linuxdebug/arch/x86/kernel/traps.c

1472 lines
40 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/context_tracking.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/kmsan.h>
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <linux/hardirq.h>
#include <linux/atomic.h>
#include <linux/ioasid.h>
#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/realmode.h>
#include <asm/text-patching.h>
#include <asm/ftrace.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/fpu/api.h>
#include <asm/cpu.h>
#include <asm/cpu_entry_area.h>
#include <asm/mce.h>
#include <asm/fixmap.h>
#include <asm/mach_traps.h>
#include <asm/alternative.h>
#include <asm/fpu/xstate.h>
#include <asm/vm86.h>
#include <asm/umip.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/vdso.h>
#include <asm/tdx.h>
#include <asm/cfi.h>
#ifdef CONFIG_X86_64
#include <asm/x86_init.h>
#include <asm/proto.h>
#else
#include <asm/processor-flags.h>
#include <asm/setup.h>
#include <asm/proto.h>
#endif
DECLARE_BITMAP(system_vectors, NR_VECTORS);
static inline void cond_local_irq_enable(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void cond_local_irq_disable(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_disable();
}
__always_inline int is_valid_bugaddr(unsigned long addr)
{
if (addr < TASK_SIZE_MAX)
return 0;
/*
* We got #UD, if the text isn't readable we'd have gotten
* a different exception.
*/
return *(unsigned short *)addr == INSN_UD2;
}
static nokprobe_inline int
do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
struct pt_regs *regs, long error_code)
{
if (v8086_mode(regs)) {
/*
* Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
* On nmi (interrupt 2), do_trap should not be called.
*/
if (trapnr < X86_TRAP_UD) {
if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
error_code, trapnr))
return 0;
}
} else if (!user_mode(regs)) {
if (fixup_exception(regs, trapnr, error_code, 0))
return 0;
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
die(str, regs, error_code);
} else {
if (fixup_vdso_exception(regs, trapnr, error_code, 0))
return 0;
}
/*
* We want error_code and trap_nr set for userspace faults and
* kernelspace faults which result in die(), but not
* kernelspace faults which are fixed up. die() gives the
* process no chance to handle the signal and notice the
* kernel fault information, so that won't result in polluting
* the information about previously queued, but not yet
* delivered, faults. See also exc_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
return -1;
}
static void show_signal(struct task_struct *tsk, int signr,
const char *type, const char *desc,
struct pt_regs *regs, long error_code)
{
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
printk_ratelimit()) {
pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk), type, desc,
regs->ip, regs->sp, error_code);
print_vma_addr(KERN_CONT " in ", regs->ip);
pr_cont("\n");
}
}
static void
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
long error_code, int sicode, void __user *addr)
{
struct task_struct *tsk = current;
if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
return;
show_signal(tsk, signr, "trap ", str, regs, error_code);
if (!sicode)
force_sig(signr);
else
force_sig_fault(signr, sicode, addr);
}
NOKPROBE_SYMBOL(do_trap);
static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
unsigned long trapnr, int signr, int sicode, void __user *addr)
{
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
NOTIFY_STOP) {
cond_local_irq_enable(regs);
do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
cond_local_irq_disable(regs);
}
}
/*
* Posix requires to provide the address of the faulting instruction for
* SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
*
* This address is usually regs->ip, but when an uprobe moved the code out
* of line then regs->ip points to the XOL code which would confuse
* anything which analyzes the fault address vs. the unmodified binary. If
* a trap happened in XOL code then uprobe maps regs->ip back to the
* original instruction address.
*/
static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
{
return (void __user *)uprobe_get_trap_addr(regs);
}
DEFINE_IDTENTRY(exc_divide_error)
{
do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
FPE_INTDIV, error_get_trap_addr(regs));
}
DEFINE_IDTENTRY(exc_overflow)
{
do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
}
#ifdef CONFIG_X86_KERNEL_IBT
static __ro_after_init bool ibt_fatal = true;
extern void ibt_selftest_ip(void); /* code label defined in asm below */
enum cp_error_code {
CP_EC = (1 << 15) - 1,
CP_RET = 1,
CP_IRET = 2,
CP_ENDBR = 3,
CP_RSTRORSSP = 4,
CP_SETSSBSY = 5,
CP_ENCL = 1 << 15,
};
DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
{
if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
pr_err("Unexpected #CP\n");
BUG();
}
if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
return;
if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
regs->ax = 0;
return;
}
pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
if (!ibt_fatal) {
printk(KERN_DEFAULT CUT_HERE);
__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
return;
}
BUG();
}
/* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
noinline bool ibt_selftest(void)
{
unsigned long ret;
asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
ANNOTATE_RETPOLINE_SAFE
" jmp *%%rax\n\t"
"ibt_selftest_ip:\n\t"
UNWIND_HINT_FUNC
ANNOTATE_NOENDBR
" nop\n\t"
: "=a" (ret) : : "memory");
return !ret;
}
static int __init ibt_setup(char *str)
{
if (!strcmp(str, "off"))
setup_clear_cpu_cap(X86_FEATURE_IBT);
if (!strcmp(str, "warn"))
ibt_fatal = false;
return 1;
}
__setup("ibt=", ibt_setup);
#endif /* CONFIG_X86_KERNEL_IBT */
#ifdef CONFIG_X86_F00F_BUG
void handle_invalid_op(struct pt_regs *regs)
#else
static inline void handle_invalid_op(struct pt_regs *regs)
#endif
{
do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
ILL_ILLOPN, error_get_trap_addr(regs));
}
static noinstr bool handle_bug(struct pt_regs *regs)
{
bool handled = false;
/*
* Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
* is a rare case that uses @regs without passing them to
* irqentry_enter().
*/
kmsan_unpoison_entry_regs(regs);
if (!is_valid_bugaddr(regs->ip))
return handled;
/*
* All lies, just get the WARN/BUG out.
*/
instrumentation_begin();
/*
* Since we're emulating a CALL with exceptions, restore the interrupt
* state to what it was at the exception site.
*/
if (regs->flags & X86_EFLAGS_IF)
raw_local_irq_enable();
if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
regs->ip += LEN_UD2;
handled = true;
}
if (regs->flags & X86_EFLAGS_IF)
raw_local_irq_disable();
instrumentation_end();
return handled;
}
DEFINE_IDTENTRY_RAW(exc_invalid_op)
{
irqentry_state_t state;
/*
* We use UD2 as a short encoding for 'CALL __WARN', as such
* handle it before exception entry to avoid recursive WARN
* in case exception entry is the one triggering WARNs.
*/
if (!user_mode(regs) && handle_bug(regs))
return;
state = irqentry_enter(regs);
instrumentation_begin();
handle_invalid_op(regs);
instrumentation_end();
irqentry_exit(regs, state);
}
DEFINE_IDTENTRY(exc_coproc_segment_overrun)
{
do_error_trap(regs, 0, "coprocessor segment overrun",
X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
}
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
{
do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
0, NULL);
}
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
{
do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
SIGBUS, 0, NULL);
}
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
{
do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
0, NULL);
}
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
{
char *str = "alignment check";
if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
return;
if (!user_mode(regs))
die("Split lock detected\n", regs, error_code);
local_irq_enable();
if (handle_user_split_lock(regs, error_code))
goto out;
do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
error_code, BUS_ADRALN, NULL);
out:
local_irq_disable();
}
#ifdef CONFIG_VMAP_STACK
__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
unsigned long fault_address,
struct stack_info *info)
{
const char *name = stack_type_name(info->type);
printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
name, (void *)fault_address, info->begin, info->end);
die("stack guard page", regs, 0);
/* Be absolutely certain we don't return. */
panic("%s stack guard hit", name);
}
#endif
/*
* Runs on an IST stack for x86_64 and on a special task stack for x86_32.
*
* On x86_64, this is more or less a normal kernel entry. Notwithstanding the
* SDM's warnings about double faults being unrecoverable, returning works as
* expected. Presumably what the SDM actually means is that the CPU may get
* the register state wrong on entry, so returning could be a bad idea.
*
* Various CPU engineers have promised that double faults due to an IRET fault
* while the stack is read-only are, in fact, recoverable.
*
* On x86_32, this is entered through a task gate, and regs are synthesized
* from the TSS. Returning is, in principle, okay, but changes to regs will
* be lost. If, for some reason, we need to return to a context with modified
* regs, the shim code could be adjusted to synchronize the registers.
*
* The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
* to be read before doing anything else.
*/
DEFINE_IDTENTRY_DF(exc_double_fault)
{
static const char str[] = "double fault";
struct task_struct *tsk = current;
#ifdef CONFIG_VMAP_STACK
unsigned long address = read_cr2();
struct stack_info info;
#endif
#ifdef CONFIG_X86_ESPFIX64
extern unsigned char native_irq_return_iret[];
/*
* If IRET takes a non-IST fault on the espfix64 stack, then we
* end up promoting it to a doublefault. In that case, take
* advantage of the fact that we're not using the normal (TSS.sp0)
* stack right now. We can write a fake #GP(0) frame at TSS.sp0
* and then modify our own IRET frame so that, when we return,
* we land directly at the #GP(0) vector with the stack already
* set up according to its expectations.
*
* The net result is that our #GP handler will think that we
* entered from usermode with the bad user context.
*
* No need for nmi_enter() here because we don't use RCU.
*/
if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
regs->cs == __KERNEL_CS &&
regs->ip == (unsigned long)native_irq_return_iret)
{
struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
unsigned long *p = (unsigned long *)regs->sp;
/*
* regs->sp points to the failing IRET frame on the
* ESPFIX64 stack. Copy it to the entry stack. This fills
* in gpregs->ss through gpregs->ip.
*
*/
gpregs->ip = p[0];
gpregs->cs = p[1];
gpregs->flags = p[2];
gpregs->sp = p[3];
gpregs->ss = p[4];
gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
/*
* Adjust our frame so that we return straight to the #GP
* vector with the expected RSP value. This is safe because
* we won't enable interrupts or schedule before we invoke
* general_protection, so nothing will clobber the stack
* frame we just set up.
*
* We will enter general_protection with kernel GSBASE,
* which is what the stub expects, given that the faulting
* RIP will be the IRET instruction.
*/
regs->ip = (unsigned long)asm_exc_general_protection;
regs->sp = (unsigned long)&gpregs->orig_ax;
return;
}
#endif
irqentry_nmi_enter(regs);
instrumentation_begin();
notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_DF;
#ifdef CONFIG_VMAP_STACK
/*
* If we overflow the stack into a guard page, the CPU will fail
* to deliver #PF and will send #DF instead. Similarly, if we
* take any non-IST exception while too close to the bottom of
* the stack, the processor will get a page fault while
* delivering the exception and will generate a double fault.
*
* According to the SDM (footnote in 6.15 under "Interrupt 14 -
* Page-Fault Exception (#PF):
*
* Processors update CR2 whenever a page fault is detected. If a
* second page fault occurs while an earlier page fault is being
* delivered, the faulting linear address of the second fault will
* overwrite the contents of CR2 (replacing the previous
* address). These updates to CR2 occur even if the page fault
* results in a double fault or occurs during the delivery of a
* double fault.
*
* The logic below has a small possibility of incorrectly diagnosing
* some errors as stack overflows. For example, if the IDT or GDT
* gets corrupted such that #GP delivery fails due to a bad descriptor
* causing #GP and we hit this condition while CR2 coincidentally
* points to the stack guard page, we'll think we overflowed the
* stack. Given that we're going to panic one way or another
* if this happens, this isn't necessarily worth fixing.
*
* If necessary, we could improve the test by only diagnosing
* a stack overflow if the saved RSP points within 47 bytes of
* the bottom of the stack: if RSP == tsk_stack + 48 and we
* take an exception, the stack is already aligned and there
* will be enough room SS, RSP, RFLAGS, CS, RIP, and a
* possible error code, so a stack overflow would *not* double
* fault. With any less space left, exception delivery could
* fail, and, as a practical matter, we've overflowed the
* stack even if the actual trigger for the double fault was
* something else.
*/
if (get_stack_guard_info((void *)address, &info))
handle_stack_overflow(regs, address, &info);
#endif
pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
die("double fault", regs, error_code);
panic("Machine halted.");
instrumentation_end();
}
DEFINE_IDTENTRY(exc_bounds)
{
if (notify_die(DIE_TRAP, "bounds", regs, 0,
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
return;
cond_local_irq_enable(regs);
if (!user_mode(regs))
die("bounds", regs, 0);
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
cond_local_irq_disable(regs);
}
enum kernel_gp_hint {
GP_NO_HINT,
GP_NON_CANONICAL,
GP_CANONICAL
};
/*
* When an uncaught #GP occurs, try to determine the memory address accessed by
* the instruction and return that address to the caller. Also, try to figure
* out whether any part of the access to that address was non-canonical.
*/
static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
unsigned long *addr)
{
u8 insn_buf[MAX_INSN_SIZE];
struct insn insn;
int ret;
if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
MAX_INSN_SIZE))
return GP_NO_HINT;
ret = insn_decode_kernel(&insn, insn_buf);
if (ret < 0)
return GP_NO_HINT;
*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
if (*addr == -1UL)
return GP_NO_HINT;
#ifdef CONFIG_X86_64
/*
* Check that:
* - the operand is not in the kernel half
* - the last byte of the operand is not in the user canonical half
*/
if (*addr < ~__VIRTUAL_MASK &&
*addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
return GP_NON_CANONICAL;
#endif
return GP_CANONICAL;
}
#define GPFSTR "general protection fault"
static bool fixup_iopl_exception(struct pt_regs *regs)
{
struct thread_struct *t = &current->thread;
unsigned char byte;
unsigned long ip;
if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
return false;
if (insn_get_effective_ip(regs, &ip))
return false;
if (get_user(byte, (const char __user *)ip))
return false;
if (byte != 0xfa && byte != 0xfb)
return false;
if (!t->iopl_warn && printk_ratelimit()) {
pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
current->comm, task_pid_nr(current), ip);
print_vma_addr(KERN_CONT " in ", ip);
pr_cont("\n");
t->iopl_warn = 1;
}
regs->ip += 1;
return true;
}
/*
* The unprivileged ENQCMD instruction generates #GPs if the
* IA32_PASID MSR has not been populated. If possible, populate
* the MSR from a PASID previously allocated to the mm.
*/
static bool try_fixup_enqcmd_gp(void)
{
#ifdef CONFIG_IOMMU_SVA
u32 pasid;
/*
* MSR_IA32_PASID is managed using XSAVE. Directly
* writing to the MSR is only possible when fpregs
* are valid and the fpstate is not. This is
* guaranteed when handling a userspace exception
* in *before* interrupts are re-enabled.
*/
lockdep_assert_irqs_disabled();
/*
* Hardware without ENQCMD will not generate
* #GPs that can be fixed up here.
*/
if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
return false;
pasid = current->mm->pasid;
/*
* If the mm has not been allocated a
* PASID, the #GP can not be fixed up.
*/
if (!pasid_valid(pasid))
return false;
/*
* Did this thread already have its PASID activated?
* If so, the #GP must be from something else.
*/
if (current->pasid_activated)
return false;
wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
current->pasid_activated = 1;
return true;
#else
return false;
#endif
}
static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
unsigned long error_code, const char *str,
unsigned long address)
{
if (fixup_exception(regs, trapnr, error_code, address))
return true;
current->thread.error_code = error_code;
current->thread.trap_nr = trapnr;
/*
* To be potentially processing a kprobe fault and to trust the result
* from kprobe_running(), we have to be non-preemptible.
*/
if (!preemptible() && kprobe_running() &&
kprobe_fault_handler(regs, trapnr))
return true;
return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
}
static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
unsigned long error_code, const char *str)
{
current->thread.error_code = error_code;
current->thread.trap_nr = trapnr;
show_signal(current, SIGSEGV, "", str, regs, error_code);
force_sig(SIGSEGV);
}
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
{
char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
enum kernel_gp_hint hint = GP_NO_HINT;
unsigned long gp_addr;
if (user_mode(regs) && try_fixup_enqcmd_gp())
return;
cond_local_irq_enable(regs);
if (static_cpu_has(X86_FEATURE_UMIP)) {
if (user_mode(regs) && fixup_umip_exception(regs))
goto exit;
}
if (v8086_mode(regs)) {
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
local_irq_disable();
return;
}
if (user_mode(regs)) {
if (fixup_iopl_exception(regs))
goto exit;
if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
goto exit;
gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
goto exit;
}
if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
goto exit;
if (error_code)
snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
else
hint = get_kernel_gp_address(regs, &gp_addr);
if (hint != GP_NO_HINT)
snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
(hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
: "maybe for address",
gp_addr);
/*
* KASAN is interested only in the non-canonical case, clear it
* otherwise.
*/
if (hint != GP_NON_CANONICAL)
gp_addr = 0;
die_addr(desc, regs, error_code, gp_addr);
exit:
cond_local_irq_disable(regs);
}
static bool do_int3(struct pt_regs *regs)
{
int res;
#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
SIGTRAP) == NOTIFY_STOP)
return true;
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
#ifdef CONFIG_KPROBES
if (kprobe_int3_handler(regs))
return true;
#endif
res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
return res == NOTIFY_STOP;
}
NOKPROBE_SYMBOL(do_int3);
static void do_int3_user(struct pt_regs *regs)
{
if (do_int3(regs))
return;
cond_local_irq_enable(regs);
do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
cond_local_irq_disable(regs);
}
DEFINE_IDTENTRY_RAW(exc_int3)
{
/*
* poke_int3_handler() is completely self contained code; it does (and
* must) *NOT* call out to anything, lest it hits upon yet another
* INT3.
*/
if (poke_int3_handler(regs))
return;
/*
* irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
* and therefore can trigger INT3, hence poke_int3_handler() must
* be done before. If the entry came from kernel mode, then use
* nmi_enter() because the INT3 could have been hit in any context
* including NMI.
*/
if (user_mode(regs)) {
irqentry_enter_from_user_mode(regs);
instrumentation_begin();
do_int3_user(regs);
instrumentation_end();
irqentry_exit_to_user_mode(regs);
} else {
irqentry_state_t irq_state = irqentry_nmi_enter(regs);
instrumentation_begin();
if (!do_int3(regs))
die("int3", regs, 0);
instrumentation_end();
irqentry_nmi_exit(regs, irq_state);
}
}
#ifdef CONFIG_X86_64
/*
* Help handler running on a per-cpu (IST or entry trampoline) stack
* to switch to the normal thread stack if the interrupted code was in
* user mode. The actual stack switch is done in entry_64.S
*/
asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
{
struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
if (regs != eregs)
*regs = *eregs;
return regs;
}
#ifdef CONFIG_AMD_MEM_ENCRYPT
asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
{
unsigned long sp, *stack;
struct stack_info info;
struct pt_regs *regs_ret;
/*
* In the SYSCALL entry path the RSP value comes from user-space - don't
* trust it and switch to the current kernel stack
*/
if (ip_within_syscall_gap(regs)) {
sp = this_cpu_read(cpu_current_top_of_stack);
goto sync;
}
/*
* From here on the RSP value is trusted. Now check whether entry
* happened from a safe stack. Not safe are the entry or unknown stacks,
* use the fall-back stack instead in this case.
*/
sp = regs->sp;
stack = (unsigned long *)sp;
if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
info.type > STACK_TYPE_EXCEPTION_LAST)
sp = __this_cpu_ist_top_va(VC2);
sync:
/*
* Found a safe stack - switch to it as if the entry didn't happen via
* IST stack. The code below only copies pt_regs, the real switch happens
* in assembly code.
*/
sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
regs_ret = (struct pt_regs *)sp;
*regs_ret = *regs;
return regs_ret;
}
#endif
asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
{
struct pt_regs tmp, *new_stack;
/*
* This is called from entry_64.S early in handling a fault
* caused by a bad iret to user mode. To handle the fault
* correctly, we want to move our stack frame to where it would
* be had we entered directly on the entry stack (rather than
* just below the IRET frame) and we want to pretend that the
* exception came from the IRET target.
*/
new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
/* Copy the IRET target to the temporary storage. */
__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
/* Copy the remainder of the stack from the current stack. */
__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
/* Update the entry stack */
__memcpy(new_stack, &tmp, sizeof(tmp));
BUG_ON(!user_mode(new_stack));
return new_stack;
}
#endif
static bool is_sysenter_singlestep(struct pt_regs *regs)
{
/*
* We don't try for precision here. If we're anywhere in the region of
* code that can be single-stepped in the SYSENTER entry path, then
* assume that this is a useless single-step trap due to SYSENTER
* being invoked with TF set. (We don't know in advance exactly
* which instructions will be hit because BTF could plausibly
* be set.)
*/
#ifdef CONFIG_X86_32
return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
(unsigned long)__end_SYSENTER_singlestep_region -
(unsigned long)__begin_SYSENTER_singlestep_region;
#elif defined(CONFIG_IA32_EMULATION)
return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
(unsigned long)__end_entry_SYSENTER_compat -
(unsigned long)entry_SYSENTER_compat;
#else
return false;
#endif
}
static __always_inline unsigned long debug_read_clear_dr6(void)
{
unsigned long dr6;
/*
* The Intel SDM says:
*
* Certain debug exceptions may clear bits 0-3. The remaining
* contents of the DR6 register are never cleared by the
* processor. To avoid confusion in identifying debug
* exceptions, debug handlers should clear the register before
* returning to the interrupted task.
*
* Keep it simple: clear DR6 immediately.
*/
get_debugreg(dr6, 6);
set_debugreg(DR6_RESERVED, 6);
dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
return dr6;
}
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*
* May run on IST stack.
*/
static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
{
/*
* Notifiers will clear bits in @dr6 to indicate the event has been
* consumed - hw_breakpoint_handler(), single_stop_cont().
*
* Notifiers will set bits in @virtual_dr6 to indicate the desire
* for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
*/
if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
return true;
return false;
}
static __always_inline void exc_debug_kernel(struct pt_regs *regs,
unsigned long dr6)
{
/*
* Disable breakpoints during exception handling; recursive exceptions
* are exceedingly 'fun'.
*
* Since this function is NOKPROBE, and that also applies to
* HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
* HW_BREAKPOINT_W on our stack)
*
* Entry text is excluded for HW_BP_X and cpu_entry_area, which
* includes the entry stack is excluded for everything.
*/
unsigned long dr7 = local_db_save();
irqentry_state_t irq_state = irqentry_nmi_enter(regs);
instrumentation_begin();
/*
* If something gets miswired and we end up here for a user mode
* #DB, we will malfunction.
*/
WARN_ON_ONCE(user_mode(regs));
if (test_thread_flag(TIF_BLOCKSTEP)) {
/*
* The SDM says "The processor clears the BTF flag when it
* generates a debug exception." but PTRACE_BLOCKSTEP requested
* it for userspace, but we just took a kernel #DB, so re-set
* BTF.
*/
unsigned long debugctl;
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
debugctl |= DEBUGCTLMSR_BTF;
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}
/*
* Catch SYSENTER with TF set and clear DR_STEP. If this hit a
* watchpoint at the same time then that will still be handled.
*/
if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
dr6 &= ~DR_STEP;
/*
* The kernel doesn't use INT1
*/
if (!dr6)
goto out;
if (notify_debug(regs, &dr6))
goto out;
/*
* The kernel doesn't use TF single-step outside of:
*
* - Kprobes, consumed through kprobe_debug_handler()
* - KGDB, consumed through notify_debug()
*
* So if we get here with DR_STEP set, something is wonky.
*
* A known way to trigger this is through QEMU's GDB stub,
* which leaks #DB into the guest and causes IST recursion.
*/
if (WARN_ON_ONCE(dr6 & DR_STEP))
regs->flags &= ~X86_EFLAGS_TF;
out:
instrumentation_end();
irqentry_nmi_exit(regs, irq_state);
local_db_restore(dr7);
}
static __always_inline void exc_debug_user(struct pt_regs *regs,
unsigned long dr6)
{
bool icebp;
/*
* If something gets miswired and we end up here for a kernel mode
* #DB, we will malfunction.
*/
WARN_ON_ONCE(!user_mode(regs));
/*
* NB: We can't easily clear DR7 here because
* irqentry_exit_to_usermode() can invoke ptrace, schedule, access
* user memory, etc. This means that a recursive #DB is possible. If
* this happens, that #DB will hit exc_debug_kernel() and clear DR7.
* Since we're not on the IST stack right now, everything will be
* fine.
*/
irqentry_enter_from_user_mode(regs);
instrumentation_begin();
/*
* Start the virtual/ptrace DR6 value with just the DR_STEP mask
* of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
*
* Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
* even if it is not the result of PTRACE_SINGLESTEP.
*/
current->thread.virtual_dr6 = (dr6 & DR_STEP);
/*
* The SDM says "The processor clears the BTF flag when it
* generates a debug exception." Clear TIF_BLOCKSTEP to keep
* TIF_BLOCKSTEP in sync with the hardware BTF flag.
*/
clear_thread_flag(TIF_BLOCKSTEP);
/*
* If dr6 has no reason to give us about the origin of this trap,
* then it's very likely the result of an icebp/int01 trap.
* User wants a sigtrap for that.
*/
icebp = !dr6;
if (notify_debug(regs, &dr6))
goto out;
/* It's safe to allow irq's after DR6 has been saved */
local_irq_enable();
if (v8086_mode(regs)) {
handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
goto out_irq;
}
/* #DB for bus lock can only be triggered from userspace. */
if (dr6 & DR_BUS_LOCK)
handle_bus_lock(regs);
/* Add the virtual_dr6 bits for signals. */
dr6 |= current->thread.virtual_dr6;
if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
send_sigtrap(regs, 0, get_si_code(dr6));
out_irq:
local_irq_disable();
out:
instrumentation_end();
irqentry_exit_to_user_mode(regs);
}
#ifdef CONFIG_X86_64
/* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)
{
exc_debug_kernel(regs, debug_read_clear_dr6());
}
/* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
{
exc_debug_user(regs, debug_read_clear_dr6());
}
#else
/* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)
{
unsigned long dr6 = debug_read_clear_dr6();
if (user_mode(regs))
exc_debug_user(regs, dr6);
else
exc_debug_kernel(regs, dr6);
}
#endif
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
static void math_error(struct pt_regs *regs, int trapnr)
{
struct task_struct *task = current;
struct fpu *fpu = &task->thread.fpu;
int si_code;
char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
"simd exception";
cond_local_irq_enable(regs);
if (!user_mode(regs)) {
if (fixup_exception(regs, trapnr, 0, 0))
goto exit;
task->thread.error_code = 0;
task->thread.trap_nr = trapnr;
if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
SIGFPE) != NOTIFY_STOP)
die(str, regs, 0);
goto exit;
}
/*
* Synchronize the FPU register state to the memory register state
* if necessary. This allows the exception handler to inspect it.
*/
fpu_sync_fpstate(fpu);
task->thread.trap_nr = trapnr;
task->thread.error_code = 0;
si_code = fpu__exception_code(fpu, trapnr);
/* Retry when we get spurious exceptions: */
if (!si_code)
goto exit;
if (fixup_vdso_exception(regs, trapnr, 0, 0))
goto exit;
force_sig_fault(SIGFPE, si_code,
(void __user *)uprobe_get_trap_addr(regs));
exit:
cond_local_irq_disable(regs);
}
DEFINE_IDTENTRY(exc_coprocessor_error)
{
math_error(regs, X86_TRAP_MF);
}
DEFINE_IDTENTRY(exc_simd_coprocessor_error)
{
if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
if (!static_cpu_has(X86_FEATURE_XMM)) {
__exc_general_protection(regs, 0);
return;
}
}
math_error(regs, X86_TRAP_XF);
}
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
{
/*
* This addresses a Pentium Pro Erratum:
*
* PROBLEM: If the APIC subsystem is configured in mixed mode with
* Virtual Wire mode implemented through the local APIC, an
* interrupt vector of 0Fh (Intel reserved encoding) may be
* generated by the local APIC (Int 15). This vector may be
* generated upon receipt of a spurious interrupt (an interrupt
* which is removed before the system receives the INTA sequence)
* instead of the programmed 8259 spurious interrupt vector.
*
* IMPLICATION: The spurious interrupt vector programmed in the
* 8259 is normally handled by an operating system's spurious
* interrupt handler. However, a vector of 0Fh is unknown to some
* operating systems, which would crash if this erratum occurred.
*
* In theory this could be limited to 32bit, but the handler is not
* hurting and who knows which other CPUs suffer from this.
*/
}
static bool handle_xfd_event(struct pt_regs *regs)
{
u64 xfd_err;
int err;
if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
return false;
rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
if (!xfd_err)
return false;
wrmsrl(MSR_IA32_XFD_ERR, 0);
/* Die if that happens in kernel space */
if (WARN_ON(!user_mode(regs)))
return false;
local_irq_enable();
err = xfd_enable_feature(xfd_err);
switch (err) {
case -EPERM:
force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
break;
case -EFAULT:
force_sig(SIGSEGV);
break;
}
local_irq_disable();
return true;
}
DEFINE_IDTENTRY(exc_device_not_available)
{
unsigned long cr0 = read_cr0();
if (handle_xfd_event(regs))
return;
#ifdef CONFIG_MATH_EMULATION
if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
struct math_emu_info info = { };
cond_local_irq_enable(regs);
info.regs = regs;
math_emulate(&info);
cond_local_irq_disable(regs);
return;
}
#endif
/* This should not happen. */
if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
/* Try to fix it up and carry on. */
write_cr0(cr0 & ~X86_CR0_TS);
} else {
/*
* Something terrible happened, and we're better off trying
* to kill the task than getting stuck in a never-ending
* loop of #NM faults.
*/
die("unexpected #NM exception", regs, 0);
}
}
#ifdef CONFIG_INTEL_TDX_GUEST
#define VE_FAULT_STR "VE fault"
static void ve_raise_fault(struct pt_regs *regs, long error_code,
unsigned long address)
{
if (user_mode(regs)) {
gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
return;
}
if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
VE_FAULT_STR, address)) {
return;
}
die_addr(VE_FAULT_STR, regs, error_code, address);
}
/*
* Virtualization Exceptions (#VE) are delivered to TDX guests due to
* specific guest actions which may happen in either user space or the
* kernel:
*
* * Specific instructions (WBINVD, for example)
* * Specific MSR accesses
* * Specific CPUID leaf accesses
* * Access to specific guest physical addresses
*
* In the settings that Linux will run in, virtualization exceptions are
* never generated on accesses to normal, TD-private memory that has been
* accepted (by BIOS or with tdx_enc_status_changed()).
*
* Syscall entry code has a critical window where the kernel stack is not
* yet set up. Any exception in this window leads to hard to debug issues
* and can be exploited for privilege escalation. Exceptions in the NMI
* entry code also cause issues. Returning from the exception handler with
* IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
*
* For these reasons, the kernel avoids #VEs during the syscall gap and
* the NMI entry code. Entry code paths do not access TD-shared memory,
* MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
* that might generate #VE. VMM can remove memory from TD at any point,
* but access to unaccepted (or missing) private memory leads to VM
* termination, not to #VE.
*
* Similarly to page faults and breakpoints, #VEs are allowed in NMI
* handlers once the kernel is ready to deal with nested NMIs.
*
* During #VE delivery, all interrupts, including NMIs, are blocked until
* TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
* the VE info.
*
* If a guest kernel action which would normally cause a #VE occurs in
* the interrupt-disabled region before TDGETVEINFO, a #DF (fault
* exception) is delivered to the guest which will result in an oops.
*
* The entry code has been audited carefully for following these expectations.
* Changes in the entry code have to be audited for correctness vs. this
* aspect. Similarly to #PF, #VE in these places will expose kernel to
* privilege escalation or may lead to random crashes.
*/
DEFINE_IDTENTRY(exc_virtualization_exception)
{
struct ve_info ve;
/*
* NMIs/Machine-checks/Interrupts will be in a disabled state
* till TDGETVEINFO TDCALL is executed. This ensures that VE
* info cannot be overwritten by a nested #VE.
*/
tdx_get_ve_info(&ve);
cond_local_irq_enable(regs);
/*
* If tdx_handle_virt_exception() could not process
* it successfully, treat it as #GP(0) and handle it.
*/
if (!tdx_handle_virt_exception(regs, &ve))
ve_raise_fault(regs, 0, ve.gla);
cond_local_irq_disable(regs);
}
#endif
#ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)
{
local_irq_enable();
if (notify_die(DIE_TRAP, "iret exception", regs, 0,
X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
ILL_BADSTK, (void __user *)NULL);
}
local_irq_disable();
}
#endif
void __init trap_init(void)
{
/* Init cpu_entry_area before IST entries are set up */
setup_cpu_entry_areas();
/* Init GHCB memory pages when running as an SEV-ES guest */
sev_es_init_vc_handling();
/* Initialize TSS before setting up traps so ISTs work */
cpu_init_exception_handling();
/* Setup traps as cpu_init() might #GP */
idt_setup_traps();
cpu_init();
}