886 lines
23 KiB
C
886 lines
23 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright(C) 2015 Linaro Limited. All rights reserved.
|
||
|
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/coresight.h>
|
||
|
#include <linux/coresight-pmu.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
#include <linux/percpu-defs.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/stringhash.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/workqueue.h>
|
||
|
|
||
|
#include "coresight-config.h"
|
||
|
#include "coresight-etm-perf.h"
|
||
|
#include "coresight-priv.h"
|
||
|
#include "coresight-syscfg.h"
|
||
|
|
||
|
static struct pmu etm_pmu;
|
||
|
static bool etm_perf_up;
|
||
|
|
||
|
/*
|
||
|
* An ETM context for a running event includes the perf aux handle
|
||
|
* and aux_data. For ETM, the aux_data (etm_event_data), consists of
|
||
|
* the trace path and the sink configuration. The event data is accessible
|
||
|
* via perf_get_aux(handle). However, a sink could "end" a perf output
|
||
|
* handle via the IRQ handler. And if the "sink" encounters a failure
|
||
|
* to "begin" another session (e.g due to lack of space in the buffer),
|
||
|
* the handle will be cleared. Thus, the event_data may not be accessible
|
||
|
* from the handle when we get to the etm_event_stop(), which is required
|
||
|
* for stopping the trace path. The event_data is guaranteed to stay alive
|
||
|
* until "free_aux()", which cannot happen as long as the event is active on
|
||
|
* the ETM. Thus the event_data for the session must be part of the ETM context
|
||
|
* to make sure we can disable the trace path.
|
||
|
*/
|
||
|
struct etm_ctxt {
|
||
|
struct perf_output_handle handle;
|
||
|
struct etm_event_data *event_data;
|
||
|
};
|
||
|
|
||
|
static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
|
||
|
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
|
||
|
|
||
|
/*
|
||
|
* The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
|
||
|
* now take them as general formats and apply on all ETMs.
|
||
|
*/
|
||
|
PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
|
||
|
PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
|
||
|
/* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
|
||
|
PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID));
|
||
|
/* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
|
||
|
PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2));
|
||
|
PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
|
||
|
PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
|
||
|
/* preset - if sink ID is used as a configuration selector */
|
||
|
PMU_FORMAT_ATTR(preset, "config:0-3");
|
||
|
/* Sink ID - same for all ETMs */
|
||
|
PMU_FORMAT_ATTR(sinkid, "config2:0-31");
|
||
|
/* config ID - set if a system configuration is selected */
|
||
|
PMU_FORMAT_ATTR(configid, "config2:32-63");
|
||
|
|
||
|
|
||
|
/*
|
||
|
* contextid always traces the "PID". The PID is in CONTEXTIDR_EL1
|
||
|
* when the kernel is running at EL1; when the kernel is at EL2,
|
||
|
* the PID is in CONTEXTIDR_EL2.
|
||
|
*/
|
||
|
static ssize_t format_attr_contextid_show(struct device *dev,
|
||
|
struct device_attribute *attr,
|
||
|
char *page)
|
||
|
{
|
||
|
int pid_fmt = ETM_OPT_CTXTID;
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
|
||
|
pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
|
||
|
#endif
|
||
|
return sprintf(page, "config:%d\n", pid_fmt);
|
||
|
}
|
||
|
|
||
|
static struct device_attribute format_attr_contextid =
|
||
|
__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
|
||
|
|
||
|
static struct attribute *etm_config_formats_attr[] = {
|
||
|
&format_attr_cycacc.attr,
|
||
|
&format_attr_contextid.attr,
|
||
|
&format_attr_contextid1.attr,
|
||
|
&format_attr_contextid2.attr,
|
||
|
&format_attr_timestamp.attr,
|
||
|
&format_attr_retstack.attr,
|
||
|
&format_attr_sinkid.attr,
|
||
|
&format_attr_preset.attr,
|
||
|
&format_attr_configid.attr,
|
||
|
&format_attr_branch_broadcast.attr,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group etm_pmu_format_group = {
|
||
|
.name = "format",
|
||
|
.attrs = etm_config_formats_attr,
|
||
|
};
|
||
|
|
||
|
static struct attribute *etm_config_sinks_attr[] = {
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group etm_pmu_sinks_group = {
|
||
|
.name = "sinks",
|
||
|
.attrs = etm_config_sinks_attr,
|
||
|
};
|
||
|
|
||
|
static struct attribute *etm_config_events_attr[] = {
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group etm_pmu_events_group = {
|
||
|
.name = "events",
|
||
|
.attrs = etm_config_events_attr,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group *etm_pmu_attr_groups[] = {
|
||
|
&etm_pmu_format_group,
|
||
|
&etm_pmu_sinks_group,
|
||
|
&etm_pmu_events_group,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static inline struct list_head **
|
||
|
etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
|
||
|
{
|
||
|
return per_cpu_ptr(data->path, cpu);
|
||
|
}
|
||
|
|
||
|
static inline struct list_head *
|
||
|
etm_event_cpu_path(struct etm_event_data *data, int cpu)
|
||
|
{
|
||
|
return *etm_event_cpu_path_ptr(data, cpu);
|
||
|
}
|
||
|
|
||
|
static void etm_event_read(struct perf_event *event) {}
|
||
|
|
||
|
static int etm_addr_filters_alloc(struct perf_event *event)
|
||
|
{
|
||
|
struct etm_filters *filters;
|
||
|
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
|
||
|
|
||
|
filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
|
||
|
if (!filters)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (event->parent)
|
||
|
memcpy(filters, event->parent->hw.addr_filters,
|
||
|
sizeof(*filters));
|
||
|
|
||
|
event->hw.addr_filters = filters;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void etm_event_destroy(struct perf_event *event)
|
||
|
{
|
||
|
kfree(event->hw.addr_filters);
|
||
|
event->hw.addr_filters = NULL;
|
||
|
}
|
||
|
|
||
|
static int etm_event_init(struct perf_event *event)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
if (event->attr.type != etm_pmu.type) {
|
||
|
ret = -ENOENT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ret = etm_addr_filters_alloc(event);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
event->destroy = etm_event_destroy;
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void free_sink_buffer(struct etm_event_data *event_data)
|
||
|
{
|
||
|
int cpu;
|
||
|
cpumask_t *mask = &event_data->mask;
|
||
|
struct coresight_device *sink;
|
||
|
|
||
|
if (!event_data->snk_config)
|
||
|
return;
|
||
|
|
||
|
if (WARN_ON(cpumask_empty(mask)))
|
||
|
return;
|
||
|
|
||
|
cpu = cpumask_first(mask);
|
||
|
sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
|
||
|
sink_ops(sink)->free_buffer(event_data->snk_config);
|
||
|
}
|
||
|
|
||
|
static void free_event_data(struct work_struct *work)
|
||
|
{
|
||
|
int cpu;
|
||
|
cpumask_t *mask;
|
||
|
struct etm_event_data *event_data;
|
||
|
|
||
|
event_data = container_of(work, struct etm_event_data, work);
|
||
|
mask = &event_data->mask;
|
||
|
|
||
|
/* Free the sink buffers, if there are any */
|
||
|
free_sink_buffer(event_data);
|
||
|
|
||
|
/* clear any configuration we were using */
|
||
|
if (event_data->cfg_hash)
|
||
|
cscfg_deactivate_config(event_data->cfg_hash);
|
||
|
|
||
|
for_each_cpu(cpu, mask) {
|
||
|
struct list_head **ppath;
|
||
|
|
||
|
ppath = etm_event_cpu_path_ptr(event_data, cpu);
|
||
|
if (!(IS_ERR_OR_NULL(*ppath)))
|
||
|
coresight_release_path(*ppath);
|
||
|
*ppath = NULL;
|
||
|
}
|
||
|
|
||
|
free_percpu(event_data->path);
|
||
|
kfree(event_data);
|
||
|
}
|
||
|
|
||
|
static void *alloc_event_data(int cpu)
|
||
|
{
|
||
|
cpumask_t *mask;
|
||
|
struct etm_event_data *event_data;
|
||
|
|
||
|
/* First get memory for the session's data */
|
||
|
event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
|
||
|
if (!event_data)
|
||
|
return NULL;
|
||
|
|
||
|
|
||
|
mask = &event_data->mask;
|
||
|
if (cpu != -1)
|
||
|
cpumask_set_cpu(cpu, mask);
|
||
|
else
|
||
|
cpumask_copy(mask, cpu_present_mask);
|
||
|
|
||
|
/*
|
||
|
* Each CPU has a single path between source and destination. As such
|
||
|
* allocate an array using CPU numbers as indexes. That way a path
|
||
|
* for any CPU can easily be accessed at any given time. We proceed
|
||
|
* the same way for sessions involving a single CPU. The cost of
|
||
|
* unused memory when dealing with single CPU trace scenarios is small
|
||
|
* compared to the cost of searching through an optimized array.
|
||
|
*/
|
||
|
event_data->path = alloc_percpu(struct list_head *);
|
||
|
|
||
|
if (!event_data->path) {
|
||
|
kfree(event_data);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return event_data;
|
||
|
}
|
||
|
|
||
|
static void etm_free_aux(void *data)
|
||
|
{
|
||
|
struct etm_event_data *event_data = data;
|
||
|
|
||
|
schedule_work(&event_data->work);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if two given sinks are compatible with each other,
|
||
|
* so that they can use the same sink buffers, when an event
|
||
|
* moves around.
|
||
|
*/
|
||
|
static bool sinks_compatible(struct coresight_device *a,
|
||
|
struct coresight_device *b)
|
||
|
{
|
||
|
if (!a || !b)
|
||
|
return false;
|
||
|
/*
|
||
|
* If the sinks are of the same subtype and driven
|
||
|
* by the same driver, we can use the same buffer
|
||
|
* on these sinks.
|
||
|
*/
|
||
|
return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
|
||
|
(sink_ops(a) == sink_ops(b));
|
||
|
}
|
||
|
|
||
|
static void *etm_setup_aux(struct perf_event *event, void **pages,
|
||
|
int nr_pages, bool overwrite)
|
||
|
{
|
||
|
u32 id, cfg_hash;
|
||
|
int cpu = event->cpu;
|
||
|
cpumask_t *mask;
|
||
|
struct coresight_device *sink = NULL;
|
||
|
struct coresight_device *user_sink = NULL, *last_sink = NULL;
|
||
|
struct etm_event_data *event_data = NULL;
|
||
|
|
||
|
event_data = alloc_event_data(cpu);
|
||
|
if (!event_data)
|
||
|
return NULL;
|
||
|
INIT_WORK(&event_data->work, free_event_data);
|
||
|
|
||
|
/* First get the selected sink from user space. */
|
||
|
if (event->attr.config2 & GENMASK_ULL(31, 0)) {
|
||
|
id = (u32)event->attr.config2;
|
||
|
sink = user_sink = coresight_get_sink_by_id(id);
|
||
|
}
|
||
|
|
||
|
/* check if user wants a coresight configuration selected */
|
||
|
cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
|
||
|
if (cfg_hash) {
|
||
|
if (cscfg_activate_config(cfg_hash))
|
||
|
goto err;
|
||
|
event_data->cfg_hash = cfg_hash;
|
||
|
}
|
||
|
|
||
|
mask = &event_data->mask;
|
||
|
|
||
|
/*
|
||
|
* Setup the path for each CPU in a trace session. We try to build
|
||
|
* trace path for each CPU in the mask. If we don't find an ETM
|
||
|
* for the CPU or fail to build a path, we clear the CPU from the
|
||
|
* mask and continue with the rest. If ever we try to trace on those
|
||
|
* CPUs, we can handle it and fail the session.
|
||
|
*/
|
||
|
for_each_cpu(cpu, mask) {
|
||
|
struct list_head *path;
|
||
|
struct coresight_device *csdev;
|
||
|
|
||
|
csdev = per_cpu(csdev_src, cpu);
|
||
|
/*
|
||
|
* If there is no ETM associated with this CPU clear it from
|
||
|
* the mask and continue with the rest. If ever we try to trace
|
||
|
* on this CPU, we handle it accordingly.
|
||
|
*/
|
||
|
if (!csdev) {
|
||
|
cpumask_clear_cpu(cpu, mask);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No sink provided - look for a default sink for all the ETMs,
|
||
|
* where this event can be scheduled.
|
||
|
* We allocate the sink specific buffers only once for this
|
||
|
* event. If the ETMs have different default sink devices, we
|
||
|
* can only use a single "type" of sink as the event can carry
|
||
|
* only one sink specific buffer. Thus we have to make sure
|
||
|
* that the sinks are of the same type and driven by the same
|
||
|
* driver, as the one we allocate the buffer for. As such
|
||
|
* we choose the first sink and check if the remaining ETMs
|
||
|
* have a compatible default sink. We don't trace on a CPU
|
||
|
* if the sink is not compatible.
|
||
|
*/
|
||
|
if (!user_sink) {
|
||
|
/* Find the default sink for this ETM */
|
||
|
sink = coresight_find_default_sink(csdev);
|
||
|
if (!sink) {
|
||
|
cpumask_clear_cpu(cpu, mask);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Check if this sink compatible with the last sink */
|
||
|
if (last_sink && !sinks_compatible(last_sink, sink)) {
|
||
|
cpumask_clear_cpu(cpu, mask);
|
||
|
continue;
|
||
|
}
|
||
|
last_sink = sink;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Building a path doesn't enable it, it simply builds a
|
||
|
* list of devices from source to sink that can be
|
||
|
* referenced later when the path is actually needed.
|
||
|
*/
|
||
|
path = coresight_build_path(csdev, sink);
|
||
|
if (IS_ERR(path)) {
|
||
|
cpumask_clear_cpu(cpu, mask);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
*etm_event_cpu_path_ptr(event_data, cpu) = path;
|
||
|
}
|
||
|
|
||
|
/* no sink found for any CPU - cannot trace */
|
||
|
if (!sink)
|
||
|
goto err;
|
||
|
|
||
|
/* If we don't have any CPUs ready for tracing, abort */
|
||
|
cpu = cpumask_first(mask);
|
||
|
if (cpu >= nr_cpu_ids)
|
||
|
goto err;
|
||
|
|
||
|
if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* Allocate the sink buffer for this session. All the sinks
|
||
|
* where this event can be scheduled are ensured to be of the
|
||
|
* same type. Thus the same sink configuration is used by the
|
||
|
* sinks.
|
||
|
*/
|
||
|
event_data->snk_config =
|
||
|
sink_ops(sink)->alloc_buffer(sink, event, pages,
|
||
|
nr_pages, overwrite);
|
||
|
if (!event_data->snk_config)
|
||
|
goto err;
|
||
|
|
||
|
out:
|
||
|
return event_data;
|
||
|
|
||
|
err:
|
||
|
etm_free_aux(event_data);
|
||
|
event_data = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
static void etm_event_start(struct perf_event *event, int flags)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
struct etm_event_data *event_data;
|
||
|
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
|
||
|
struct perf_output_handle *handle = &ctxt->handle;
|
||
|
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
|
||
|
struct list_head *path;
|
||
|
|
||
|
if (!csdev)
|
||
|
goto fail;
|
||
|
|
||
|
/* Have we messed up our tracking ? */
|
||
|
if (WARN_ON(ctxt->event_data))
|
||
|
goto fail;
|
||
|
|
||
|
/*
|
||
|
* Deal with the ring buffer API and get a handle on the
|
||
|
* session's information.
|
||
|
*/
|
||
|
event_data = perf_aux_output_begin(handle, event);
|
||
|
if (!event_data)
|
||
|
goto fail;
|
||
|
|
||
|
/*
|
||
|
* Check if this ETM is allowed to trace, as decided
|
||
|
* at etm_setup_aux(). This could be due to an unreachable
|
||
|
* sink from this ETM. We can't do much in this case if
|
||
|
* the sink was specified or hinted to the driver. For
|
||
|
* now, simply don't record anything on this ETM.
|
||
|
*
|
||
|
* As such we pretend that everything is fine, and let
|
||
|
* it continue without actually tracing. The event could
|
||
|
* continue tracing when it moves to a CPU where it is
|
||
|
* reachable to a sink.
|
||
|
*/
|
||
|
if (!cpumask_test_cpu(cpu, &event_data->mask))
|
||
|
goto out;
|
||
|
|
||
|
path = etm_event_cpu_path(event_data, cpu);
|
||
|
/* We need a sink, no need to continue without one */
|
||
|
sink = coresight_get_sink(path);
|
||
|
if (WARN_ON_ONCE(!sink))
|
||
|
goto fail_end_stop;
|
||
|
|
||
|
/* Nothing will happen without a path */
|
||
|
if (coresight_enable_path(path, CS_MODE_PERF, handle))
|
||
|
goto fail_end_stop;
|
||
|
|
||
|
/* Finally enable the tracer */
|
||
|
if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
|
||
|
goto fail_disable_path;
|
||
|
|
||
|
out:
|
||
|
/* Tell the perf core the event is alive */
|
||
|
event->hw.state = 0;
|
||
|
/* Save the event_data for this ETM */
|
||
|
ctxt->event_data = event_data;
|
||
|
return;
|
||
|
|
||
|
fail_disable_path:
|
||
|
coresight_disable_path(path);
|
||
|
fail_end_stop:
|
||
|
/*
|
||
|
* Check if the handle is still associated with the event,
|
||
|
* to handle cases where if the sink failed to start the
|
||
|
* trace and TRUNCATED the handle already.
|
||
|
*/
|
||
|
if (READ_ONCE(handle->event)) {
|
||
|
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
|
||
|
perf_aux_output_end(handle, 0);
|
||
|
}
|
||
|
fail:
|
||
|
event->hw.state = PERF_HES_STOPPED;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void etm_event_stop(struct perf_event *event, int mode)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
unsigned long size;
|
||
|
struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
|
||
|
struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
|
||
|
struct perf_output_handle *handle = &ctxt->handle;
|
||
|
struct etm_event_data *event_data;
|
||
|
struct list_head *path;
|
||
|
|
||
|
/*
|
||
|
* If we still have access to the event_data via handle,
|
||
|
* confirm that we haven't messed up the tracking.
|
||
|
*/
|
||
|
if (handle->event &&
|
||
|
WARN_ON(perf_get_aux(handle) != ctxt->event_data))
|
||
|
return;
|
||
|
|
||
|
event_data = ctxt->event_data;
|
||
|
/* Clear the event_data as this ETM is stopping the trace. */
|
||
|
ctxt->event_data = NULL;
|
||
|
|
||
|
if (event->hw.state == PERF_HES_STOPPED)
|
||
|
return;
|
||
|
|
||
|
/* We must have a valid event_data for a running event */
|
||
|
if (WARN_ON(!event_data))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Check if this ETM was allowed to trace, as decided at
|
||
|
* etm_setup_aux(). If it wasn't allowed to trace, then
|
||
|
* nothing needs to be torn down other than outputting a
|
||
|
* zero sized record.
|
||
|
*/
|
||
|
if (handle->event && (mode & PERF_EF_UPDATE) &&
|
||
|
!cpumask_test_cpu(cpu, &event_data->mask)) {
|
||
|
event->hw.state = PERF_HES_STOPPED;
|
||
|
perf_aux_output_end(handle, 0);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!csdev)
|
||
|
return;
|
||
|
|
||
|
path = etm_event_cpu_path(event_data, cpu);
|
||
|
if (!path)
|
||
|
return;
|
||
|
|
||
|
sink = coresight_get_sink(path);
|
||
|
if (!sink)
|
||
|
return;
|
||
|
|
||
|
/* stop tracer */
|
||
|
source_ops(csdev)->disable(csdev, event);
|
||
|
|
||
|
/* tell the core */
|
||
|
event->hw.state = PERF_HES_STOPPED;
|
||
|
|
||
|
/*
|
||
|
* If the handle is not bound to an event anymore
|
||
|
* (e.g, the sink driver was unable to restart the
|
||
|
* handle due to lack of buffer space), we don't
|
||
|
* have to do anything here.
|
||
|
*/
|
||
|
if (handle->event && (mode & PERF_EF_UPDATE)) {
|
||
|
if (WARN_ON_ONCE(handle->event != event))
|
||
|
return;
|
||
|
|
||
|
/* update trace information */
|
||
|
if (!sink_ops(sink)->update_buffer)
|
||
|
return;
|
||
|
|
||
|
size = sink_ops(sink)->update_buffer(sink, handle,
|
||
|
event_data->snk_config);
|
||
|
/*
|
||
|
* Make sure the handle is still valid as the
|
||
|
* sink could have closed it from an IRQ.
|
||
|
* The sink driver must handle the race with
|
||
|
* update_buffer() and IRQ. Thus either we
|
||
|
* should get a valid handle and valid size
|
||
|
* (which may be 0).
|
||
|
*
|
||
|
* But we should never get a non-zero size with
|
||
|
* an invalid handle.
|
||
|
*/
|
||
|
if (READ_ONCE(handle->event))
|
||
|
perf_aux_output_end(handle, size);
|
||
|
else
|
||
|
WARN_ON(size);
|
||
|
}
|
||
|
|
||
|
/* Disabling the path make its elements available to other sessions */
|
||
|
coresight_disable_path(path);
|
||
|
}
|
||
|
|
||
|
static int etm_event_add(struct perf_event *event, int mode)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct hw_perf_event *hwc = &event->hw;
|
||
|
|
||
|
if (mode & PERF_EF_START) {
|
||
|
etm_event_start(event, 0);
|
||
|
if (hwc->state & PERF_HES_STOPPED)
|
||
|
ret = -EINVAL;
|
||
|
} else {
|
||
|
hwc->state = PERF_HES_STOPPED;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void etm_event_del(struct perf_event *event, int mode)
|
||
|
{
|
||
|
etm_event_stop(event, PERF_EF_UPDATE);
|
||
|
}
|
||
|
|
||
|
static int etm_addr_filters_validate(struct list_head *filters)
|
||
|
{
|
||
|
bool range = false, address = false;
|
||
|
int index = 0;
|
||
|
struct perf_addr_filter *filter;
|
||
|
|
||
|
list_for_each_entry(filter, filters, entry) {
|
||
|
/*
|
||
|
* No need to go further if there's no more
|
||
|
* room for filters.
|
||
|
*/
|
||
|
if (++index > ETM_ADDR_CMP_MAX)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
/* filter::size==0 means single address trigger */
|
||
|
if (filter->size) {
|
||
|
/*
|
||
|
* The existing code relies on START/STOP filters
|
||
|
* being address filters.
|
||
|
*/
|
||
|
if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
|
||
|
filter->action == PERF_ADDR_FILTER_ACTION_STOP)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
range = true;
|
||
|
} else
|
||
|
address = true;
|
||
|
|
||
|
/*
|
||
|
* At this time we don't allow range and start/stop filtering
|
||
|
* to cohabitate, they have to be mutually exclusive.
|
||
|
*/
|
||
|
if (range && address)
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void etm_addr_filters_sync(struct perf_event *event)
|
||
|
{
|
||
|
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
|
||
|
unsigned long start, stop;
|
||
|
struct perf_addr_filter_range *fr = event->addr_filter_ranges;
|
||
|
struct etm_filters *filters = event->hw.addr_filters;
|
||
|
struct etm_filter *etm_filter;
|
||
|
struct perf_addr_filter *filter;
|
||
|
int i = 0;
|
||
|
|
||
|
list_for_each_entry(filter, &head->list, entry) {
|
||
|
start = fr[i].start;
|
||
|
stop = start + fr[i].size;
|
||
|
etm_filter = &filters->etm_filter[i];
|
||
|
|
||
|
switch (filter->action) {
|
||
|
case PERF_ADDR_FILTER_ACTION_FILTER:
|
||
|
etm_filter->start_addr = start;
|
||
|
etm_filter->stop_addr = stop;
|
||
|
etm_filter->type = ETM_ADDR_TYPE_RANGE;
|
||
|
break;
|
||
|
case PERF_ADDR_FILTER_ACTION_START:
|
||
|
etm_filter->start_addr = start;
|
||
|
etm_filter->type = ETM_ADDR_TYPE_START;
|
||
|
break;
|
||
|
case PERF_ADDR_FILTER_ACTION_STOP:
|
||
|
etm_filter->stop_addr = stop;
|
||
|
etm_filter->type = ETM_ADDR_TYPE_STOP;
|
||
|
break;
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
filters->nr_filters = i;
|
||
|
}
|
||
|
|
||
|
int etm_perf_symlink(struct coresight_device *csdev, bool link)
|
||
|
{
|
||
|
char entry[sizeof("cpu9999999")];
|
||
|
int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
|
||
|
struct device *pmu_dev = etm_pmu.dev;
|
||
|
struct device *cs_dev = &csdev->dev;
|
||
|
|
||
|
sprintf(entry, "cpu%d", cpu);
|
||
|
|
||
|
if (!etm_perf_up)
|
||
|
return -EPROBE_DEFER;
|
||
|
|
||
|
if (link) {
|
||
|
ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
per_cpu(csdev_src, cpu) = csdev;
|
||
|
} else {
|
||
|
sysfs_remove_link(&pmu_dev->kobj, entry);
|
||
|
per_cpu(csdev_src, cpu) = NULL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(etm_perf_symlink);
|
||
|
|
||
|
static ssize_t etm_perf_sink_name_show(struct device *dev,
|
||
|
struct device_attribute *dattr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct dev_ext_attribute *ea;
|
||
|
|
||
|
ea = container_of(dattr, struct dev_ext_attribute, attr);
|
||
|
return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
|
||
|
}
|
||
|
|
||
|
static struct dev_ext_attribute *
|
||
|
etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
|
||
|
{
|
||
|
struct dev_ext_attribute *ea;
|
||
|
unsigned long hash;
|
||
|
int ret;
|
||
|
struct device *pmu_dev = etm_pmu.dev;
|
||
|
|
||
|
if (!etm_perf_up)
|
||
|
return ERR_PTR(-EPROBE_DEFER);
|
||
|
|
||
|
ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
|
||
|
if (!ea)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
/*
|
||
|
* If this function is called adding a sink then the hash is used for
|
||
|
* sink selection - see function coresight_get_sink_by_id().
|
||
|
* If adding a configuration then the hash is used for selection in
|
||
|
* cscfg_activate_config()
|
||
|
*/
|
||
|
hash = hashlen_hash(hashlen_string(NULL, name));
|
||
|
|
||
|
sysfs_attr_init(&ea->attr.attr);
|
||
|
ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
|
||
|
if (!ea->attr.attr.name)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
ea->attr.attr.mode = 0444;
|
||
|
ea->var = (unsigned long *)hash;
|
||
|
|
||
|
ret = sysfs_add_file_to_group(&pmu_dev->kobj,
|
||
|
&ea->attr.attr, group_name);
|
||
|
|
||
|
return ret ? ERR_PTR(ret) : ea;
|
||
|
}
|
||
|
|
||
|
int etm_perf_add_symlink_sink(struct coresight_device *csdev)
|
||
|
{
|
||
|
const char *name;
|
||
|
struct device *dev = &csdev->dev;
|
||
|
int err = 0;
|
||
|
|
||
|
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
|
||
|
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (csdev->ea != NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
name = dev_name(dev);
|
||
|
csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
|
||
|
if (IS_ERR(csdev->ea)) {
|
||
|
err = PTR_ERR(csdev->ea);
|
||
|
csdev->ea = NULL;
|
||
|
} else
|
||
|
csdev->ea->attr.show = etm_perf_sink_name_show;
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
|
||
|
{
|
||
|
struct device *pmu_dev = etm_pmu.dev;
|
||
|
|
||
|
sysfs_remove_file_from_group(&pmu_dev->kobj,
|
||
|
&ea->attr.attr, group_name);
|
||
|
}
|
||
|
|
||
|
void etm_perf_del_symlink_sink(struct coresight_device *csdev)
|
||
|
{
|
||
|
if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
|
||
|
csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
|
||
|
return;
|
||
|
|
||
|
if (!csdev->ea)
|
||
|
return;
|
||
|
|
||
|
etm_perf_del_symlink_group(csdev->ea, "sinks");
|
||
|
csdev->ea = NULL;
|
||
|
}
|
||
|
|
||
|
static ssize_t etm_perf_cscfg_event_show(struct device *dev,
|
||
|
struct device_attribute *dattr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct dev_ext_attribute *ea;
|
||
|
|
||
|
ea = container_of(dattr, struct dev_ext_attribute, attr);
|
||
|
return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
|
||
|
}
|
||
|
|
||
|
int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
|
||
|
{
|
||
|
int err = 0;
|
||
|
|
||
|
if (config_desc->event_ea != NULL)
|
||
|
return 0;
|
||
|
|
||
|
config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
|
||
|
|
||
|
/* set the show function to the custom cscfg event */
|
||
|
if (!IS_ERR(config_desc->event_ea))
|
||
|
config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
|
||
|
else {
|
||
|
err = PTR_ERR(config_desc->event_ea);
|
||
|
config_desc->event_ea = NULL;
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
|
||
|
{
|
||
|
if (!config_desc->event_ea)
|
||
|
return;
|
||
|
|
||
|
etm_perf_del_symlink_group(config_desc->event_ea, "events");
|
||
|
config_desc->event_ea = NULL;
|
||
|
}
|
||
|
|
||
|
int __init etm_perf_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
|
||
|
PERF_PMU_CAP_ITRACE);
|
||
|
|
||
|
etm_pmu.attr_groups = etm_pmu_attr_groups;
|
||
|
etm_pmu.task_ctx_nr = perf_sw_context;
|
||
|
etm_pmu.read = etm_event_read;
|
||
|
etm_pmu.event_init = etm_event_init;
|
||
|
etm_pmu.setup_aux = etm_setup_aux;
|
||
|
etm_pmu.free_aux = etm_free_aux;
|
||
|
etm_pmu.start = etm_event_start;
|
||
|
etm_pmu.stop = etm_event_stop;
|
||
|
etm_pmu.add = etm_event_add;
|
||
|
etm_pmu.del = etm_event_del;
|
||
|
etm_pmu.addr_filters_sync = etm_addr_filters_sync;
|
||
|
etm_pmu.addr_filters_validate = etm_addr_filters_validate;
|
||
|
etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
|
||
|
etm_pmu.module = THIS_MODULE;
|
||
|
|
||
|
ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
|
||
|
if (ret == 0)
|
||
|
etm_perf_up = true;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void etm_perf_exit(void)
|
||
|
{
|
||
|
perf_pmu_unregister(&etm_pmu);
|
||
|
}
|