1056 lines
28 KiB
C
1056 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* c 2001 PPC 64 Team, IBM Corp
|
|
*
|
|
* /dev/nvram driver for PPC64
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/nvram.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kmsg_dump.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pstore.h>
|
|
#include <linux/zlib.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/of.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/machdep.h>
|
|
|
|
#undef DEBUG_NVRAM
|
|
|
|
#define NVRAM_HEADER_LEN sizeof(struct nvram_header)
|
|
#define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN
|
|
|
|
/* If change this size, then change the size of NVNAME_LEN */
|
|
struct nvram_header {
|
|
unsigned char signature;
|
|
unsigned char checksum;
|
|
unsigned short length;
|
|
/* Terminating null required only for names < 12 chars. */
|
|
char name[12];
|
|
};
|
|
|
|
struct nvram_partition {
|
|
struct list_head partition;
|
|
struct nvram_header header;
|
|
unsigned int index;
|
|
};
|
|
|
|
static LIST_HEAD(nvram_partitions);
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
struct nvram_os_partition rtas_log_partition = {
|
|
.name = "ibm,rtas-log",
|
|
.req_size = 2079,
|
|
.min_size = 1055,
|
|
.index = -1,
|
|
.os_partition = true
|
|
};
|
|
#endif
|
|
|
|
struct nvram_os_partition oops_log_partition = {
|
|
.name = "lnx,oops-log",
|
|
.req_size = 4000,
|
|
.min_size = 2000,
|
|
.index = -1,
|
|
.os_partition = true
|
|
};
|
|
|
|
static const char *nvram_os_partitions[] = {
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
"ibm,rtas-log",
|
|
#endif
|
|
"lnx,oops-log",
|
|
NULL
|
|
};
|
|
|
|
static void oops_to_nvram(struct kmsg_dumper *dumper,
|
|
enum kmsg_dump_reason reason);
|
|
|
|
static struct kmsg_dumper nvram_kmsg_dumper = {
|
|
.dump = oops_to_nvram
|
|
};
|
|
|
|
/*
|
|
* For capturing and compressing an oops or panic report...
|
|
|
|
* big_oops_buf[] holds the uncompressed text we're capturing.
|
|
*
|
|
* oops_buf[] holds the compressed text, preceded by a oops header.
|
|
* oops header has u16 holding the version of oops header (to differentiate
|
|
* between old and new format header) followed by u16 holding the length of
|
|
* the compressed* text (*Or uncompressed, if compression fails.) and u64
|
|
* holding the timestamp. oops_buf[] gets written to NVRAM.
|
|
*
|
|
* oops_log_info points to the header. oops_data points to the compressed text.
|
|
*
|
|
* +- oops_buf
|
|
* | +- oops_data
|
|
* v v
|
|
* +-----------+-----------+-----------+------------------------+
|
|
* | version | length | timestamp | text |
|
|
* | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
|
|
* +-----------+-----------+-----------+------------------------+
|
|
* ^
|
|
* +- oops_log_info
|
|
*
|
|
* We preallocate these buffers during init to avoid kmalloc during oops/panic.
|
|
*/
|
|
static size_t big_oops_buf_sz;
|
|
static char *big_oops_buf, *oops_buf;
|
|
static char *oops_data;
|
|
static size_t oops_data_sz;
|
|
|
|
/* Compression parameters */
|
|
#define COMPR_LEVEL 6
|
|
#define WINDOW_BITS 12
|
|
#define MEM_LEVEL 4
|
|
static struct z_stream_s stream;
|
|
|
|
#ifdef CONFIG_PSTORE
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
static struct nvram_os_partition skiboot_partition = {
|
|
.name = "ibm,skiboot",
|
|
.index = -1,
|
|
.os_partition = false
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static struct nvram_os_partition of_config_partition = {
|
|
.name = "of-config",
|
|
.index = -1,
|
|
.os_partition = false
|
|
};
|
|
#endif
|
|
|
|
static struct nvram_os_partition common_partition = {
|
|
.name = "common",
|
|
.index = -1,
|
|
.os_partition = false
|
|
};
|
|
|
|
static enum pstore_type_id nvram_type_ids[] = {
|
|
PSTORE_TYPE_DMESG,
|
|
PSTORE_TYPE_PPC_COMMON,
|
|
-1,
|
|
-1,
|
|
-1
|
|
};
|
|
static int read_type;
|
|
#endif
|
|
|
|
/* nvram_write_os_partition
|
|
*
|
|
* We need to buffer the error logs into nvram to ensure that we have
|
|
* the failure information to decode. If we have a severe error there
|
|
* is no way to guarantee that the OS or the machine is in a state to
|
|
* get back to user land and write the error to disk. For example if
|
|
* the SCSI device driver causes a Machine Check by writing to a bad
|
|
* IO address, there is no way of guaranteeing that the device driver
|
|
* is in any state that is would also be able to write the error data
|
|
* captured to disk, thus we buffer it in NVRAM for analysis on the
|
|
* next boot.
|
|
*
|
|
* In NVRAM the partition containing the error log buffer will looks like:
|
|
* Header (in bytes):
|
|
* +-----------+----------+--------+------------+------------------+
|
|
* | signature | checksum | length | name | data |
|
|
* |0 |1 |2 3|4 15|16 length-1|
|
|
* +-----------+----------+--------+------------+------------------+
|
|
*
|
|
* The 'data' section would look like (in bytes):
|
|
* +--------------+------------+-----------------------------------+
|
|
* | event_logged | sequence # | error log |
|
|
* |0 3|4 7|8 error_log_size-1|
|
|
* +--------------+------------+-----------------------------------+
|
|
*
|
|
* event_logged: 0 if event has not been logged to syslog, 1 if it has
|
|
* sequence #: The unique sequence # for each event. (until it wraps)
|
|
* error log: The error log from event_scan
|
|
*/
|
|
int nvram_write_os_partition(struct nvram_os_partition *part,
|
|
char *buff, int length,
|
|
unsigned int err_type,
|
|
unsigned int error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (part->index == -1)
|
|
return -ESPIPE;
|
|
|
|
if (length > part->size)
|
|
length = part->size;
|
|
|
|
info.error_type = cpu_to_be32(err_type);
|
|
info.seq_num = cpu_to_be32(error_log_cnt);
|
|
|
|
tmp_index = part->index;
|
|
|
|
rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = ppc_md.nvram_write(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvram_read_partition
|
|
*
|
|
* Reads nvram partition for at most 'length'
|
|
*/
|
|
int nvram_read_partition(struct nvram_os_partition *part, char *buff,
|
|
int length, unsigned int *err_type,
|
|
unsigned int *error_log_cnt)
|
|
{
|
|
int rc;
|
|
loff_t tmp_index;
|
|
struct err_log_info info;
|
|
|
|
if (part->index == -1)
|
|
return -1;
|
|
|
|
if (length > part->size)
|
|
length = part->size;
|
|
|
|
tmp_index = part->index;
|
|
|
|
if (part->os_partition) {
|
|
rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = ppc_md.nvram_read(buff, length, &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
if (part->os_partition) {
|
|
*error_log_cnt = be32_to_cpu(info.seq_num);
|
|
*err_type = be32_to_cpu(info.error_type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvram_init_os_partition
|
|
*
|
|
* This sets up a partition with an "OS" signature.
|
|
*
|
|
* The general strategy is the following:
|
|
* 1.) If a partition with the indicated name already exists...
|
|
* - If it's large enough, use it.
|
|
* - Otherwise, recycle it and keep going.
|
|
* 2.) Search for a free partition that is large enough.
|
|
* 3.) If there's not a free partition large enough, recycle any obsolete
|
|
* OS partitions and try again.
|
|
* 4.) Will first try getting a chunk that will satisfy the requested size.
|
|
* 5.) If a chunk of the requested size cannot be allocated, then try finding
|
|
* a chunk that will satisfy the minum needed.
|
|
*
|
|
* Returns 0 on success, else -1.
|
|
*/
|
|
int __init nvram_init_os_partition(struct nvram_os_partition *part)
|
|
{
|
|
loff_t p;
|
|
int size;
|
|
|
|
/* Look for ours */
|
|
p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
|
|
|
|
/* Found one but too small, remove it */
|
|
if (p && size < part->min_size) {
|
|
pr_info("nvram: Found too small %s partition,"
|
|
" removing it...\n", part->name);
|
|
nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
|
|
p = 0;
|
|
}
|
|
|
|
/* Create one if we didn't find */
|
|
if (!p) {
|
|
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
|
|
part->req_size, part->min_size);
|
|
if (p == -ENOSPC) {
|
|
pr_info("nvram: No room to create %s partition, "
|
|
"deleting any obsolete OS partitions...\n",
|
|
part->name);
|
|
nvram_remove_partition(NULL, NVRAM_SIG_OS,
|
|
nvram_os_partitions);
|
|
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
|
|
part->req_size, part->min_size);
|
|
}
|
|
}
|
|
|
|
if (p <= 0) {
|
|
pr_err("nvram: Failed to find or create %s"
|
|
" partition, err %d\n", part->name, (int)p);
|
|
return -1;
|
|
}
|
|
|
|
part->index = p;
|
|
part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Derived from logfs_compress() */
|
|
static int nvram_compress(const void *in, void *out, size_t inlen,
|
|
size_t outlen)
|
|
{
|
|
int err, ret;
|
|
|
|
ret = -EIO;
|
|
err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
|
|
MEM_LEVEL, Z_DEFAULT_STRATEGY);
|
|
if (err != Z_OK)
|
|
goto error;
|
|
|
|
stream.next_in = in;
|
|
stream.avail_in = inlen;
|
|
stream.total_in = 0;
|
|
stream.next_out = out;
|
|
stream.avail_out = outlen;
|
|
stream.total_out = 0;
|
|
|
|
err = zlib_deflate(&stream, Z_FINISH);
|
|
if (err != Z_STREAM_END)
|
|
goto error;
|
|
|
|
err = zlib_deflateEnd(&stream);
|
|
if (err != Z_OK)
|
|
goto error;
|
|
|
|
if (stream.total_out >= stream.total_in)
|
|
goto error;
|
|
|
|
ret = stream.total_out;
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/* Compress the text from big_oops_buf into oops_buf. */
|
|
static int zip_oops(size_t text_len)
|
|
{
|
|
struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
|
|
int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
|
|
oops_data_sz);
|
|
if (zipped_len < 0) {
|
|
pr_err("nvram: compression failed; returned %d\n", zipped_len);
|
|
pr_err("nvram: logging uncompressed oops/panic report\n");
|
|
return -1;
|
|
}
|
|
oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
|
|
oops_hdr->report_length = cpu_to_be16(zipped_len);
|
|
oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PSTORE
|
|
static int nvram_pstore_open(struct pstore_info *psi)
|
|
{
|
|
/* Reset the iterator to start reading partitions again */
|
|
read_type = -1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nvram_pstore_write - pstore write callback for nvram
|
|
* @record: pstore record to write, with @id to be set
|
|
*
|
|
* Called by pstore_dump() when an oops or panic report is logged in the
|
|
* printk buffer.
|
|
* Returns 0 on successful write.
|
|
*/
|
|
static int nvram_pstore_write(struct pstore_record *record)
|
|
{
|
|
int rc;
|
|
unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
|
|
struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
|
|
|
|
/* part 1 has the recent messages from printk buffer */
|
|
if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG))
|
|
return -1;
|
|
|
|
if (clobbering_unread_rtas_event())
|
|
return -1;
|
|
|
|
oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
|
|
oops_hdr->report_length = cpu_to_be16(record->size);
|
|
oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
|
|
|
|
if (record->compressed)
|
|
err_type = ERR_TYPE_KERNEL_PANIC_GZ;
|
|
|
|
rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
|
|
(int) (sizeof(*oops_hdr) + record->size), err_type,
|
|
record->count);
|
|
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
record->id = record->part;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reads the oops/panic report, rtas, of-config and common partition.
|
|
* Returns the length of the data we read from each partition.
|
|
* Returns 0 if we've been called before.
|
|
*/
|
|
static ssize_t nvram_pstore_read(struct pstore_record *record)
|
|
{
|
|
struct oops_log_info *oops_hdr;
|
|
unsigned int err_type, id_no, size = 0;
|
|
struct nvram_os_partition *part = NULL;
|
|
char *buff = NULL;
|
|
int sig = 0;
|
|
loff_t p;
|
|
|
|
read_type++;
|
|
|
|
switch (nvram_type_ids[read_type]) {
|
|
case PSTORE_TYPE_DMESG:
|
|
part = &oops_log_partition;
|
|
record->type = PSTORE_TYPE_DMESG;
|
|
break;
|
|
case PSTORE_TYPE_PPC_COMMON:
|
|
sig = NVRAM_SIG_SYS;
|
|
part = &common_partition;
|
|
record->type = PSTORE_TYPE_PPC_COMMON;
|
|
record->id = PSTORE_TYPE_PPC_COMMON;
|
|
record->time.tv_sec = 0;
|
|
record->time.tv_nsec = 0;
|
|
break;
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
case PSTORE_TYPE_PPC_RTAS:
|
|
part = &rtas_log_partition;
|
|
record->type = PSTORE_TYPE_PPC_RTAS;
|
|
record->time.tv_sec = last_rtas_event;
|
|
record->time.tv_nsec = 0;
|
|
break;
|
|
case PSTORE_TYPE_PPC_OF:
|
|
sig = NVRAM_SIG_OF;
|
|
part = &of_config_partition;
|
|
record->type = PSTORE_TYPE_PPC_OF;
|
|
record->id = PSTORE_TYPE_PPC_OF;
|
|
record->time.tv_sec = 0;
|
|
record->time.tv_nsec = 0;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
case PSTORE_TYPE_PPC_OPAL:
|
|
sig = NVRAM_SIG_FW;
|
|
part = &skiboot_partition;
|
|
record->type = PSTORE_TYPE_PPC_OPAL;
|
|
record->id = PSTORE_TYPE_PPC_OPAL;
|
|
record->time.tv_sec = 0;
|
|
record->time.tv_nsec = 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (!part->os_partition) {
|
|
p = nvram_find_partition(part->name, sig, &size);
|
|
if (p <= 0) {
|
|
pr_err("nvram: Failed to find partition %s, "
|
|
"err %d\n", part->name, (int)p);
|
|
return 0;
|
|
}
|
|
part->index = p;
|
|
part->size = size;
|
|
}
|
|
|
|
buff = kmalloc(part->size, GFP_KERNEL);
|
|
|
|
if (!buff)
|
|
return -ENOMEM;
|
|
|
|
if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
|
|
kfree(buff);
|
|
return 0;
|
|
}
|
|
|
|
record->count = 0;
|
|
|
|
if (part->os_partition)
|
|
record->id = id_no;
|
|
|
|
if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
|
|
size_t length, hdr_size;
|
|
|
|
oops_hdr = (struct oops_log_info *)buff;
|
|
if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
|
|
/* Old format oops header had 2-byte record size */
|
|
hdr_size = sizeof(u16);
|
|
length = be16_to_cpu(oops_hdr->version);
|
|
record->time.tv_sec = 0;
|
|
record->time.tv_nsec = 0;
|
|
} else {
|
|
hdr_size = sizeof(*oops_hdr);
|
|
length = be16_to_cpu(oops_hdr->report_length);
|
|
record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp);
|
|
record->time.tv_nsec = 0;
|
|
}
|
|
record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
|
|
kfree(buff);
|
|
if (record->buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
record->ecc_notice_size = 0;
|
|
if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
|
|
record->compressed = true;
|
|
else
|
|
record->compressed = false;
|
|
return length;
|
|
}
|
|
|
|
record->buf = buff;
|
|
return part->size;
|
|
}
|
|
|
|
static struct pstore_info nvram_pstore_info = {
|
|
.owner = THIS_MODULE,
|
|
.name = "nvram",
|
|
.flags = PSTORE_FLAGS_DMESG,
|
|
.open = nvram_pstore_open,
|
|
.read = nvram_pstore_read,
|
|
.write = nvram_pstore_write,
|
|
};
|
|
|
|
static int __init nvram_pstore_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (machine_is(pseries)) {
|
|
nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
|
|
nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
|
|
} else
|
|
nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
|
|
|
|
nvram_pstore_info.buf = oops_data;
|
|
nvram_pstore_info.bufsize = oops_data_sz;
|
|
|
|
rc = pstore_register(&nvram_pstore_info);
|
|
if (rc && (rc != -EPERM))
|
|
/* Print error only when pstore.backend == nvram */
|
|
pr_err("nvram: pstore_register() failed, returned %d. "
|
|
"Defaults to kmsg_dump\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
#else
|
|
static int __init nvram_pstore_init(void)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
void __init nvram_init_oops_partition(int rtas_partition_exists)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvram_init_os_partition(&oops_log_partition);
|
|
if (rc != 0) {
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
if (!rtas_partition_exists) {
|
|
pr_err("nvram: Failed to initialize oops partition!");
|
|
return;
|
|
}
|
|
pr_notice("nvram: Using %s partition to log both"
|
|
" RTAS errors and oops/panic reports\n",
|
|
rtas_log_partition.name);
|
|
memcpy(&oops_log_partition, &rtas_log_partition,
|
|
sizeof(rtas_log_partition));
|
|
#else
|
|
pr_err("nvram: Failed to initialize oops partition!");
|
|
return;
|
|
#endif
|
|
}
|
|
oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
|
|
if (!oops_buf) {
|
|
pr_err("nvram: No memory for %s partition\n",
|
|
oops_log_partition.name);
|
|
return;
|
|
}
|
|
oops_data = oops_buf + sizeof(struct oops_log_info);
|
|
oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
|
|
|
|
rc = nvram_pstore_init();
|
|
|
|
if (!rc)
|
|
return;
|
|
|
|
/*
|
|
* Figure compression (preceded by elimination of each line's <n>
|
|
* severity prefix) will reduce the oops/panic report to at most
|
|
* 45% of its original size.
|
|
*/
|
|
big_oops_buf_sz = (oops_data_sz * 100) / 45;
|
|
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
|
|
if (big_oops_buf) {
|
|
stream.workspace = kmalloc(zlib_deflate_workspacesize(
|
|
WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
|
|
if (!stream.workspace) {
|
|
pr_err("nvram: No memory for compression workspace; "
|
|
"skipping compression of %s partition data\n",
|
|
oops_log_partition.name);
|
|
kfree(big_oops_buf);
|
|
big_oops_buf = NULL;
|
|
}
|
|
} else {
|
|
pr_err("No memory for uncompressed %s data; "
|
|
"skipping compression\n", oops_log_partition.name);
|
|
stream.workspace = NULL;
|
|
}
|
|
|
|
rc = kmsg_dump_register(&nvram_kmsg_dumper);
|
|
if (rc != 0) {
|
|
pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
|
|
kfree(oops_buf);
|
|
kfree(big_oops_buf);
|
|
kfree(stream.workspace);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is our kmsg_dump callback, called after an oops or panic report
|
|
* has been written to the printk buffer. We want to capture as much
|
|
* of the printk buffer as possible. First, capture as much as we can
|
|
* that we think will compress sufficiently to fit in the lnx,oops-log
|
|
* partition. If that's too much, go back and capture uncompressed text.
|
|
*/
|
|
static void oops_to_nvram(struct kmsg_dumper *dumper,
|
|
enum kmsg_dump_reason reason)
|
|
{
|
|
struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
|
|
static unsigned int oops_count = 0;
|
|
static struct kmsg_dump_iter iter;
|
|
static bool panicking = false;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
size_t text_len;
|
|
unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
|
|
int rc = -1;
|
|
|
|
switch (reason) {
|
|
case KMSG_DUMP_SHUTDOWN:
|
|
/* These are almost always orderly shutdowns. */
|
|
return;
|
|
case KMSG_DUMP_OOPS:
|
|
break;
|
|
case KMSG_DUMP_PANIC:
|
|
panicking = true;
|
|
break;
|
|
case KMSG_DUMP_EMERG:
|
|
if (panicking)
|
|
/* Panic report already captured. */
|
|
return;
|
|
break;
|
|
default:
|
|
pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
|
|
__func__, (int) reason);
|
|
return;
|
|
}
|
|
|
|
if (clobbering_unread_rtas_event())
|
|
return;
|
|
|
|
if (!spin_trylock_irqsave(&lock, flags))
|
|
return;
|
|
|
|
if (big_oops_buf) {
|
|
kmsg_dump_rewind(&iter);
|
|
kmsg_dump_get_buffer(&iter, false,
|
|
big_oops_buf, big_oops_buf_sz, &text_len);
|
|
rc = zip_oops(text_len);
|
|
}
|
|
if (rc != 0) {
|
|
kmsg_dump_rewind(&iter);
|
|
kmsg_dump_get_buffer(&iter, false,
|
|
oops_data, oops_data_sz, &text_len);
|
|
err_type = ERR_TYPE_KERNEL_PANIC;
|
|
oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
|
|
oops_hdr->report_length = cpu_to_be16(text_len);
|
|
oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
|
|
}
|
|
|
|
(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
|
|
(int) (sizeof(*oops_hdr) + text_len), err_type,
|
|
++oops_count);
|
|
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
}
|
|
|
|
#ifdef DEBUG_NVRAM
|
|
static void __init nvram_print_partitions(char * label)
|
|
{
|
|
struct nvram_partition * tmp_part;
|
|
|
|
printk(KERN_WARNING "--------%s---------\n", label);
|
|
printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
|
|
list_for_each_entry(tmp_part, &nvram_partitions, partition) {
|
|
printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n",
|
|
tmp_part->index, tmp_part->header.signature,
|
|
tmp_part->header.checksum, tmp_part->header.length,
|
|
tmp_part->header.name);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static int __init nvram_write_header(struct nvram_partition * part)
|
|
{
|
|
loff_t tmp_index;
|
|
int rc;
|
|
struct nvram_header phead;
|
|
|
|
memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
|
|
phead.length = cpu_to_be16(phead.length);
|
|
|
|
tmp_index = part->index;
|
|
rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static unsigned char __init nvram_checksum(struct nvram_header *p)
|
|
{
|
|
unsigned int c_sum, c_sum2;
|
|
unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
|
|
c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
|
|
|
|
/* The sum may have spilled into the 3rd byte. Fold it back. */
|
|
c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
|
|
/* The sum cannot exceed 2 bytes. Fold it into a checksum */
|
|
c_sum2 = (c_sum >> 8) + (c_sum << 8);
|
|
c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
|
|
return c_sum;
|
|
}
|
|
|
|
/*
|
|
* Per the criteria passed via nvram_remove_partition(), should this
|
|
* partition be removed? 1=remove, 0=keep
|
|
*/
|
|
static int __init nvram_can_remove_partition(struct nvram_partition *part,
|
|
const char *name, int sig, const char *exceptions[])
|
|
{
|
|
if (part->header.signature != sig)
|
|
return 0;
|
|
if (name) {
|
|
if (strncmp(name, part->header.name, 12))
|
|
return 0;
|
|
} else if (exceptions) {
|
|
const char **except;
|
|
for (except = exceptions; *except; except++) {
|
|
if (!strncmp(*except, part->header.name, 12))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* nvram_remove_partition - Remove one or more partitions in nvram
|
|
* @name: name of the partition to remove, or NULL for a
|
|
* signature only match
|
|
* @sig: signature of the partition(s) to remove
|
|
* @exceptions: When removing all partitions with a matching signature,
|
|
* leave these alone.
|
|
*/
|
|
|
|
int __init nvram_remove_partition(const char *name, int sig,
|
|
const char *exceptions[])
|
|
{
|
|
struct nvram_partition *part, *prev, *tmp;
|
|
int rc;
|
|
|
|
list_for_each_entry(part, &nvram_partitions, partition) {
|
|
if (!nvram_can_remove_partition(part, name, sig, exceptions))
|
|
continue;
|
|
|
|
/* Make partition a free partition */
|
|
part->header.signature = NVRAM_SIG_FREE;
|
|
memset(part->header.name, 'w', 12);
|
|
part->header.checksum = nvram_checksum(&part->header);
|
|
rc = nvram_write_header(part);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Merge contiguous ones */
|
|
prev = NULL;
|
|
list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
|
|
if (part->header.signature != NVRAM_SIG_FREE) {
|
|
prev = NULL;
|
|
continue;
|
|
}
|
|
if (prev) {
|
|
prev->header.length += part->header.length;
|
|
prev->header.checksum = nvram_checksum(&prev->header);
|
|
rc = nvram_write_header(prev);
|
|
if (rc <= 0) {
|
|
printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
list_del(&part->partition);
|
|
kfree(part);
|
|
} else
|
|
prev = part;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nvram_create_partition - Create a partition in nvram
|
|
* @name: name of the partition to create
|
|
* @sig: signature of the partition to create
|
|
* @req_size: size of data to allocate in bytes
|
|
* @min_size: minimum acceptable size (0 means req_size)
|
|
*
|
|
* Returns a negative error code or a positive nvram index
|
|
* of the beginning of the data area of the newly created
|
|
* partition. If you provided a min_size smaller than req_size
|
|
* you need to query for the actual size yourself after the
|
|
* call using nvram_partition_get_size().
|
|
*/
|
|
loff_t __init nvram_create_partition(const char *name, int sig,
|
|
int req_size, int min_size)
|
|
{
|
|
struct nvram_partition *part;
|
|
struct nvram_partition *new_part;
|
|
struct nvram_partition *free_part = NULL;
|
|
static char nv_init_vals[16];
|
|
loff_t tmp_index;
|
|
long size = 0;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
|
|
|
|
/* Convert sizes from bytes to blocks */
|
|
req_size = ALIGN(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
|
|
min_size = ALIGN(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
|
|
|
|
/* If no minimum size specified, make it the same as the
|
|
* requested size
|
|
*/
|
|
if (min_size == 0)
|
|
min_size = req_size;
|
|
if (min_size > req_size)
|
|
return -EINVAL;
|
|
|
|
/* Now add one block to each for the header */
|
|
req_size += 1;
|
|
min_size += 1;
|
|
|
|
/* Find a free partition that will give us the maximum needed size
|
|
If can't find one that will give us the minimum size needed */
|
|
list_for_each_entry(part, &nvram_partitions, partition) {
|
|
if (part->header.signature != NVRAM_SIG_FREE)
|
|
continue;
|
|
|
|
if (part->header.length >= req_size) {
|
|
size = req_size;
|
|
free_part = part;
|
|
break;
|
|
}
|
|
if (part->header.length > size &&
|
|
part->header.length >= min_size) {
|
|
size = part->header.length;
|
|
free_part = part;
|
|
}
|
|
}
|
|
if (!size)
|
|
return -ENOSPC;
|
|
|
|
/* Create our OS partition */
|
|
new_part = kzalloc(sizeof(*new_part), GFP_KERNEL);
|
|
if (!new_part) {
|
|
pr_err("%s: kmalloc failed\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
new_part->index = free_part->index;
|
|
new_part->header.signature = sig;
|
|
new_part->header.length = size;
|
|
memcpy(new_part->header.name, name, strnlen(name, sizeof(new_part->header.name)));
|
|
new_part->header.checksum = nvram_checksum(&new_part->header);
|
|
|
|
rc = nvram_write_header(new_part);
|
|
if (rc <= 0) {
|
|
pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
|
|
kfree(new_part);
|
|
return rc;
|
|
}
|
|
list_add_tail(&new_part->partition, &free_part->partition);
|
|
|
|
/* Adjust or remove the partition we stole the space from */
|
|
if (free_part->header.length > size) {
|
|
free_part->index += size * NVRAM_BLOCK_LEN;
|
|
free_part->header.length -= size;
|
|
free_part->header.checksum = nvram_checksum(&free_part->header);
|
|
rc = nvram_write_header(free_part);
|
|
if (rc <= 0) {
|
|
pr_err("%s: nvram_write_header failed (%d)\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
} else {
|
|
list_del(&free_part->partition);
|
|
kfree(free_part);
|
|
}
|
|
|
|
/* Clear the new partition */
|
|
for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
|
|
tmp_index < ((size - 1) * NVRAM_BLOCK_LEN);
|
|
tmp_index += NVRAM_BLOCK_LEN) {
|
|
rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
|
|
if (rc <= 0) {
|
|
pr_err("%s: nvram_write failed (%d)\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return new_part->index + NVRAM_HEADER_LEN;
|
|
}
|
|
|
|
/**
|
|
* nvram_get_partition_size - Get the data size of an nvram partition
|
|
* @data_index: This is the offset of the start of the data of
|
|
* the partition. The same value that is returned by
|
|
* nvram_create_partition().
|
|
*/
|
|
int nvram_get_partition_size(loff_t data_index)
|
|
{
|
|
struct nvram_partition *part;
|
|
|
|
list_for_each_entry(part, &nvram_partitions, partition) {
|
|
if (part->index + NVRAM_HEADER_LEN == data_index)
|
|
return (part->header.length - 1) * NVRAM_BLOCK_LEN;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
* nvram_find_partition - Find an nvram partition by signature and name
|
|
* @name: Name of the partition or NULL for any name
|
|
* @sig: Signature to test against
|
|
* @out_size: if non-NULL, returns the size of the data part of the partition
|
|
*/
|
|
loff_t nvram_find_partition(const char *name, int sig, int *out_size)
|
|
{
|
|
struct nvram_partition *p;
|
|
|
|
list_for_each_entry(p, &nvram_partitions, partition) {
|
|
if (p->header.signature == sig &&
|
|
(!name || !strncmp(p->header.name, name, 12))) {
|
|
if (out_size)
|
|
*out_size = (p->header.length - 1) *
|
|
NVRAM_BLOCK_LEN;
|
|
return p->index + NVRAM_HEADER_LEN;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __init nvram_scan_partitions(void)
|
|
{
|
|
loff_t cur_index = 0;
|
|
struct nvram_header phead;
|
|
struct nvram_partition * tmp_part;
|
|
unsigned char c_sum;
|
|
char * header;
|
|
int total_size;
|
|
int err;
|
|
|
|
if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
|
|
return -ENODEV;
|
|
total_size = ppc_md.nvram_size();
|
|
|
|
header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
|
|
if (!header) {
|
|
printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
while (cur_index < total_size) {
|
|
|
|
err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
|
|
if (err != NVRAM_HEADER_LEN) {
|
|
printk(KERN_ERR "nvram_scan_partitions: Error parsing "
|
|
"nvram partitions\n");
|
|
goto out;
|
|
}
|
|
|
|
cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
|
|
|
|
memcpy(&phead, header, NVRAM_HEADER_LEN);
|
|
|
|
phead.length = be16_to_cpu(phead.length);
|
|
|
|
err = 0;
|
|
c_sum = nvram_checksum(&phead);
|
|
if (c_sum != phead.checksum) {
|
|
printk(KERN_WARNING "WARNING: nvram partition checksum"
|
|
" was %02x, should be %02x!\n",
|
|
phead.checksum, c_sum);
|
|
printk(KERN_WARNING "Terminating nvram partition scan\n");
|
|
goto out;
|
|
}
|
|
if (!phead.length) {
|
|
printk(KERN_WARNING "WARNING: nvram corruption "
|
|
"detected: 0-length partition\n");
|
|
goto out;
|
|
}
|
|
tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL);
|
|
err = -ENOMEM;
|
|
if (!tmp_part) {
|
|
printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
|
|
goto out;
|
|
}
|
|
|
|
memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
|
|
tmp_part->index = cur_index;
|
|
list_add_tail(&tmp_part->partition, &nvram_partitions);
|
|
|
|
cur_index += phead.length * NVRAM_BLOCK_LEN;
|
|
}
|
|
err = 0;
|
|
|
|
#ifdef DEBUG_NVRAM
|
|
nvram_print_partitions("NVRAM Partitions");
|
|
#endif
|
|
|
|
out:
|
|
kfree(header);
|
|
return err;
|
|
}
|