576 lines
15 KiB
C
576 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/debugfs.h>
|
|
#include <misc/cxl-base.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/kexec.h>
|
|
|
|
#include <mm/mmu_decl.h>
|
|
#include <trace/events/thp.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
|
|
EXPORT_SYMBOL_GPL(mmu_psize_defs);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
int mmu_vmemmap_psize = MMU_PAGE_4K;
|
|
#endif
|
|
|
|
unsigned long __pmd_frag_nr;
|
|
EXPORT_SYMBOL(__pmd_frag_nr);
|
|
unsigned long __pmd_frag_size_shift;
|
|
EXPORT_SYMBOL(__pmd_frag_size_shift);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* This is called when relaxing access to a hugepage. It's also called in the page
|
|
* fault path when we don't hit any of the major fault cases, ie, a minor
|
|
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
|
|
* handled those two for us, we additionally deal with missing execute
|
|
* permission here on some processors
|
|
*/
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp, pmd_t entry, int dirty)
|
|
{
|
|
int changed;
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
|
|
assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
|
|
#endif
|
|
changed = !pmd_same(*(pmdp), entry);
|
|
if (changed) {
|
|
/*
|
|
* We can use MMU_PAGE_2M here, because only radix
|
|
* path look at the psize.
|
|
*/
|
|
__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
|
|
pmd_pte(entry), address, MMU_PAGE_2M);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
|
|
}
|
|
/*
|
|
* set a new huge pmd. We should not be called for updating
|
|
* an existing pmd entry. That should go via pmd_hugepage_update.
|
|
*/
|
|
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/*
|
|
* Make sure hardware valid bit is not set. We don't do
|
|
* tlb flush for this update.
|
|
*/
|
|
|
|
WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
WARN_ON(!(pmd_large(pmd)));
|
|
#endif
|
|
trace_hugepage_set_pmd(addr, pmd_val(pmd));
|
|
return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
|
|
}
|
|
|
|
static void do_serialize(void *arg)
|
|
{
|
|
/* We've taken the IPI, so try to trim the mask while here */
|
|
if (radix_enabled()) {
|
|
struct mm_struct *mm = arg;
|
|
exit_lazy_flush_tlb(mm, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Serialize against find_current_mm_pte which does lock-less
|
|
* lookup in page tables with local interrupts disabled. For huge pages
|
|
* it casts pmd_t to pte_t. Since format of pte_t is different from
|
|
* pmd_t we want to prevent transit from pmd pointing to page table
|
|
* to pmd pointing to huge page (and back) while interrupts are disabled.
|
|
* We clear pmd to possibly replace it with page table pointer in
|
|
* different code paths. So make sure we wait for the parallel
|
|
* find_current_mm_pte to finish.
|
|
*/
|
|
void serialize_against_pte_lookup(struct mm_struct *mm)
|
|
{
|
|
smp_mb();
|
|
smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
|
|
}
|
|
|
|
/*
|
|
* We use this to invalidate a pmdp entry before switching from a
|
|
* hugepte to regular pmd entry.
|
|
*/
|
|
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
unsigned long old_pmd;
|
|
|
|
old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
|
|
flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
return __pmd(old_pmd);
|
|
}
|
|
|
|
pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp, int full)
|
|
{
|
|
pmd_t pmd;
|
|
VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
|
|
!pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
|
|
pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
|
|
/*
|
|
* if it not a fullmm flush, then we can possibly end up converting
|
|
* this PMD pte entry to a regular level 0 PTE by a parallel page fault.
|
|
* Make sure we flush the tlb in this case.
|
|
*/
|
|
if (!full)
|
|
flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
|
|
return pmd;
|
|
}
|
|
|
|
static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
|
|
{
|
|
return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
|
|
}
|
|
|
|
/*
|
|
* At some point we should be able to get rid of
|
|
* pmd_mkhuge() and mk_huge_pmd() when we update all the
|
|
* other archs to mark the pmd huge in pfn_pmd()
|
|
*/
|
|
pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
|
|
{
|
|
unsigned long pmdv;
|
|
|
|
pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
|
|
|
|
return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
|
|
}
|
|
|
|
pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
|
|
{
|
|
return pfn_pmd(page_to_pfn(page), pgprot);
|
|
}
|
|
|
|
pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
unsigned long pmdv;
|
|
|
|
pmdv = pmd_val(pmd);
|
|
pmdv &= _HPAGE_CHG_MASK;
|
|
return pmd_set_protbits(__pmd(pmdv), newprot);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/* For use by kexec, called with MMU off */
|
|
notrace void mmu_cleanup_all(void)
|
|
{
|
|
if (radix_enabled())
|
|
radix__mmu_cleanup_all();
|
|
else if (mmu_hash_ops.hpte_clear_all)
|
|
mmu_hash_ops.hpte_clear_all();
|
|
|
|
reset_sprs();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int __meminit create_section_mapping(unsigned long start, unsigned long end,
|
|
int nid, pgprot_t prot)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__create_section_mapping(start, end, nid, prot);
|
|
|
|
return hash__create_section_mapping(start, end, nid, prot);
|
|
}
|
|
|
|
int __meminit remove_section_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__remove_section_mapping(start, end);
|
|
|
|
return hash__remove_section_mapping(start, end);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
void __init mmu_partition_table_init(void)
|
|
{
|
|
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
|
|
unsigned long ptcr;
|
|
|
|
/* Initialize the Partition Table with no entries */
|
|
partition_tb = memblock_alloc(patb_size, patb_size);
|
|
if (!partition_tb)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, patb_size, patb_size);
|
|
|
|
ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
|
|
set_ptcr_when_no_uv(ptcr);
|
|
powernv_set_nmmu_ptcr(ptcr);
|
|
}
|
|
|
|
static void flush_partition(unsigned int lpid, bool radix)
|
|
{
|
|
if (radix) {
|
|
radix__flush_all_lpid(lpid);
|
|
radix__flush_all_lpid_guest(lpid);
|
|
} else {
|
|
asm volatile("ptesync" : : : "memory");
|
|
asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
|
|
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
|
|
/* do we need fixup here ?*/
|
|
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
|
|
trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
|
|
}
|
|
}
|
|
|
|
void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
|
|
unsigned long dw1, bool flush)
|
|
{
|
|
unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
|
|
|
|
/*
|
|
* When ultravisor is enabled, the partition table is stored in secure
|
|
* memory and can only be accessed doing an ultravisor call. However, we
|
|
* maintain a copy of the partition table in normal memory to allow Nest
|
|
* MMU translations to occur (for normal VMs).
|
|
*
|
|
* Therefore, here we always update partition_tb, regardless of whether
|
|
* we are running under an ultravisor or not.
|
|
*/
|
|
partition_tb[lpid].patb0 = cpu_to_be64(dw0);
|
|
partition_tb[lpid].patb1 = cpu_to_be64(dw1);
|
|
|
|
/*
|
|
* If ultravisor is enabled, we do an ultravisor call to register the
|
|
* partition table entry (PATE), which also do a global flush of TLBs
|
|
* and partition table caches for the lpid. Otherwise, just do the
|
|
* flush. The type of flush (hash or radix) depends on what the previous
|
|
* use of the partition ID was, not the new use.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
|
|
uv_register_pate(lpid, dw0, dw1);
|
|
pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
|
|
dw0, dw1);
|
|
} else if (flush) {
|
|
/*
|
|
* Boot does not need to flush, because MMU is off and each
|
|
* CPU does a tlbiel_all() before switching them on, which
|
|
* flushes everything.
|
|
*/
|
|
flush_partition(lpid, (old & PATB_HR));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
|
|
|
|
static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
|
|
{
|
|
void *pmd_frag, *ret;
|
|
|
|
if (PMD_FRAG_NR == 1)
|
|
return NULL;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
ret = mm->context.pmd_frag;
|
|
if (ret) {
|
|
pmd_frag = ret + PMD_FRAG_SIZE;
|
|
/*
|
|
* If we have taken up all the fragments mark PTE page NULL
|
|
*/
|
|
if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
|
|
pmd_frag = NULL;
|
|
mm->context.pmd_frag = pmd_frag;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return (pmd_t *)ret;
|
|
}
|
|
|
|
static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
|
|
{
|
|
void *ret = NULL;
|
|
struct page *page;
|
|
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
|
|
|
|
if (mm == &init_mm)
|
|
gfp &= ~__GFP_ACCOUNT;
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return NULL;
|
|
if (!pgtable_pmd_page_ctor(page)) {
|
|
__free_pages(page, 0);
|
|
return NULL;
|
|
}
|
|
|
|
atomic_set(&page->pt_frag_refcount, 1);
|
|
|
|
ret = page_address(page);
|
|
/*
|
|
* if we support only one fragment just return the
|
|
* allocated page.
|
|
*/
|
|
if (PMD_FRAG_NR == 1)
|
|
return ret;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* If we find pgtable_page set, we return
|
|
* the allocated page with single fragment
|
|
* count.
|
|
*/
|
|
if (likely(!mm->context.pmd_frag)) {
|
|
atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
|
|
mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return (pmd_t *)ret;
|
|
}
|
|
|
|
pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = get_pmd_from_cache(mm);
|
|
if (pmd)
|
|
return pmd;
|
|
|
|
return __alloc_for_pmdcache(mm);
|
|
}
|
|
|
|
void pmd_fragment_free(unsigned long *pmd)
|
|
{
|
|
struct page *page = virt_to_page(pmd);
|
|
|
|
if (PageReserved(page))
|
|
return free_reserved_page(page);
|
|
|
|
BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
|
|
if (atomic_dec_and_test(&page->pt_frag_refcount)) {
|
|
pgtable_pmd_page_dtor(page);
|
|
__free_page(page);
|
|
}
|
|
}
|
|
|
|
static inline void pgtable_free(void *table, int index)
|
|
{
|
|
switch (index) {
|
|
case PTE_INDEX:
|
|
pte_fragment_free(table, 0);
|
|
break;
|
|
case PMD_INDEX:
|
|
pmd_fragment_free(table);
|
|
break;
|
|
case PUD_INDEX:
|
|
__pud_free(table);
|
|
break;
|
|
#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
|
|
/* 16M hugepd directory at pud level */
|
|
case HTLB_16M_INDEX:
|
|
BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
|
|
kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
|
|
break;
|
|
/* 16G hugepd directory at the pgd level */
|
|
case HTLB_16G_INDEX:
|
|
BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
|
|
kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
|
|
break;
|
|
#endif
|
|
/* We don't free pgd table via RCU callback */
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
|
|
{
|
|
unsigned long pgf = (unsigned long)table;
|
|
|
|
BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
|
|
pgf |= index;
|
|
tlb_remove_table(tlb, (void *)pgf);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
|
|
unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
|
|
|
|
return pgtable_free(table, index);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
|
|
|
|
void arch_report_meminfo(struct seq_file *m)
|
|
{
|
|
/*
|
|
* Hash maps the memory with one size mmu_linear_psize.
|
|
* So don't bother to print these on hash
|
|
*/
|
|
if (!radix_enabled())
|
|
return;
|
|
seq_printf(m, "DirectMap4k: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
|
|
seq_printf(m, "DirectMap64k: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
|
|
seq_printf(m, "DirectMap2M: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
|
|
seq_printf(m, "DirectMap1G: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
unsigned long pte_val;
|
|
|
|
/*
|
|
* Clear the _PAGE_PRESENT so that no hardware parallel update is
|
|
* possible. Also keep the pte_present true so that we don't take
|
|
* wrong fault.
|
|
*/
|
|
pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
|
|
|
|
return __pte(pte_val);
|
|
|
|
}
|
|
|
|
void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep, pte_t old_pte, pte_t pte)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__ptep_modify_prot_commit(vma, addr,
|
|
ptep, old_pte, pte);
|
|
set_pte_at(vma->vm_mm, addr, ptep, pte);
|
|
}
|
|
|
|
/*
|
|
* For hash translation mode, we use the deposited table to store hash slot
|
|
* information and they are stored at PTRS_PER_PMD offset from related pmd
|
|
* location. Hence a pmd move requires deposit and withdraw.
|
|
*
|
|
* For radix translation with split pmd ptl, we store the deposited table in the
|
|
* pmd page. Hence if we have different pmd page we need to withdraw during pmd
|
|
* move.
|
|
*
|
|
* With hash we use deposited table always irrespective of anon or not.
|
|
* With radix we use deposited table only for anonymous mapping.
|
|
*/
|
|
int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
|
|
struct spinlock *old_pmd_ptl,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
if (radix_enabled())
|
|
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Does the CPU support tlbie?
|
|
*/
|
|
bool tlbie_capable __read_mostly = true;
|
|
EXPORT_SYMBOL(tlbie_capable);
|
|
|
|
/*
|
|
* Should tlbie be used for management of CPU TLBs, for kernel and process
|
|
* address spaces? tlbie may still be used for nMMU accelerators, and for KVM
|
|
* guest address spaces.
|
|
*/
|
|
bool tlbie_enabled __read_mostly = true;
|
|
|
|
static int __init setup_disable_tlbie(char *str)
|
|
{
|
|
if (!radix_enabled()) {
|
|
pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
|
|
return 1;
|
|
}
|
|
|
|
tlbie_capable = false;
|
|
tlbie_enabled = false;
|
|
|
|
return 1;
|
|
}
|
|
__setup("disable_tlbie", setup_disable_tlbie);
|
|
|
|
static int __init pgtable_debugfs_setup(void)
|
|
{
|
|
if (!tlbie_capable)
|
|
return 0;
|
|
|
|
/*
|
|
* There is no locking vs tlb flushing when changing this value.
|
|
* The tlb flushers will see one value or another, and use either
|
|
* tlbie or tlbiel with IPIs. In both cases the TLBs will be
|
|
* invalidated as expected.
|
|
*/
|
|
debugfs_create_bool("tlbie_enabled", 0600,
|
|
arch_debugfs_dir,
|
|
&tlbie_enabled);
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(pgtable_debugfs_setup);
|
|
|
|
#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
|
|
/*
|
|
* Override the generic version in mm/memremap.c.
|
|
*
|
|
* With hash translation, the direct-map range is mapped with just one
|
|
* page size selected by htab_init_page_sizes(). Consult
|
|
* mmu_psize_defs[] to determine the minimum page size alignment.
|
|
*/
|
|
unsigned long memremap_compat_align(void)
|
|
{
|
|
if (!radix_enabled()) {
|
|
unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
|
|
return max(SUBSECTION_SIZE, 1UL << shift);
|
|
}
|
|
|
|
return SUBSECTION_SIZE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(memremap_compat_align);
|
|
#endif
|
|
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags)
|
|
{
|
|
unsigned long prot;
|
|
|
|
/* Radix supports execute-only, but protection_map maps X -> RX */
|
|
if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) {
|
|
prot = pgprot_val(PAGE_EXECONLY);
|
|
} else {
|
|
prot = pgprot_val(protection_map[vm_flags &
|
|
(VM_ACCESS_FLAGS | VM_SHARED)]);
|
|
}
|
|
|
|
if (vm_flags & VM_SAO)
|
|
prot |= _PAGE_SAO;
|
|
|
|
#ifdef CONFIG_PPC_MEM_KEYS
|
|
prot |= vmflag_to_pte_pkey_bits(vm_flags);
|
|
#endif
|
|
|
|
return __pgprot(prot);
|
|
}
|
|
EXPORT_SYMBOL(vm_get_page_prot);
|