1563 lines
38 KiB
C
1563 lines
38 KiB
C
|
// SPDX-License-Identifier: GPL-2.0+
|
||
|
/*
|
||
|
* Compaq Hot Plug Controller Driver
|
||
|
*
|
||
|
* Copyright (C) 1995,2001 Compaq Computer Corporation
|
||
|
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
|
||
|
* Copyright (C) 2001 IBM Corp.
|
||
|
*
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Send feedback to <greg@kroah.com>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/pci_hotplug.h>
|
||
|
#include "../pci.h"
|
||
|
#include "cpqphp.h"
|
||
|
#include "cpqphp_nvram.h"
|
||
|
|
||
|
|
||
|
u8 cpqhp_nic_irq;
|
||
|
u8 cpqhp_disk_irq;
|
||
|
|
||
|
static u16 unused_IRQ;
|
||
|
|
||
|
/*
|
||
|
* detect_HRT_floating_pointer
|
||
|
*
|
||
|
* find the Hot Plug Resource Table in the specified region of memory.
|
||
|
*
|
||
|
*/
|
||
|
static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
|
||
|
{
|
||
|
void __iomem *fp;
|
||
|
void __iomem *endp;
|
||
|
u8 temp1, temp2, temp3, temp4;
|
||
|
int status = 0;
|
||
|
|
||
|
endp = (end - sizeof(struct hrt) + 1);
|
||
|
|
||
|
for (fp = begin; fp <= endp; fp += 16) {
|
||
|
temp1 = readb(fp + SIG0);
|
||
|
temp2 = readb(fp + SIG1);
|
||
|
temp3 = readb(fp + SIG2);
|
||
|
temp4 = readb(fp + SIG3);
|
||
|
if (temp1 == '$' &&
|
||
|
temp2 == 'H' &&
|
||
|
temp3 == 'R' &&
|
||
|
temp4 == 'T') {
|
||
|
status = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!status)
|
||
|
fp = NULL;
|
||
|
|
||
|
dbg("Discovered Hotplug Resource Table at %p\n", fp);
|
||
|
return fp;
|
||
|
}
|
||
|
|
||
|
|
||
|
int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
|
||
|
{
|
||
|
struct pci_bus *child;
|
||
|
int num;
|
||
|
|
||
|
pci_lock_rescan_remove();
|
||
|
|
||
|
if (func->pci_dev == NULL)
|
||
|
func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
|
||
|
PCI_DEVFN(func->device,
|
||
|
func->function));
|
||
|
|
||
|
/* No pci device, we need to create it then */
|
||
|
if (func->pci_dev == NULL) {
|
||
|
dbg("INFO: pci_dev still null\n");
|
||
|
|
||
|
num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
|
||
|
if (num)
|
||
|
pci_bus_add_devices(ctrl->pci_dev->bus);
|
||
|
|
||
|
func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
|
||
|
PCI_DEVFN(func->device,
|
||
|
func->function));
|
||
|
if (func->pci_dev == NULL) {
|
||
|
dbg("ERROR: pci_dev still null\n");
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
pci_hp_add_bridge(func->pci_dev);
|
||
|
child = func->pci_dev->subordinate;
|
||
|
if (child)
|
||
|
pci_bus_add_devices(child);
|
||
|
}
|
||
|
|
||
|
pci_dev_put(func->pci_dev);
|
||
|
|
||
|
out:
|
||
|
pci_unlock_rescan_remove();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int cpqhp_unconfigure_device(struct pci_func *func)
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
|
||
|
|
||
|
pci_lock_rescan_remove();
|
||
|
for (j = 0; j < 8 ; j++) {
|
||
|
struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
|
||
|
func->bus,
|
||
|
PCI_DEVFN(func->device,
|
||
|
j));
|
||
|
if (temp) {
|
||
|
pci_dev_put(temp);
|
||
|
pci_stop_and_remove_bus_device(temp);
|
||
|
}
|
||
|
}
|
||
|
pci_unlock_rescan_remove();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
|
||
|
{
|
||
|
u32 vendID = 0;
|
||
|
|
||
|
if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
|
||
|
return -1;
|
||
|
if (vendID == 0xffffffff)
|
||
|
return -1;
|
||
|
return pci_bus_read_config_dword(bus, devfn, offset, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_set_irq
|
||
|
*
|
||
|
* @bus_num: bus number of PCI device
|
||
|
* @dev_num: device number of PCI device
|
||
|
* @slot: pointer to u8 where slot number will be returned
|
||
|
*/
|
||
|
int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
|
||
|
if (cpqhp_legacy_mode) {
|
||
|
struct pci_dev *fakedev;
|
||
|
struct pci_bus *fakebus;
|
||
|
u16 temp_word;
|
||
|
|
||
|
fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
|
||
|
fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
|
||
|
if (!fakedev || !fakebus) {
|
||
|
kfree(fakedev);
|
||
|
kfree(fakebus);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
fakedev->devfn = dev_num << 3;
|
||
|
fakedev->bus = fakebus;
|
||
|
fakebus->number = bus_num;
|
||
|
dbg("%s: dev %d, bus %d, pin %d, num %d\n",
|
||
|
__func__, dev_num, bus_num, int_pin, irq_num);
|
||
|
rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
|
||
|
kfree(fakedev);
|
||
|
kfree(fakebus);
|
||
|
dbg("%s: rc %d\n", __func__, rc);
|
||
|
if (!rc)
|
||
|
return !rc;
|
||
|
|
||
|
/* set the Edge Level Control Register (ELCR) */
|
||
|
temp_word = inb(0x4d0);
|
||
|
temp_word |= inb(0x4d1) << 8;
|
||
|
|
||
|
temp_word |= 0x01 << irq_num;
|
||
|
|
||
|
/* This should only be for x86 as it sets the Edge Level
|
||
|
* Control Register
|
||
|
*/
|
||
|
outb((u8)(temp_word & 0xFF), 0x4d0);
|
||
|
outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
|
||
|
rc = 0;
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
|
||
|
{
|
||
|
u16 tdevice;
|
||
|
u32 work;
|
||
|
u8 tbus;
|
||
|
|
||
|
ctrl->pci_bus->number = bus_num;
|
||
|
|
||
|
for (tdevice = 0; tdevice < 0xFF; tdevice++) {
|
||
|
/* Scan for access first */
|
||
|
if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
|
||
|
continue;
|
||
|
dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
|
||
|
/* Yep we got one. Not a bridge ? */
|
||
|
if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
|
||
|
*dev_num = tdevice;
|
||
|
dbg("found it !\n");
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
for (tdevice = 0; tdevice < 0xFF; tdevice++) {
|
||
|
/* Scan for access first */
|
||
|
if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
|
||
|
continue;
|
||
|
dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
|
||
|
/* Yep we got one. bridge ? */
|
||
|
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
|
||
|
/* XXX: no recursion, wtf? */
|
||
|
dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
|
||
|
{
|
||
|
int loop, len;
|
||
|
u32 work;
|
||
|
u8 tbus, tdevice, tslot;
|
||
|
|
||
|
len = cpqhp_routing_table_length();
|
||
|
for (loop = 0; loop < len; ++loop) {
|
||
|
tbus = cpqhp_routing_table->slots[loop].bus;
|
||
|
tdevice = cpqhp_routing_table->slots[loop].devfn;
|
||
|
tslot = cpqhp_routing_table->slots[loop].slot;
|
||
|
|
||
|
if (tslot == slot) {
|
||
|
*bus_num = tbus;
|
||
|
*dev_num = tdevice;
|
||
|
ctrl->pci_bus->number = tbus;
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
|
||
|
if (!nobridge || (work == 0xffffffff))
|
||
|
return 0;
|
||
|
|
||
|
dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
|
||
|
dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
|
||
|
|
||
|
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
|
||
|
dbg("Scan bus for Non Bridge: bus %d\n", tbus);
|
||
|
if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
|
||
|
*bus_num = tbus;
|
||
|
return 0;
|
||
|
}
|
||
|
} else
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
|
||
|
int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
|
||
|
{
|
||
|
/* plain (bridges allowed) */
|
||
|
return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* More PCI configuration routines; this time centered around hotplug
|
||
|
* controller
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_save_config
|
||
|
*
|
||
|
* Reads configuration for all slots in a PCI bus and saves info.
|
||
|
*
|
||
|
* Note: For non-hot plug buses, the slot # saved is the device #
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
|
||
|
{
|
||
|
long rc;
|
||
|
u8 class_code;
|
||
|
u8 header_type;
|
||
|
u32 ID;
|
||
|
u8 secondary_bus;
|
||
|
struct pci_func *new_slot;
|
||
|
int sub_bus;
|
||
|
int FirstSupported;
|
||
|
int LastSupported;
|
||
|
int max_functions;
|
||
|
int function;
|
||
|
u8 DevError;
|
||
|
int device = 0;
|
||
|
int cloop = 0;
|
||
|
int stop_it;
|
||
|
int index;
|
||
|
u16 devfn;
|
||
|
|
||
|
/* Decide which slots are supported */
|
||
|
|
||
|
if (is_hot_plug) {
|
||
|
/*
|
||
|
* is_hot_plug is the slot mask
|
||
|
*/
|
||
|
FirstSupported = is_hot_plug >> 4;
|
||
|
LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
|
||
|
} else {
|
||
|
FirstSupported = 0;
|
||
|
LastSupported = 0x1F;
|
||
|
}
|
||
|
|
||
|
/* Save PCI configuration space for all devices in supported slots */
|
||
|
ctrl->pci_bus->number = busnumber;
|
||
|
for (device = FirstSupported; device <= LastSupported; device++) {
|
||
|
ID = 0xFFFFFFFF;
|
||
|
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
|
||
|
|
||
|
if (ID == 0xFFFFFFFF) {
|
||
|
if (is_hot_plug) {
|
||
|
/* Setup slot structure with entry for empty
|
||
|
* slot
|
||
|
*/
|
||
|
new_slot = cpqhp_slot_create(busnumber);
|
||
|
if (new_slot == NULL)
|
||
|
return 1;
|
||
|
|
||
|
new_slot->bus = (u8) busnumber;
|
||
|
new_slot->device = (u8) device;
|
||
|
new_slot->function = 0;
|
||
|
new_slot->is_a_board = 0;
|
||
|
new_slot->presence_save = 0;
|
||
|
new_slot->switch_save = 0;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/* If multi-function device, set max_functions to 8 */
|
||
|
if (header_type & 0x80)
|
||
|
max_functions = 8;
|
||
|
else
|
||
|
max_functions = 1;
|
||
|
|
||
|
function = 0;
|
||
|
|
||
|
do {
|
||
|
DevError = 0;
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
/* Recurse the subordinate bus
|
||
|
* get the subordinate bus number
|
||
|
*/
|
||
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
|
||
|
if (rc) {
|
||
|
return rc;
|
||
|
} else {
|
||
|
sub_bus = (int) secondary_bus;
|
||
|
|
||
|
/* Save secondary bus cfg spc
|
||
|
* with this recursive call.
|
||
|
*/
|
||
|
rc = cpqhp_save_config(ctrl, sub_bus, 0);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
ctrl->pci_bus->number = busnumber;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
index = 0;
|
||
|
new_slot = cpqhp_slot_find(busnumber, device, index++);
|
||
|
while (new_slot &&
|
||
|
(new_slot->function != (u8) function))
|
||
|
new_slot = cpqhp_slot_find(busnumber, device, index++);
|
||
|
|
||
|
if (!new_slot) {
|
||
|
/* Setup slot structure. */
|
||
|
new_slot = cpqhp_slot_create(busnumber);
|
||
|
if (new_slot == NULL)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
new_slot->bus = (u8) busnumber;
|
||
|
new_slot->device = (u8) device;
|
||
|
new_slot->function = (u8) function;
|
||
|
new_slot->is_a_board = 1;
|
||
|
new_slot->switch_save = 0x10;
|
||
|
/* In case of unsupported board */
|
||
|
new_slot->status = DevError;
|
||
|
devfn = (new_slot->device << 3) | new_slot->function;
|
||
|
new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
|
||
|
new_slot->bus, devfn);
|
||
|
|
||
|
for (cloop = 0; cloop < 0x20; cloop++) {
|
||
|
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
pci_dev_put(new_slot->pci_dev);
|
||
|
|
||
|
function++;
|
||
|
|
||
|
stop_it = 0;
|
||
|
|
||
|
/* this loop skips to the next present function
|
||
|
* reading in Class Code and Header type.
|
||
|
*/
|
||
|
while ((function < max_functions) && (!stop_it)) {
|
||
|
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
|
||
|
if (ID == 0xFFFFFFFF) {
|
||
|
function++;
|
||
|
continue;
|
||
|
}
|
||
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
stop_it++;
|
||
|
}
|
||
|
|
||
|
} while (function < max_functions);
|
||
|
} /* End of FOR loop */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_save_slot_config
|
||
|
*
|
||
|
* Saves configuration info for all PCI devices in a given slot
|
||
|
* including subordinate buses.
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
|
||
|
{
|
||
|
long rc;
|
||
|
u8 class_code;
|
||
|
u8 header_type;
|
||
|
u32 ID;
|
||
|
u8 secondary_bus;
|
||
|
int sub_bus;
|
||
|
int max_functions;
|
||
|
int function = 0;
|
||
|
int cloop;
|
||
|
int stop_it;
|
||
|
|
||
|
ID = 0xFFFFFFFF;
|
||
|
|
||
|
ctrl->pci_bus->number = new_slot->bus;
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
|
||
|
|
||
|
if (ID == 0xFFFFFFFF)
|
||
|
return 2;
|
||
|
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
|
||
|
|
||
|
if (header_type & 0x80) /* Multi-function device */
|
||
|
max_functions = 8;
|
||
|
else
|
||
|
max_functions = 1;
|
||
|
|
||
|
while (function < max_functions) {
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
/* Recurse the subordinate bus */
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
|
||
|
|
||
|
sub_bus = (int) secondary_bus;
|
||
|
|
||
|
/* Save the config headers for the secondary
|
||
|
* bus.
|
||
|
*/
|
||
|
rc = cpqhp_save_config(ctrl, sub_bus, 0);
|
||
|
if (rc)
|
||
|
return(rc);
|
||
|
ctrl->pci_bus->number = new_slot->bus;
|
||
|
|
||
|
}
|
||
|
|
||
|
new_slot->status = 0;
|
||
|
|
||
|
for (cloop = 0; cloop < 0x20; cloop++)
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
|
||
|
|
||
|
function++;
|
||
|
|
||
|
stop_it = 0;
|
||
|
|
||
|
/* this loop skips to the next present function
|
||
|
* reading in the Class Code and the Header type.
|
||
|
*/
|
||
|
while ((function < max_functions) && (!stop_it)) {
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
|
||
|
|
||
|
if (ID == 0xFFFFFFFF)
|
||
|
function++;
|
||
|
else {
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
|
||
|
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
|
||
|
stop_it++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_save_base_addr_length
|
||
|
*
|
||
|
* Saves the length of all base address registers for the
|
||
|
* specified slot. this is for hot plug REPLACE
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
|
||
|
{
|
||
|
u8 cloop;
|
||
|
u8 header_type;
|
||
|
u8 secondary_bus;
|
||
|
u8 type;
|
||
|
int sub_bus;
|
||
|
u32 temp_register;
|
||
|
u32 base;
|
||
|
u32 rc;
|
||
|
struct pci_func *next;
|
||
|
int index = 0;
|
||
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
||
|
unsigned int devfn;
|
||
|
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
|
||
|
while (func != NULL) {
|
||
|
pci_bus->number = func->bus;
|
||
|
devfn = PCI_DEVFN(func->device, func->function);
|
||
|
|
||
|
/* Check for Bridge */
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
||
|
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
|
||
|
|
||
|
sub_bus = (int) secondary_bus;
|
||
|
|
||
|
next = cpqhp_slot_list[sub_bus];
|
||
|
|
||
|
while (next != NULL) {
|
||
|
rc = cpqhp_save_base_addr_length(ctrl, next);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
next = next->next;
|
||
|
}
|
||
|
pci_bus->number = func->bus;
|
||
|
|
||
|
/* FIXME: this loop is duplicated in the non-bridge
|
||
|
* case. The two could be rolled together Figure out
|
||
|
* IO and memory base lengths
|
||
|
*/
|
||
|
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
|
||
|
temp_register = 0xFFFFFFFF;
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
|
||
|
/* If this register is implemented */
|
||
|
if (base) {
|
||
|
if (base & 0x01L) {
|
||
|
/* IO base
|
||
|
* set base = amount of IO space
|
||
|
* requested
|
||
|
*/
|
||
|
base = base & 0xFFFFFFFE;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 1;
|
||
|
} else {
|
||
|
/* memory base */
|
||
|
base = base & 0xFFFFFFF0;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 0;
|
||
|
}
|
||
|
} else {
|
||
|
base = 0x0L;
|
||
|
type = 0;
|
||
|
}
|
||
|
|
||
|
/* Save information in slot structure */
|
||
|
func->base_length[(cloop - 0x10) >> 2] =
|
||
|
base;
|
||
|
func->base_type[(cloop - 0x10) >> 2] = type;
|
||
|
|
||
|
} /* End of base register loop */
|
||
|
|
||
|
} else if ((header_type & 0x7F) == 0x00) {
|
||
|
/* Figure out IO and memory base lengths */
|
||
|
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
|
||
|
temp_register = 0xFFFFFFFF;
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
|
||
|
|
||
|
/* If this register is implemented */
|
||
|
if (base) {
|
||
|
if (base & 0x01L) {
|
||
|
/* IO base
|
||
|
* base = amount of IO space
|
||
|
* requested
|
||
|
*/
|
||
|
base = base & 0xFFFFFFFE;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 1;
|
||
|
} else {
|
||
|
/* memory base
|
||
|
* base = amount of memory
|
||
|
* space requested
|
||
|
*/
|
||
|
base = base & 0xFFFFFFF0;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 0;
|
||
|
}
|
||
|
} else {
|
||
|
base = 0x0L;
|
||
|
type = 0;
|
||
|
}
|
||
|
|
||
|
/* Save information in slot structure */
|
||
|
func->base_length[(cloop - 0x10) >> 2] = base;
|
||
|
func->base_type[(cloop - 0x10) >> 2] = type;
|
||
|
|
||
|
} /* End of base register loop */
|
||
|
|
||
|
} else { /* Some other unknown header type */
|
||
|
}
|
||
|
|
||
|
/* find the next device in this slot */
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_save_used_resources
|
||
|
*
|
||
|
* Stores used resource information for existing boards. this is
|
||
|
* for boards that were in the system when this driver was loaded.
|
||
|
* this function is for hot plug ADD
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
|
||
|
{
|
||
|
u8 cloop;
|
||
|
u8 header_type;
|
||
|
u8 secondary_bus;
|
||
|
u8 temp_byte;
|
||
|
u8 b_base;
|
||
|
u8 b_length;
|
||
|
u16 command;
|
||
|
u16 save_command;
|
||
|
u16 w_base;
|
||
|
u16 w_length;
|
||
|
u32 temp_register;
|
||
|
u32 save_base;
|
||
|
u32 base;
|
||
|
int index = 0;
|
||
|
struct pci_resource *mem_node;
|
||
|
struct pci_resource *p_mem_node;
|
||
|
struct pci_resource *io_node;
|
||
|
struct pci_resource *bus_node;
|
||
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
||
|
unsigned int devfn;
|
||
|
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
|
||
|
while ((func != NULL) && func->is_a_board) {
|
||
|
pci_bus->number = func->bus;
|
||
|
devfn = PCI_DEVFN(func->device, func->function);
|
||
|
|
||
|
/* Save the command register */
|
||
|
pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
|
||
|
|
||
|
/* disable card */
|
||
|
command = 0x00;
|
||
|
pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
|
||
|
|
||
|
/* Check for Bridge */
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
||
|
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
/* Clear Bridge Control Register */
|
||
|
command = 0x00;
|
||
|
pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
|
||
|
|
||
|
bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
|
||
|
if (!bus_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
bus_node->base = secondary_bus;
|
||
|
bus_node->length = temp_byte - secondary_bus + 1;
|
||
|
|
||
|
bus_node->next = func->bus_head;
|
||
|
func->bus_head = bus_node;
|
||
|
|
||
|
/* Save IO base and Limit registers */
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
|
||
|
|
||
|
if ((b_base <= b_length) && (save_command & 0x01)) {
|
||
|
io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
|
||
|
if (!io_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
io_node->base = (b_base & 0xF0) << 8;
|
||
|
io_node->length = (b_length - b_base + 0x10) << 8;
|
||
|
|
||
|
io_node->next = func->io_head;
|
||
|
func->io_head = io_node;
|
||
|
}
|
||
|
|
||
|
/* Save memory base and Limit registers */
|
||
|
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
|
||
|
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
|
||
|
|
||
|
if ((w_base <= w_length) && (save_command & 0x02)) {
|
||
|
mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
|
||
|
if (!mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mem_node->base = w_base << 16;
|
||
|
mem_node->length = (w_length - w_base + 0x10) << 16;
|
||
|
|
||
|
mem_node->next = func->mem_head;
|
||
|
func->mem_head = mem_node;
|
||
|
}
|
||
|
|
||
|
/* Save prefetchable memory base and Limit registers */
|
||
|
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
|
||
|
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
|
||
|
|
||
|
if ((w_base <= w_length) && (save_command & 0x02)) {
|
||
|
p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
|
||
|
if (!p_mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
p_mem_node->base = w_base << 16;
|
||
|
p_mem_node->length = (w_length - w_base + 0x10) << 16;
|
||
|
|
||
|
p_mem_node->next = func->p_mem_head;
|
||
|
func->p_mem_head = p_mem_node;
|
||
|
}
|
||
|
/* Figure out IO and memory base lengths */
|
||
|
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
|
||
|
|
||
|
temp_register = 0xFFFFFFFF;
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
|
||
|
|
||
|
temp_register = base;
|
||
|
|
||
|
/* If this register is implemented */
|
||
|
if (base) {
|
||
|
if (((base & 0x03L) == 0x01)
|
||
|
&& (save_command & 0x01)) {
|
||
|
/* IO base
|
||
|
* set temp_register = amount
|
||
|
* of IO space requested
|
||
|
*/
|
||
|
temp_register = base & 0xFFFFFFFE;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
io_node = kmalloc(sizeof(*io_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!io_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
io_node->base =
|
||
|
save_base & (~0x03L);
|
||
|
io_node->length = temp_register;
|
||
|
|
||
|
io_node->next = func->io_head;
|
||
|
func->io_head = io_node;
|
||
|
} else
|
||
|
if (((base & 0x0BL) == 0x08)
|
||
|
&& (save_command & 0x02)) {
|
||
|
/* prefetchable memory base */
|
||
|
temp_register = base & 0xFFFFFFF0;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
p_mem_node = kmalloc(sizeof(*p_mem_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!p_mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
p_mem_node->base = save_base & (~0x0FL);
|
||
|
p_mem_node->length = temp_register;
|
||
|
|
||
|
p_mem_node->next = func->p_mem_head;
|
||
|
func->p_mem_head = p_mem_node;
|
||
|
} else
|
||
|
if (((base & 0x0BL) == 0x00)
|
||
|
&& (save_command & 0x02)) {
|
||
|
/* prefetchable memory base */
|
||
|
temp_register = base & 0xFFFFFFF0;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
mem_node = kmalloc(sizeof(*mem_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mem_node->base = save_base & (~0x0FL);
|
||
|
mem_node->length = temp_register;
|
||
|
|
||
|
mem_node->next = func->mem_head;
|
||
|
func->mem_head = mem_node;
|
||
|
} else
|
||
|
return(1);
|
||
|
}
|
||
|
} /* End of base register loop */
|
||
|
/* Standard header */
|
||
|
} else if ((header_type & 0x7F) == 0x00) {
|
||
|
/* Figure out IO and memory base lengths */
|
||
|
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
|
||
|
|
||
|
temp_register = 0xFFFFFFFF;
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
|
||
|
|
||
|
temp_register = base;
|
||
|
|
||
|
/* If this register is implemented */
|
||
|
if (base) {
|
||
|
if (((base & 0x03L) == 0x01)
|
||
|
&& (save_command & 0x01)) {
|
||
|
/* IO base
|
||
|
* set temp_register = amount
|
||
|
* of IO space requested
|
||
|
*/
|
||
|
temp_register = base & 0xFFFFFFFE;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
io_node = kmalloc(sizeof(*io_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!io_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
io_node->base = save_base & (~0x01L);
|
||
|
io_node->length = temp_register;
|
||
|
|
||
|
io_node->next = func->io_head;
|
||
|
func->io_head = io_node;
|
||
|
} else
|
||
|
if (((base & 0x0BL) == 0x08)
|
||
|
&& (save_command & 0x02)) {
|
||
|
/* prefetchable memory base */
|
||
|
temp_register = base & 0xFFFFFFF0;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
p_mem_node = kmalloc(sizeof(*p_mem_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!p_mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
p_mem_node->base = save_base & (~0x0FL);
|
||
|
p_mem_node->length = temp_register;
|
||
|
|
||
|
p_mem_node->next = func->p_mem_head;
|
||
|
func->p_mem_head = p_mem_node;
|
||
|
} else
|
||
|
if (((base & 0x0BL) == 0x00)
|
||
|
&& (save_command & 0x02)) {
|
||
|
/* prefetchable memory base */
|
||
|
temp_register = base & 0xFFFFFFF0;
|
||
|
temp_register = (~temp_register) + 1;
|
||
|
|
||
|
mem_node = kmalloc(sizeof(*mem_node),
|
||
|
GFP_KERNEL);
|
||
|
if (!mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mem_node->base = save_base & (~0x0FL);
|
||
|
mem_node->length = temp_register;
|
||
|
|
||
|
mem_node->next = func->mem_head;
|
||
|
func->mem_head = mem_node;
|
||
|
} else
|
||
|
return(1);
|
||
|
}
|
||
|
} /* End of base register loop */
|
||
|
}
|
||
|
|
||
|
/* find the next device in this slot */
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_configure_board
|
||
|
*
|
||
|
* Copies saved configuration information to one slot.
|
||
|
* this is called recursively for bridge devices.
|
||
|
* this is for hot plug REPLACE!
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
|
||
|
{
|
||
|
int cloop;
|
||
|
u8 header_type;
|
||
|
u8 secondary_bus;
|
||
|
int sub_bus;
|
||
|
struct pci_func *next;
|
||
|
u32 temp;
|
||
|
u32 rc;
|
||
|
int index = 0;
|
||
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
||
|
unsigned int devfn;
|
||
|
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
|
||
|
while (func != NULL) {
|
||
|
pci_bus->number = func->bus;
|
||
|
devfn = PCI_DEVFN(func->device, func->function);
|
||
|
|
||
|
/* Start at the top of config space so that the control
|
||
|
* registers are programmed last
|
||
|
*/
|
||
|
for (cloop = 0x3C; cloop > 0; cloop -= 4)
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
|
||
|
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
||
|
|
||
|
/* If this is a bridge device, restore subordinate devices */
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
|
||
|
|
||
|
sub_bus = (int) secondary_bus;
|
||
|
|
||
|
next = cpqhp_slot_list[sub_bus];
|
||
|
|
||
|
while (next != NULL) {
|
||
|
rc = cpqhp_configure_board(ctrl, next);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
next = next->next;
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* Check all the base Address Registers to make sure
|
||
|
* they are the same. If not, the board is different.
|
||
|
*/
|
||
|
|
||
|
for (cloop = 16; cloop < 40; cloop += 4) {
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
|
||
|
|
||
|
if (temp != func->config_space[cloop >> 2]) {
|
||
|
dbg("Config space compare failure!!! offset = %x\n", cloop);
|
||
|
dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
|
||
|
dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func->configured = 1;
|
||
|
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_valid_replace
|
||
|
*
|
||
|
* this function checks to see if a board is the same as the
|
||
|
* one it is replacing. this check will detect if the device's
|
||
|
* vendor or device id's are the same
|
||
|
*
|
||
|
* returns 0 if the board is the same nonzero otherwise
|
||
|
*/
|
||
|
int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
|
||
|
{
|
||
|
u8 cloop;
|
||
|
u8 header_type;
|
||
|
u8 secondary_bus;
|
||
|
u8 type;
|
||
|
u32 temp_register = 0;
|
||
|
u32 base;
|
||
|
u32 rc;
|
||
|
struct pci_func *next;
|
||
|
int index = 0;
|
||
|
struct pci_bus *pci_bus = ctrl->pci_bus;
|
||
|
unsigned int devfn;
|
||
|
|
||
|
if (!func->is_a_board)
|
||
|
return(ADD_NOT_SUPPORTED);
|
||
|
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
|
||
|
while (func != NULL) {
|
||
|
pci_bus->number = func->bus;
|
||
|
devfn = PCI_DEVFN(func->device, func->function);
|
||
|
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
|
||
|
|
||
|
/* No adapter present */
|
||
|
if (temp_register == 0xFFFFFFFF)
|
||
|
return(NO_ADAPTER_PRESENT);
|
||
|
|
||
|
if (temp_register != func->config_space[0])
|
||
|
return(ADAPTER_NOT_SAME);
|
||
|
|
||
|
/* Check for same revision number and class code */
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
|
||
|
|
||
|
/* Adapter not the same */
|
||
|
if (temp_register != func->config_space[0x08 >> 2])
|
||
|
return(ADAPTER_NOT_SAME);
|
||
|
|
||
|
/* Check for Bridge */
|
||
|
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
|
||
|
|
||
|
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||
|
/* In order to continue checking, we must program the
|
||
|
* bus registers in the bridge to respond to accesses
|
||
|
* for its subordinate bus(es)
|
||
|
*/
|
||
|
|
||
|
temp_register = func->config_space[0x18 >> 2];
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
|
||
|
|
||
|
secondary_bus = (temp_register >> 8) & 0xFF;
|
||
|
|
||
|
next = cpqhp_slot_list[secondary_bus];
|
||
|
|
||
|
while (next != NULL) {
|
||
|
rc = cpqhp_valid_replace(ctrl, next);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
next = next->next;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
/* Check to see if it is a standard config header */
|
||
|
else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
|
||
|
/* Check subsystem vendor and ID */
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
|
||
|
|
||
|
if (temp_register != func->config_space[0x2C >> 2]) {
|
||
|
/* If it's a SMART-2 and the register isn't
|
||
|
* filled in, ignore the difference because
|
||
|
* they just have an old rev of the firmware
|
||
|
*/
|
||
|
if (!((func->config_space[0] == 0xAE100E11)
|
||
|
&& (temp_register == 0x00L)))
|
||
|
return(ADAPTER_NOT_SAME);
|
||
|
}
|
||
|
/* Figure out IO and memory base lengths */
|
||
|
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
|
||
|
temp_register = 0xFFFFFFFF;
|
||
|
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
|
||
|
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
|
||
|
|
||
|
/* If this register is implemented */
|
||
|
if (base) {
|
||
|
if (base & 0x01L) {
|
||
|
/* IO base
|
||
|
* set base = amount of IO
|
||
|
* space requested
|
||
|
*/
|
||
|
base = base & 0xFFFFFFFE;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 1;
|
||
|
} else {
|
||
|
/* memory base */
|
||
|
base = base & 0xFFFFFFF0;
|
||
|
base = (~base) + 1;
|
||
|
|
||
|
type = 0;
|
||
|
}
|
||
|
} else {
|
||
|
base = 0x0L;
|
||
|
type = 0;
|
||
|
}
|
||
|
|
||
|
/* Check information in slot structure */
|
||
|
if (func->base_length[(cloop - 0x10) >> 2] != base)
|
||
|
return(ADAPTER_NOT_SAME);
|
||
|
|
||
|
if (func->base_type[(cloop - 0x10) >> 2] != type)
|
||
|
return(ADAPTER_NOT_SAME);
|
||
|
|
||
|
} /* End of base register loop */
|
||
|
|
||
|
} /* End of (type 0 config space) else */
|
||
|
else {
|
||
|
/* this is not a type 0 or 1 config space header so
|
||
|
* we don't know how to do it
|
||
|
*/
|
||
|
return(DEVICE_TYPE_NOT_SUPPORTED);
|
||
|
}
|
||
|
|
||
|
/* Get the next function */
|
||
|
func = cpqhp_slot_find(func->bus, func->device, index++);
|
||
|
}
|
||
|
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_find_available_resources
|
||
|
*
|
||
|
* Finds available memory, IO, and IRQ resources for programming
|
||
|
* devices which may be added to the system
|
||
|
* this function is for hot plug ADD!
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
|
||
|
{
|
||
|
u8 temp;
|
||
|
u8 populated_slot;
|
||
|
u8 bridged_slot;
|
||
|
void __iomem *one_slot;
|
||
|
void __iomem *rom_resource_table;
|
||
|
struct pci_func *func = NULL;
|
||
|
int i = 10, index;
|
||
|
u32 temp_dword, rc;
|
||
|
struct pci_resource *mem_node;
|
||
|
struct pci_resource *p_mem_node;
|
||
|
struct pci_resource *io_node;
|
||
|
struct pci_resource *bus_node;
|
||
|
|
||
|
rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
|
||
|
dbg("rom_resource_table = %p\n", rom_resource_table);
|
||
|
|
||
|
if (rom_resource_table == NULL)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Sum all resources and setup resource maps */
|
||
|
unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
|
||
|
dbg("unused_IRQ = %x\n", unused_IRQ);
|
||
|
|
||
|
temp = 0;
|
||
|
while (unused_IRQ) {
|
||
|
if (unused_IRQ & 1) {
|
||
|
cpqhp_disk_irq = temp;
|
||
|
break;
|
||
|
}
|
||
|
unused_IRQ = unused_IRQ >> 1;
|
||
|
temp++;
|
||
|
}
|
||
|
|
||
|
dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
|
||
|
unused_IRQ = unused_IRQ >> 1;
|
||
|
temp++;
|
||
|
|
||
|
while (unused_IRQ) {
|
||
|
if (unused_IRQ & 1) {
|
||
|
cpqhp_nic_irq = temp;
|
||
|
break;
|
||
|
}
|
||
|
unused_IRQ = unused_IRQ >> 1;
|
||
|
temp++;
|
||
|
}
|
||
|
|
||
|
dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
|
||
|
unused_IRQ = readl(rom_resource_table + PCIIRQ);
|
||
|
|
||
|
temp = 0;
|
||
|
|
||
|
if (!cpqhp_nic_irq)
|
||
|
cpqhp_nic_irq = ctrl->cfgspc_irq;
|
||
|
|
||
|
if (!cpqhp_disk_irq)
|
||
|
cpqhp_disk_irq = ctrl->cfgspc_irq;
|
||
|
|
||
|
dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
|
||
|
|
||
|
rc = compaq_nvram_load(rom_start, ctrl);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
one_slot = rom_resource_table + sizeof(struct hrt);
|
||
|
|
||
|
i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
|
||
|
dbg("number_of_entries = %d\n", i);
|
||
|
|
||
|
if (!readb(one_slot + SECONDARY_BUS))
|
||
|
return 1;
|
||
|
|
||
|
dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
|
||
|
|
||
|
while (i && readb(one_slot + SECONDARY_BUS)) {
|
||
|
u8 dev_func = readb(one_slot + DEV_FUNC);
|
||
|
u8 primary_bus = readb(one_slot + PRIMARY_BUS);
|
||
|
u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
|
||
|
u8 max_bus = readb(one_slot + MAX_BUS);
|
||
|
u16 io_base = readw(one_slot + IO_BASE);
|
||
|
u16 io_length = readw(one_slot + IO_LENGTH);
|
||
|
u16 mem_base = readw(one_slot + MEM_BASE);
|
||
|
u16 mem_length = readw(one_slot + MEM_LENGTH);
|
||
|
u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
|
||
|
u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
|
||
|
|
||
|
dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
|
||
|
dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
|
||
|
primary_bus, secondary_bus, max_bus);
|
||
|
|
||
|
/* If this entry isn't for our controller's bus, ignore it */
|
||
|
if (primary_bus != ctrl->bus) {
|
||
|
i--;
|
||
|
one_slot += sizeof(struct slot_rt);
|
||
|
continue;
|
||
|
}
|
||
|
/* find out if this entry is for an occupied slot */
|
||
|
ctrl->pci_bus->number = primary_bus;
|
||
|
pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
|
||
|
dbg("temp_D_word = %x\n", temp_dword);
|
||
|
|
||
|
if (temp_dword != 0xFFFFFFFF) {
|
||
|
index = 0;
|
||
|
func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
|
||
|
|
||
|
while (func && (func->function != (dev_func & 0x07))) {
|
||
|
dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
|
||
|
func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
|
||
|
}
|
||
|
|
||
|
/* If we can't find a match, skip this table entry */
|
||
|
if (!func) {
|
||
|
i--;
|
||
|
one_slot += sizeof(struct slot_rt);
|
||
|
continue;
|
||
|
}
|
||
|
/* this may not work and shouldn't be used */
|
||
|
if (secondary_bus != primary_bus)
|
||
|
bridged_slot = 1;
|
||
|
else
|
||
|
bridged_slot = 0;
|
||
|
|
||
|
populated_slot = 1;
|
||
|
} else {
|
||
|
populated_slot = 0;
|
||
|
bridged_slot = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If we've got a valid IO base, use it */
|
||
|
|
||
|
temp_dword = io_base + io_length;
|
||
|
|
||
|
if ((io_base) && (temp_dword < 0x10000)) {
|
||
|
io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
|
||
|
if (!io_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
io_node->base = io_base;
|
||
|
io_node->length = io_length;
|
||
|
|
||
|
dbg("found io_node(base, length) = %x, %x\n",
|
||
|
io_node->base, io_node->length);
|
||
|
dbg("populated slot =%d \n", populated_slot);
|
||
|
if (!populated_slot) {
|
||
|
io_node->next = ctrl->io_head;
|
||
|
ctrl->io_head = io_node;
|
||
|
} else {
|
||
|
io_node->next = func->io_head;
|
||
|
func->io_head = io_node;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If we've got a valid memory base, use it */
|
||
|
temp_dword = mem_base + mem_length;
|
||
|
if ((mem_base) && (temp_dword < 0x10000)) {
|
||
|
mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
|
||
|
if (!mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
mem_node->base = mem_base << 16;
|
||
|
|
||
|
mem_node->length = mem_length << 16;
|
||
|
|
||
|
dbg("found mem_node(base, length) = %x, %x\n",
|
||
|
mem_node->base, mem_node->length);
|
||
|
dbg("populated slot =%d \n", populated_slot);
|
||
|
if (!populated_slot) {
|
||
|
mem_node->next = ctrl->mem_head;
|
||
|
ctrl->mem_head = mem_node;
|
||
|
} else {
|
||
|
mem_node->next = func->mem_head;
|
||
|
func->mem_head = mem_node;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If we've got a valid prefetchable memory base, and
|
||
|
* the base + length isn't greater than 0xFFFF
|
||
|
*/
|
||
|
temp_dword = pre_mem_base + pre_mem_length;
|
||
|
if ((pre_mem_base) && (temp_dword < 0x10000)) {
|
||
|
p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
|
||
|
if (!p_mem_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
p_mem_node->base = pre_mem_base << 16;
|
||
|
|
||
|
p_mem_node->length = pre_mem_length << 16;
|
||
|
dbg("found p_mem_node(base, length) = %x, %x\n",
|
||
|
p_mem_node->base, p_mem_node->length);
|
||
|
dbg("populated slot =%d \n", populated_slot);
|
||
|
|
||
|
if (!populated_slot) {
|
||
|
p_mem_node->next = ctrl->p_mem_head;
|
||
|
ctrl->p_mem_head = p_mem_node;
|
||
|
} else {
|
||
|
p_mem_node->next = func->p_mem_head;
|
||
|
func->p_mem_head = p_mem_node;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If we've got a valid bus number, use it
|
||
|
* The second condition is to ignore bus numbers on
|
||
|
* populated slots that don't have PCI-PCI bridges
|
||
|
*/
|
||
|
if (secondary_bus && (secondary_bus != primary_bus)) {
|
||
|
bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
|
||
|
if (!bus_node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
bus_node->base = secondary_bus;
|
||
|
bus_node->length = max_bus - secondary_bus + 1;
|
||
|
dbg("found bus_node(base, length) = %x, %x\n",
|
||
|
bus_node->base, bus_node->length);
|
||
|
dbg("populated slot =%d \n", populated_slot);
|
||
|
if (!populated_slot) {
|
||
|
bus_node->next = ctrl->bus_head;
|
||
|
ctrl->bus_head = bus_node;
|
||
|
} else {
|
||
|
bus_node->next = func->bus_head;
|
||
|
func->bus_head = bus_node;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i--;
|
||
|
one_slot += sizeof(struct slot_rt);
|
||
|
}
|
||
|
|
||
|
/* If all of the following fail, we don't have any resources for
|
||
|
* hot plug add
|
||
|
*/
|
||
|
rc = 1;
|
||
|
rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
|
||
|
rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
|
||
|
rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
|
||
|
rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_return_board_resources
|
||
|
*
|
||
|
* this routine returns all resources allocated to a board to
|
||
|
* the available pool.
|
||
|
*
|
||
|
* returns 0 if success
|
||
|
*/
|
||
|
int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
struct pci_resource *node;
|
||
|
struct pci_resource *t_node;
|
||
|
dbg("%s\n", __func__);
|
||
|
|
||
|
if (!func)
|
||
|
return 1;
|
||
|
|
||
|
node = func->io_head;
|
||
|
func->io_head = NULL;
|
||
|
while (node) {
|
||
|
t_node = node->next;
|
||
|
return_resource(&(resources->io_head), node);
|
||
|
node = t_node;
|
||
|
}
|
||
|
|
||
|
node = func->mem_head;
|
||
|
func->mem_head = NULL;
|
||
|
while (node) {
|
||
|
t_node = node->next;
|
||
|
return_resource(&(resources->mem_head), node);
|
||
|
node = t_node;
|
||
|
}
|
||
|
|
||
|
node = func->p_mem_head;
|
||
|
func->p_mem_head = NULL;
|
||
|
while (node) {
|
||
|
t_node = node->next;
|
||
|
return_resource(&(resources->p_mem_head), node);
|
||
|
node = t_node;
|
||
|
}
|
||
|
|
||
|
node = func->bus_head;
|
||
|
func->bus_head = NULL;
|
||
|
while (node) {
|
||
|
t_node = node->next;
|
||
|
return_resource(&(resources->bus_head), node);
|
||
|
node = t_node;
|
||
|
}
|
||
|
|
||
|
rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
|
||
|
rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
|
||
|
rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
|
||
|
rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_destroy_resource_list
|
||
|
*
|
||
|
* Puts node back in the resource list pointed to by head
|
||
|
*/
|
||
|
void cpqhp_destroy_resource_list(struct resource_lists *resources)
|
||
|
{
|
||
|
struct pci_resource *res, *tres;
|
||
|
|
||
|
res = resources->io_head;
|
||
|
resources->io_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = resources->mem_head;
|
||
|
resources->mem_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = resources->p_mem_head;
|
||
|
resources->p_mem_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = resources->bus_head;
|
||
|
resources->bus_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* cpqhp_destroy_board_resources
|
||
|
*
|
||
|
* Puts node back in the resource list pointed to by head
|
||
|
*/
|
||
|
void cpqhp_destroy_board_resources(struct pci_func *func)
|
||
|
{
|
||
|
struct pci_resource *res, *tres;
|
||
|
|
||
|
res = func->io_head;
|
||
|
func->io_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = func->mem_head;
|
||
|
func->mem_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = func->p_mem_head;
|
||
|
func->p_mem_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
|
||
|
res = func->bus_head;
|
||
|
func->bus_head = NULL;
|
||
|
|
||
|
while (res) {
|
||
|
tres = res;
|
||
|
res = res->next;
|
||
|
kfree(tres);
|
||
|
}
|
||
|
}
|