142 lines
3.5 KiB
C
142 lines
3.5 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_MICROCODE_H
|
|
#define _ASM_X86_MICROCODE_H
|
|
|
|
#include <asm/cpu.h>
|
|
#include <linux/earlycpio.h>
|
|
#include <linux/initrd.h>
|
|
#include <asm/microcode_amd.h>
|
|
|
|
struct ucode_patch {
|
|
struct list_head plist;
|
|
void *data; /* Intel uses only this one */
|
|
unsigned int size;
|
|
u32 patch_id;
|
|
u16 equiv_cpu;
|
|
};
|
|
|
|
extern struct list_head microcode_cache;
|
|
|
|
struct cpu_signature {
|
|
unsigned int sig;
|
|
unsigned int pf;
|
|
unsigned int rev;
|
|
};
|
|
|
|
struct device;
|
|
|
|
enum ucode_state {
|
|
UCODE_OK = 0,
|
|
UCODE_NEW,
|
|
UCODE_UPDATED,
|
|
UCODE_NFOUND,
|
|
UCODE_ERROR,
|
|
};
|
|
|
|
struct microcode_ops {
|
|
enum ucode_state (*request_microcode_fw) (int cpu, struct device *,
|
|
bool refresh_fw);
|
|
|
|
void (*microcode_fini_cpu) (int cpu);
|
|
|
|
/*
|
|
* The generic 'microcode_core' part guarantees that
|
|
* the callbacks below run on a target cpu when they
|
|
* are being called.
|
|
* See also the "Synchronization" section in microcode_core.c.
|
|
*/
|
|
enum ucode_state (*apply_microcode) (int cpu);
|
|
int (*collect_cpu_info) (int cpu, struct cpu_signature *csig);
|
|
};
|
|
|
|
struct ucode_cpu_info {
|
|
struct cpu_signature cpu_sig;
|
|
int valid;
|
|
void *mc;
|
|
};
|
|
extern struct ucode_cpu_info ucode_cpu_info[];
|
|
struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa);
|
|
|
|
#ifdef CONFIG_MICROCODE_INTEL
|
|
extern struct microcode_ops * __init init_intel_microcode(void);
|
|
#else
|
|
static inline struct microcode_ops * __init init_intel_microcode(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_MICROCODE_INTEL */
|
|
|
|
#ifdef CONFIG_MICROCODE_AMD
|
|
extern struct microcode_ops * __init init_amd_microcode(void);
|
|
extern void __exit exit_amd_microcode(void);
|
|
#else
|
|
static inline struct microcode_ops * __init init_amd_microcode(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void __exit exit_amd_microcode(void) {}
|
|
#endif
|
|
|
|
#define MAX_UCODE_COUNT 128
|
|
|
|
#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
|
|
#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
|
|
#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
|
|
#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
|
|
#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
|
|
#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
|
|
#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
|
|
|
|
#define CPUID_IS(a, b, c, ebx, ecx, edx) \
|
|
(!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c))))
|
|
|
|
/*
|
|
* In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
|
|
* x86_cpuid_vendor() gets vendor id for BSP.
|
|
*
|
|
* In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
|
|
* coding, we still use x86_cpuid_vendor() to get vendor id for AP.
|
|
*
|
|
* x86_cpuid_vendor() gets vendor information directly from CPUID.
|
|
*/
|
|
static inline int x86_cpuid_vendor(void)
|
|
{
|
|
u32 eax = 0x00000000;
|
|
u32 ebx, ecx = 0, edx;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
|
|
return X86_VENDOR_INTEL;
|
|
|
|
if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
|
|
return X86_VENDOR_AMD;
|
|
|
|
return X86_VENDOR_UNKNOWN;
|
|
}
|
|
|
|
static inline unsigned int x86_cpuid_family(void)
|
|
{
|
|
u32 eax = 0x00000001;
|
|
u32 ebx, ecx = 0, edx;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
return x86_family(eax);
|
|
}
|
|
|
|
#ifdef CONFIG_MICROCODE
|
|
extern void __init load_ucode_bsp(void);
|
|
extern void load_ucode_ap(void);
|
|
void reload_early_microcode(unsigned int cpu);
|
|
extern bool initrd_gone;
|
|
void microcode_bsp_resume(void);
|
|
#else
|
|
static inline void __init load_ucode_bsp(void) { }
|
|
static inline void load_ucode_ap(void) { }
|
|
static inline void reload_early_microcode(unsigned int cpu) { }
|
|
static inline void microcode_bsp_resume(void) { }
|
|
#endif
|
|
|
|
#endif /* _ASM_X86_MICROCODE_H */
|