svm->vcpu) &&
|
|
vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
|
|
return;
|
|
|
|
/* Enabling MSR intercept for x2APIC registers */
|
|
svm_set_x2apic_msr_interception(svm, true);
|
|
}
|
|
|
|
/* Note:
|
|
* This function is called from IOMMU driver to notify
|
|
* SVM to schedule in a particular vCPU of a particular VM.
|
|
*/
|
|
int avic_ga_log_notifier(u32 ga_tag)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_svm *kvm_svm;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
|
|
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
|
|
|
|
pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
|
|
trace_kvm_avic_ga_log(vm_id, vcpu_id);
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
|
|
if (kvm_svm->avic_vm_id != vm_id)
|
|
continue;
|
|
vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
|
|
/* Note:
|
|
* At this point, the IOMMU should have already set the pending
|
|
* bit in the vAPIC backing page. So, we just need to schedule
|
|
* in the vcpu.
|
|
*/
|
|
if (vcpu)
|
|
kvm_vcpu_wake_up(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void avic_vm_destroy(struct kvm *kvm)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
|
|
|
|
if (!enable_apicv)
|
|
return;
|
|
|
|
if (kvm_svm->avic_logical_id_table_page)
|
|
__free_page(kvm_svm->avic_logical_id_table_page);
|
|
if (kvm_svm->avic_physical_id_table_page)
|
|
__free_page(kvm_svm->avic_physical_id_table_page);
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
hash_del(&kvm_svm->hnode);
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
}
|
|
|
|
int avic_vm_init(struct kvm *kvm)
|
|
{
|
|
unsigned long flags;
|
|
int err = -ENOMEM;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
|
|
struct kvm_svm *k2;
|
|
struct page *p_page;
|
|
struct page *l_page;
|
|
u32 vm_id;
|
|
|
|
if (!enable_apicv)
|
|
return 0;
|
|
|
|
/* Allocating physical APIC ID table (4KB) */
|
|
p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!p_page)
|
|
goto free_avic;
|
|
|
|
kvm_svm->avic_physical_id_table_page = p_page;
|
|
|
|
/* Allocating logical APIC ID table (4KB) */
|
|
l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!l_page)
|
|
goto free_avic;
|
|
|
|
kvm_svm->avic_logical_id_table_page = l_page;
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
again:
|
|
vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
|
|
if (vm_id == 0) { /* id is 1-based, zero is not okay */
|
|
next_vm_id_wrapped = 1;
|
|
goto again;
|
|
}
|
|
/* Is it still in use? Only possible if wrapped at least once */
|
|
if (next_vm_id_wrapped) {
|
|
hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
|
|
if (k2->avic_vm_id == vm_id)
|
|
goto again;
|
|
}
|
|
}
|
|
kvm_svm->avic_vm_id = vm_id;
|
|
hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
|
|
return 0;
|
|
|
|
free_avic:
|
|
avic_vm_destroy(kvm);
|
|
return err;
|
|
}
|
|
|
|
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
|
|
{
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
|
|
phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
|
|
phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
|
|
phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
|
|
|
|
vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
|
|
|
|
if (kvm_apicv_activated(svm->vcpu.kvm))
|
|
avic_activate_vmcb(svm);
|
|
else
|
|
avic_deactivate_vmcb(svm);
|
|
}
|
|
|
|
static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
|
|
unsigned int index)
|
|
{
|
|
u64 *avic_physical_id_table;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
|
|
|
|
if ((avic_mode == AVIC_MODE_X1 && index > AVIC_MAX_PHYSICAL_ID) ||
|
|
(avic_mode == AVIC_MODE_X2 && index > X2AVIC_MAX_PHYSICAL_ID))
|
|
return NULL;
|
|
|
|
avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
|
|
|
|
return &avic_physical_id_table[index];
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* AVIC hardware walks the nested page table to check permissions,
|
|
* but does not use the SPA address specified in the leaf page
|
|
* table entry since it uses address in the AVIC_BACKING_PAGE pointer
|
|
* field of the VMCB. Therefore, we set up the
|
|
* APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
|
|
*/
|
|
static int avic_alloc_access_page(struct kvm *kvm)
|
|
{
|
|
void __user *ret;
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
if (kvm->arch.apic_access_memslot_enabled)
|
|
goto out;
|
|
|
|
ret = __x86_set_memory_region(kvm,
|
|
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
|
|
APIC_DEFAULT_PHYS_BASE,
|
|
PAGE_SIZE);
|
|
if (IS_ERR(ret)) {
|
|
r = PTR_ERR(ret);
|
|
goto out;
|
|
}
|
|
|
|
kvm->arch.apic_access_memslot_enabled = true;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static int avic_init_backing_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 *entry, new_entry;
|
|
int id = vcpu->vcpu_id;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if ((avic_mode == AVIC_MODE_X1 && id > AVIC_MAX_PHYSICAL_ID) ||
|
|
(avic_mode == AVIC_MODE_X2 && id > X2AVIC_MAX_PHYSICAL_ID))
|
|
return -EINVAL;
|
|
|
|
if (!vcpu->arch.apic->regs)
|
|
return -EINVAL;
|
|
|
|
if (kvm_apicv_activated(vcpu->kvm)) {
|
|
int ret;
|
|
|
|
ret = avic_alloc_access_page(vcpu->kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
|
|
|
|
/* Setting AVIC backing page address in the phy APIC ID table */
|
|
entry = avic_get_physical_id_entry(vcpu, id);
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
|
|
AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
|
|
AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
|
|
WRITE_ONCE(*entry, new_entry);
|
|
|
|
svm->avic_physical_id_cache = entry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void avic_ring_doorbell(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Note, the vCPU could get migrated to a different pCPU at any point,
|
|
* which could result in signalling the wrong/previous pCPU. But if
|
|
* that happens the vCPU is guaranteed to do a VMRUN (after being
|
|
* migrated) and thus will process pending interrupts, i.e. a doorbell
|
|
* is not needed (and the spurious one is harmless).
|
|
*/
|
|
int cpu = READ_ONCE(vcpu->cpu);
|
|
|
|
if (cpu != get_cpu()) {
|
|
wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
|
|
trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
|
|
}
|
|
put_cpu();
|
|
}
|
|
|
|
/*
|
|
* A fast-path version of avic_kick_target_vcpus(), which attempts to match
|
|
* destination APIC ID to vCPU without looping through all vCPUs.
|
|
*/
|
|
static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
|
|
u32 icrl, u32 icrh, u32 index)
|
|
{
|
|
u32 l1_physical_id, dest;
|
|
struct kvm_vcpu *target_vcpu;
|
|
int dest_mode = icrl & APIC_DEST_MASK;
|
|
int shorthand = icrl & APIC_SHORT_MASK;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
|
|
|
|
if (shorthand != APIC_DEST_NOSHORT)
|
|
return -EINVAL;
|
|
|
|
if (apic_x2apic_mode(source))
|
|
dest = icrh;
|
|
else
|
|
dest = GET_XAPIC_DEST_FIELD(icrh);
|
|
|
|
if (dest_mode == APIC_DEST_PHYSICAL) {
|
|
/* broadcast destination, use slow path */
|
|
if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
|
|
return -EINVAL;
|
|
if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
|
|
return -EINVAL;
|
|
|
|
l1_physical_id = dest;
|
|
|
|
if (WARN_ON_ONCE(l1_physical_id != index))
|
|
return -EINVAL;
|
|
|
|
} else {
|
|
u32 bitmap, cluster;
|
|
int logid_index;
|
|
|
|
if (apic_x2apic_mode(source)) {
|
|
/* 16 bit dest mask, 16 bit cluster id */
|
|
bitmap = dest & 0xFFFF0000;
|
|
cluster = (dest >> 16) << 4;
|
|
} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
|
|
/* 8 bit dest mask*/
|
|
bitmap = dest;
|
|
cluster = 0;
|
|
} else {
|
|
/* 4 bit desk mask, 4 bit cluster id */
|
|
bitmap = dest & 0xF;
|
|
cluster = (dest >> 4) << 2;
|
|
}
|
|
|
|
if (unlikely(!bitmap))
|
|
/* guest bug: nobody to send the logical interrupt to */
|
|
return 0;
|
|
|
|
if (!is_power_of_2(bitmap))
|
|
/* multiple logical destinations, use slow path */
|
|
return -EINVAL;
|
|
|
|
logid_index = cluster + __ffs(bitmap);
|
|
|
|
if (!apic_x2apic_mode(source)) {
|
|
u32 *avic_logical_id_table =
|
|
page_address(kvm_svm->avic_logical_id_table_page);
|
|
|
|
u32 logid_entry = avic_logical_id_table[logid_index];
|
|
|
|
if (WARN_ON_ONCE(index != logid_index))
|
|
return -EINVAL;
|
|
|
|
/* guest bug: non existing/reserved logical destination */
|
|
if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
|
|
return 0;
|
|
|
|
l1_physical_id = logid_entry &
|
|
AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
|
|
} else {
|
|
/*
|
|
* For x2APIC logical mode, cannot leverage the index.
|
|
* Instead, calculate physical ID from logical ID in ICRH.
|
|
*/
|
|
int cluster = (icrh & 0xffff0000) >> 16;
|
|
int apic = ffs(icrh & 0xffff) - 1;
|
|
|
|
/*
|
|
* If the x2APIC logical ID sub-field (i.e. icrh[15:0])
|
|
* contains anything but a single bit, we cannot use the
|
|
* fast path, because it is limited to a single vCPU.
|
|
*/
|
|
if (apic < 0 || icrh != (1 << apic))
|
|
return -EINVAL;
|
|
|
|
l1_physical_id = (cluster << 4) + apic;
|
|
}
|
|
}
|
|
|
|
target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id);
|
|
if (unlikely(!target_vcpu))
|
|
/* guest bug: non existing vCPU is a target of this IPI*/
|
|
return 0;
|
|
|
|
target_vcpu->arch.apic->irr_pending = true;
|
|
svm_complete_interrupt_delivery(target_vcpu,
|
|
icrl & APIC_MODE_MASK,
|
|
icrl & APIC_INT_LEVELTRIG,
|
|
icrl & APIC_VECTOR_MASK);
|
|
return 0;
|
|
}
|
|
|
|
static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
|
|
u32 icrl, u32 icrh, u32 index)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
|
|
return;
|
|
|
|
trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
|
|
|
|
/*
|
|
* Wake any target vCPUs that are blocking, i.e. waiting for a wake
|
|
* event. There's no need to signal doorbells, as hardware has handled
|
|
* vCPUs that were in guest at the time of the IPI, and vCPUs that have
|
|
* since entered the guest will have processed pending IRQs at VMRUN.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
u32 dest;
|
|
|
|
if (apic_x2apic_mode(vcpu->arch.apic))
|
|
dest = icrh;
|
|
else
|
|
dest = GET_XAPIC_DEST_FIELD(icrh);
|
|
|
|
if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
|
|
dest, icrl & APIC_DEST_MASK)) {
|
|
vcpu->arch.apic->irr_pending = true;
|
|
svm_complete_interrupt_delivery(vcpu,
|
|
icrl & APIC_MODE_MASK,
|
|
icrl & APIC_INT_LEVELTRIG,
|
|
icrl & APIC_VECTOR_MASK);
|
|
}
|
|
}
|
|
}
|
|
|
|
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
|
|
u32 icrl = svm->vmcb->control.exit_info_1;
|
|
u32 id = svm->vmcb->control.exit_info_2 >> 32;
|
|
u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
|
|
trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
|
|
|
|
switch (id) {
|
|
case AVIC_IPI_FAILURE_INVALID_TARGET:
|
|
case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
|
|
/*
|
|
* Emulate IPIs that are not handled by AVIC hardware, which
|
|
* only virtualizes Fixed, Edge-Triggered INTRs, and falls over
|
|
* if _any_ targets are invalid, e.g. if the logical mode mask
|
|
* is a superset of running vCPUs.
|
|
*
|
|
* The exit is a trap, e.g. ICR holds the correct value and RIP
|
|
* has been advanced, KVM is responsible only for emulating the
|
|
* IPI. Sadly, hardware may sometimes leave the BUSY flag set,
|
|
* in which case KVM needs to emulate the ICR write as well in
|
|
* order to clear the BUSY flag.
|
|
*/
|
|
if (icrl & APIC_ICR_BUSY)
|
|
kvm_apic_write_nodecode(vcpu, APIC_ICR);
|
|
else
|
|
kvm_apic_send_ipi(apic, icrl, icrh);
|
|
break;
|
|
case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
|
|
/*
|
|
* At this point, we expect that the AVIC HW has already
|
|
* set the appropriate IRR bits on the valid target
|
|
* vcpus. So, we just need to kick the appropriate vcpu.
|
|
*/
|
|
avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
|
|
break;
|
|
case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
|
|
WARN_ONCE(1, "Invalid backing page\n");
|
|
break;
|
|
default:
|
|
pr_err("Unknown IPI interception\n");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu))
|
|
return APICV_INHIBIT_REASON_NESTED;
|
|
return 0;
|
|
}
|
|
|
|
static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
|
|
{
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
|
|
int index;
|
|
u32 *logical_apic_id_table;
|
|
int dlid = GET_APIC_LOGICAL_ID(ldr);
|
|
|
|
if (!dlid)
|
|
return NULL;
|
|
|
|
if (flat) { /* flat */
|
|
index = ffs(dlid) - 1;
|
|
if (index > 7)
|
|
return NULL;
|
|
} else { /* cluster */
|
|
int cluster = (dlid & 0xf0) >> 4;
|
|
int apic = ffs(dlid & 0x0f) - 1;
|
|
|
|
if ((apic < 0) || (apic > 7) ||
|
|
(cluster >= 0xf))
|
|
return NULL;
|
|
index = (cluster << 2) + apic;
|
|
}
|
|
|
|
logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
|
|
|
|
return &logical_apic_id_table[index];
|
|
}
|
|
|
|
static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
|
|
{
|
|
bool flat;
|
|
u32 *entry, new_entry;
|
|
|
|
flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
|
|
entry = avic_get_logical_id_entry(vcpu, ldr, flat);
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
new_entry = READ_ONCE(*entry);
|
|
new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
|
|
new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
|
|
new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
|
|
WRITE_ONCE(*entry, new_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
bool flat = svm->dfr_reg == APIC_DFR_FLAT;
|
|
u32 *entry;
|
|
|
|
/* Note: x2AVIC does not use logical APIC ID table */
|
|
if (apic_x2apic_mode(vcpu->arch.apic))
|
|
return;
|
|
|
|
entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
|
|
if (entry)
|
|
clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
|
|
}
|
|
|
|
static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret = 0;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
|
|
u32 id = kvm_xapic_id(vcpu->arch.apic);
|
|
|
|
/* AVIC does not support LDR update for x2APIC */
|
|
if (apic_x2apic_mode(vcpu->arch.apic))
|
|
return 0;
|
|
|
|
if (ldr == svm->ldr_reg)
|
|
return 0;
|
|
|
|
avic_invalidate_logical_id_entry(vcpu);
|
|
|
|
if (ldr)
|
|
ret = avic_ldr_write(vcpu, id, ldr);
|
|
|
|
if (!ret)
|
|
svm->ldr_reg = ldr;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
|
|
|
|
if (svm->dfr_reg == dfr)
|
|
return;
|
|
|
|
avic_invalidate_logical_id_entry(vcpu);
|
|
svm->dfr_reg = dfr;
|
|
}
|
|
|
|
static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
|
|
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
|
|
|
|
switch (offset) {
|
|
case APIC_LDR:
|
|
if (avic_handle_ldr_update(vcpu))
|
|
return 0;
|
|
break;
|
|
case APIC_DFR:
|
|
avic_handle_dfr_update(vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_apic_write_nodecode(vcpu, offset);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_avic_unaccelerated_access_trap(u32 offset)
|
|
{
|
|
bool ret = false;
|
|
|
|
switch (offset) {
|
|
case APIC_ID:
|
|
case APIC_EOI:
|
|
case APIC_RRR:
|
|
case APIC_LDR:
|
|
case APIC_DFR:
|
|
case APIC_SPIV:
|
|
case APIC_ESR:
|
|
case APIC_ICR:
|
|
case APIC_LVTT:
|
|
case APIC_LVTTHMR:
|
|
case APIC_LVTPC:
|
|
case APIC_LVT0:
|
|
case APIC_LVT1:
|
|
case APIC_LVTERR:
|
|
case APIC_TMICT:
|
|
case APIC_TDCR:
|
|
ret = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int ret = 0;
|
|
u32 offset = svm->vmcb->control.exit_info_1 &
|
|
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
|
|
u32 vector = svm->vmcb->control.exit_info_2 &
|
|
AVIC_UNACCEL_ACCESS_VECTOR_MASK;
|
|
bool write = (svm->vmcb->control.exit_info_1 >> 32) &
|
|
AVIC_UNACCEL_ACCESS_WRITE_MASK;
|
|
bool trap = is_avic_unaccelerated_access_trap(offset);
|
|
|
|
trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
|
|
trap, write, vector);
|
|
if (trap) {
|
|
/* Handling Trap */
|
|
WARN_ONCE(!write, "svm: Handling trap read.\n");
|
|
ret = avic_unaccel_trap_write(vcpu);
|
|
} else {
|
|
/* Handling Fault */
|
|
ret = kvm_emulate_instruction(vcpu, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int avic_init_vcpu(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
ret = avic_init_backing_page(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_LIST_HEAD(&svm->ir_list);
|
|
spin_lock_init(&svm->ir_list_lock);
|
|
svm->dfr_reg = APIC_DFR_FLAT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
|
|
{
|
|
avic_handle_dfr_update(vcpu);
|
|
avic_handle_ldr_update(vcpu);
|
|
}
|
|
|
|
static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *ir;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!kvm_arch_has_assigned_device(vcpu->kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Here, we go through the per-vcpu ir_list to update all existing
|
|
* interrupt remapping table entry targeting this vcpu.
|
|
*/
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
|
|
if (list_empty(&svm->ir_list))
|
|
goto out;
|
|
|
|
list_for_each_entry(ir, &svm->ir_list, node) {
|
|
if (activate)
|
|
ret = amd_iommu_activate_guest_mode(ir->data);
|
|
else
|
|
ret = amd_iommu_deactivate_guest_mode(ir->data);
|
|
if (ret)
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
|
|
{
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *cur;
|
|
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
list_for_each_entry(cur, &svm->ir_list, node) {
|
|
if (cur->data != pi->ir_data)
|
|
continue;
|
|
list_del(&cur->node);
|
|
kfree(cur);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
}
|
|
|
|
static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *ir;
|
|
u64 entry;
|
|
|
|
/**
|
|
* In some cases, the existing irte is updated and re-set,
|
|
* so we need to check here if it's already been * added
|
|
* to the ir_list.
|
|
*/
|
|
if (pi->ir_data && (pi->prev_ga_tag != 0)) {
|
|
struct kvm *kvm = svm->vcpu.kvm;
|
|
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
|
|
struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
|
|
struct vcpu_svm *prev_svm;
|
|
|
|
if (!prev_vcpu) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
prev_svm = to_svm(prev_vcpu);
|
|
svm_ir_list_del(prev_svm, pi);
|
|
}
|
|
|
|
/**
|
|
* Allocating new amd_iommu_pi_data, which will get
|
|
* add to the per-vcpu ir_list.
|
|
*/
|
|
ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
|
|
if (!ir) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ir->data = pi->ir_data;
|
|
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
|
|
/*
|
|
* Update the target pCPU for IOMMU doorbells if the vCPU is running.
|
|
* If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
|
|
* will update the pCPU info when the vCPU awkened and/or scheduled in.
|
|
* See also avic_vcpu_load().
|
|
*/
|
|
entry = READ_ONCE(*(svm->avic_physical_id_cache));
|
|
if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
|
|
amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
|
|
true, pi->ir_data);
|
|
|
|
list_add(&ir->node, &svm->ir_list);
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* The HW cannot support posting multicast/broadcast
|
|
* interrupts to a vCPU. So, we still use legacy interrupt
|
|
* remapping for these kind of interrupts.
|
|
*
|
|
* For lowest-priority interrupts, we only support
|
|
* those with single CPU as the destination, e.g. user
|
|
* configures the interrupts via /proc/irq or uses
|
|
* irqbalance to make the interrupts single-CPU.
|
|
*/
|
|
static int
|
|
get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
|
|
struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
|
|
{
|
|
struct kvm_lapic_irq irq;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
|
|
kvm_set_msi_irq(kvm, e, &irq);
|
|
|
|
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
|
|
!kvm_irq_is_postable(&irq)) {
|
|
pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
|
|
__func__, irq.vector);
|
|
return -1;
|
|
}
|
|
|
|
pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
|
|
irq.vector);
|
|
*svm = to_svm(vcpu);
|
|
vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
|
|
vcpu_info->vector = irq.vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* avic_pi_update_irte - set IRTE for Posted-Interrupts
|
|
*
|
|
* @kvm: kvm
|
|
* @host_irq: host irq of the interrupt
|
|
* @guest_irq: gsi of the interrupt
|
|
* @set: set or unset PI
|
|
* returns 0 on success, < 0 on failure
|
|
*/
|
|
int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
|
|
uint32_t guest_irq, bool set)
|
|
{
|
|
struct kvm_kernel_irq_routing_entry *e;
|
|
struct kvm_irq_routing_table *irq_rt;
|
|
int idx, ret = 0;
|
|
|
|
if (!kvm_arch_has_assigned_device(kvm) ||
|
|
!irq_remapping_cap(IRQ_POSTING_CAP))
|
|
return 0;
|
|
|
|
pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
|
|
__func__, host_irq, guest_irq, set);
|
|
|
|
idx = srcu_read_lock(&kvm->irq_srcu);
|
|
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
|
|
|
|
if (guest_irq >= irq_rt->nr_rt_entries ||
|
|
hlist_empty(&irq_rt->map[guest_irq])) {
|
|
pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
|
|
guest_irq, irq_rt->nr_rt_entries);
|
|
goto out;
|
|
}
|
|
|
|
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
|
|
struct vcpu_data vcpu_info;
|
|
struct vcpu_svm *svm = NULL;
|
|
|
|
if (e->type != KVM_IRQ_ROUTING_MSI)
|
|
continue;
|
|
|
|
/**
|
|
* Here, we setup with legacy mode in the following cases:
|
|
* 1. When cannot target interrupt to a specific vcpu.
|
|
* 2. Unsetting posted interrupt.
|
|
* 3. APIC virtualization is disabled for the vcpu.
|
|
* 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
|
|
*/
|
|
if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
|
|
kvm_vcpu_apicv_active(&svm->vcpu)) {
|
|
struct amd_iommu_pi_data pi;
|
|
|
|
/* Try to enable guest_mode in IRTE */
|
|
pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
|
|
AVIC_HPA_MASK);
|
|
pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
|
|
svm->vcpu.vcpu_id);
|
|
pi.is_guest_mode = true;
|
|
pi.vcpu_data = &vcpu_info;
|
|
ret = irq_set_vcpu_affinity(host_irq, &pi);
|
|
|
|
/**
|
|
* Here, we successfully setting up vcpu affinity in
|
|
* IOMMU guest mode. Now, we need to store the posted
|
|
* interrupt information in a per-vcpu ir_list so that
|
|
* we can reference to them directly when we update vcpu
|
|
* scheduling information in IOMMU irte.
|
|
*/
|
|
if (!ret && pi.is_guest_mode)
|
|
svm_ir_list_add(svm, &pi);
|
|
} else {
|
|
/* Use legacy mode in IRTE */
|
|
struct amd_iommu_pi_data pi;
|
|
|
|
/**
|
|
* Here, pi is used to:
|
|
* - Tell IOMMU to use legacy mode for this interrupt.
|
|
* - Retrieve ga_tag of prior interrupt remapping data.
|
|
*/
|
|
pi.prev_ga_tag = 0;
|
|
pi.is_guest_mode = false;
|
|
ret = irq_set_vcpu_affinity(host_irq, &pi);
|
|
|
|
/**
|
|
* Check if the posted interrupt was previously
|
|
* setup with the guest_mode by checking if the ga_tag
|
|
* was cached. If so, we need to clean up the per-vcpu
|
|
* ir_list.
|
|
*/
|
|
if (!ret && pi.prev_ga_tag) {
|
|
int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = kvm_get_vcpu_by_id(kvm, id);
|
|
if (vcpu)
|
|
svm_ir_list_del(to_svm(vcpu), &pi);
|
|
}
|
|
}
|
|
|
|
if (!ret && svm) {
|
|
trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
|
|
e->gsi, vcpu_info.vector,
|
|
vcpu_info.pi_desc_addr, set);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
pr_err("%s: failed to update PI IRTE\n", __func__);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
srcu_read_unlock(&kvm->irq_srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
|
|
{
|
|
ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
|
|
BIT(APICV_INHIBIT_REASON_ABSENT) |
|
|
BIT(APICV_INHIBIT_REASON_HYPERV) |
|
|
BIT(APICV_INHIBIT_REASON_NESTED) |
|
|
BIT(APICV_INHIBIT_REASON_IRQWIN) |
|
|
BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
|
|
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
|
|
BIT(APICV_INHIBIT_REASON_SEV) |
|
|
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
|
|
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
|
|
|
|
return supported & BIT(reason);
|
|
}
|
|
|
|
|
|
static inline int
|
|
avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
|
|
{
|
|
int ret = 0;
|
|
struct amd_svm_iommu_ir *ir;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
lockdep_assert_held(&svm->ir_list_lock);
|
|
|
|
if (!kvm_arch_has_assigned_device(vcpu->kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Here, we go through the per-vcpu ir_list to update all existing
|
|
* interrupt remapping table entry targeting this vcpu.
|
|
*/
|
|
if (list_empty(&svm->ir_list))
|
|
return 0;
|
|
|
|
list_for_each_entry(ir, &svm->ir_list, node) {
|
|
ret = amd_iommu_update_ga(cpu, r, ir->data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
u64 entry;
|
|
int h_physical_id = kvm_cpu_get_apicid(cpu);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long flags;
|
|
|
|
lockdep_assert_preemption_disabled();
|
|
|
|
if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
|
|
return;
|
|
|
|
/*
|
|
* No need to update anything if the vCPU is blocking, i.e. if the vCPU
|
|
* is being scheduled in after being preempted. The CPU entries in the
|
|
* Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
|
|
* If the vCPU was migrated, its new CPU value will be stuffed when the
|
|
* vCPU unblocks.
|
|
*/
|
|
if (kvm_vcpu_is_blocking(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Grab the per-vCPU interrupt remapping lock even if the VM doesn't
|
|
* _currently_ have assigned devices, as that can change. Holding
|
|
* ir_list_lock ensures that either svm_ir_list_add() will consume
|
|
* up-to-date entry information, or that this task will wait until
|
|
* svm_ir_list_add() completes to set the new target pCPU.
|
|
*/
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
|
|
entry = READ_ONCE(*(svm->avic_physical_id_cache));
|
|
|
|
entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
|
|
entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
|
|
entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
|
|
|
|
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
|
|
avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
|
|
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
}
|
|
|
|
void avic_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 entry;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long flags;
|
|
|
|
lockdep_assert_preemption_disabled();
|
|
|
|
/*
|
|
* Note, reading the Physical ID entry outside of ir_list_lock is safe
|
|
* as only the pCPU that has loaded (or is loading) the vCPU is allowed
|
|
* to modify the entry, and preemption is disabled. I.e. the vCPU
|
|
* can't be scheduled out and thus avic_vcpu_{put,load}() can't run
|
|
* recursively.
|
|
*/
|
|
entry = READ_ONCE(*(svm->avic_physical_id_cache));
|
|
|
|
/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
|
|
if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
|
|
return;
|
|
|
|
/*
|
|
* Take and hold the per-vCPU interrupt remapping lock while updating
|
|
* the Physical ID entry even though the lock doesn't protect against
|
|
* multiple writers (see above). Holding ir_list_lock ensures that
|
|
* either svm_ir_list_add() will consume up-to-date entry information,
|
|
* or that this task will wait until svm_ir_list_add() completes to
|
|
* mark the vCPU as not running.
|
|
*/
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
|
|
avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
|
|
|
|
entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
|
|
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
|
|
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
|
|
}
|
|
|
|
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb01.ptr;
|
|
|
|
if (!lapic_in_kernel(vcpu) || avic_mode == AVIC_MODE_NONE)
|
|
return;
|
|
|
|
if (!enable_apicv)
|
|
return;
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu)) {
|
|
/**
|
|
* During AVIC temporary deactivation, guest could update
|
|
* APIC ID, DFR and LDR registers, which would not be trapped
|
|
* by avic_unaccelerated_access_interception(). In this case,
|
|
* we need to check and update the AVIC logical APIC ID table
|
|
* accordingly before re-activating.
|
|
*/
|
|
avic_apicv_post_state_restore(vcpu);
|
|
avic_activate_vmcb(svm);
|
|
} else {
|
|
avic_deactivate_vmcb(svm);
|
|
}
|
|
vmcb_mark_dirty(vmcb, VMCB_AVIC);
|
|
}
|
|
|
|
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool activated = kvm_vcpu_apicv_active(vcpu);
|
|
|
|
if (!enable_apicv)
|
|
return;
|
|
|
|
avic_refresh_virtual_apic_mode(vcpu);
|
|
|
|
if (activated)
|
|
avic_vcpu_load(vcpu, vcpu->cpu);
|
|
else
|
|
avic_vcpu_put(vcpu);
|
|
|
|
avic_set_pi_irte_mode(vcpu, activated);
|
|
}
|
|
|
|
void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* Unload the AVIC when the vCPU is about to block, _before_
|
|
* the vCPU actually blocks.
|
|
*
|
|
* Any IRQs that arrive before IsRunning=0 will not cause an
|
|
* incomplete IPI vmexit on the source, therefore vIRR will also
|
|
* be checked by kvm_vcpu_check_block() before blocking. The
|
|
* memory barrier implicit in set_current_state orders writing
|
|
* IsRunning=0 before reading the vIRR. The processor needs a
|
|
* matching memory barrier on interrupt delivery between writing
|
|
* IRR and reading IsRunning; the lack of this barrier might be
|
|
* the cause of errata #1235).
|
|
*/
|
|
avic_vcpu_put(vcpu);
|
|
}
|
|
|
|
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
avic_vcpu_load(vcpu, vcpu->cpu);
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* - The module param avic enable both xAPIC and x2APIC mode.
|
|
* - Hypervisor can support both xAVIC and x2AVIC in the same guest.
|
|
* - The mode can be switched at run-time.
|
|
*/
|
|
bool avic_hardware_setup(struct kvm_x86_ops *x86_ops)
|
|
{
|
|
if (!npt_enabled)
|
|
return false;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_AVIC)) {
|
|
avic_mode = AVIC_MODE_X1;
|
|
pr_info("AVIC enabled\n");
|
|
} else if (force_avic) {
|
|
/*
|
|
* Some older systems does not advertise AVIC support.
|
|
* See Revision Guide for specific AMD processor for more detail.
|
|
*/
|
|
avic_mode = AVIC_MODE_X1;
|
|
pr_warn("AVIC is not supported in CPUID but force enabled");
|
|
pr_warn("Your system might crash and burn");
|
|
}
|
|
|
|
/* AVIC is a prerequisite for x2AVIC. */
|
|
if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
|
|
if (avic_mode == AVIC_MODE_X1) {
|
|
avic_mode = AVIC_MODE_X2;
|
|
pr_info("x2AVIC enabled\n");
|
|
} else {
|
|
pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
|
|
pr_warn(FW_BUG "Try enable AVIC using force_avic option");
|
|
}
|
|
}
|
|
|
|
if (avic_mode != AVIC_MODE_NONE)
|
|
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
|
|
|
|
return !!avic_mode;
|
|
}
|