linuxdebug/arch/x86/kvm/svm/svm.h

718 lines
20 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#ifndef __SVM_SVM_H
#define __SVM_SVM_H
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/bits.h>
#include <asm/svm.h>
#include <asm/sev-common.h>
#include "kvm_cache_regs.h"
#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
#define IOPM_SIZE PAGE_SIZE * 3
#define MSRPM_SIZE PAGE_SIZE * 2
#define MAX_DIRECT_ACCESS_MSRS 46
#define MSRPM_OFFSETS 32
extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
extern bool npt_enabled;
extern int vgif;
extern bool intercept_smi;
enum avic_modes {
AVIC_MODE_NONE = 0,
AVIC_MODE_X1,
AVIC_MODE_X2,
};
extern enum avic_modes avic_mode;
/*
* Clean bits in VMCB.
* VMCB_ALL_CLEAN_MASK might also need to
* be updated if this enum is modified.
*/
enum {
VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
pause filter count */
VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
VMCB_ASID, /* ASID */
VMCB_INTR, /* int_ctl, int_vector */
VMCB_NPT, /* npt_en, nCR3, gPAT */
VMCB_CR, /* CR0, CR3, CR4, EFER */
VMCB_DR, /* DR6, DR7 */
VMCB_DT, /* GDT, IDT */
VMCB_SEG, /* CS, DS, SS, ES, CPL */
VMCB_CR2, /* CR2 only */
VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
* AVIC PHYSICAL_TABLE pointer,
* AVIC LOGICAL_TABLE pointer
*/
VMCB_SW = 31, /* Reserved for hypervisor/software use */
};
#define VMCB_ALL_CLEAN_MASK ( \
(1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \
(1U << VMCB_ASID) | (1U << VMCB_INTR) | \
(1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \
(1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \
(1U << VMCB_LBR) | (1U << VMCB_AVIC) | \
(1U << VMCB_SW))
/* TPR and CR2 are always written before VMRUN */
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
struct kvm_sev_info {
bool active; /* SEV enabled guest */
bool es_active; /* SEV-ES enabled guest */
unsigned int asid; /* ASID used for this guest */
unsigned int handle; /* SEV firmware handle */
int fd; /* SEV device fd */
unsigned long pages_locked; /* Number of pages locked */
struct list_head regions_list; /* List of registered regions */
u64 ap_jump_table; /* SEV-ES AP Jump Table address */
struct kvm *enc_context_owner; /* Owner of copied encryption context */
struct list_head mirror_vms; /* List of VMs mirroring */
struct list_head mirror_entry; /* Use as a list entry of mirrors */
struct misc_cg *misc_cg; /* For misc cgroup accounting */
atomic_t migration_in_progress;
};
struct kvm_svm {
struct kvm kvm;
/* Struct members for AVIC */
u32 avic_vm_id;
struct page *avic_logical_id_table_page;
struct page *avic_physical_id_table_page;
struct hlist_node hnode;
struct kvm_sev_info sev_info;
};
struct kvm_vcpu;
struct kvm_vmcb_info {
struct vmcb *ptr;
unsigned long pa;
int cpu;
uint64_t asid_generation;
};
struct vmcb_save_area_cached {
u64 efer;
u64 cr4;
u64 cr3;
u64 cr0;
u64 dr7;
u64 dr6;
};
struct vmcb_ctrl_area_cached {
u32 intercepts[MAX_INTERCEPT];
u16 pause_filter_thresh;
u16 pause_filter_count;
u64 iopm_base_pa;
u64 msrpm_base_pa;
u64 tsc_offset;
u32 asid;
u8 tlb_ctl;
u32 int_ctl;
u32 int_vector;
u32 int_state;
u32 exit_code;
u32 exit_code_hi;
u64 exit_info_1;
u64 exit_info_2;
u32 exit_int_info;
u32 exit_int_info_err;
u64 nested_ctl;
u32 event_inj;
u32 event_inj_err;
u64 next_rip;
u64 nested_cr3;
u64 virt_ext;
u32 clean;
union {
struct hv_vmcb_enlightenments hv_enlightenments;
u8 reserved_sw[32];
};
};
struct svm_nested_state {
struct kvm_vmcb_info vmcb02;
u64 hsave_msr;
u64 vm_cr_msr;
u64 vmcb12_gpa;
u64 last_vmcb12_gpa;
/* These are the merged vectors */
u32 *msrpm;
/* A VMRUN has started but has not yet been performed, so
* we cannot inject a nested vmexit yet. */
bool nested_run_pending;
/* cache for control fields of the guest */
struct vmcb_ctrl_area_cached ctl;
/*
* Note: this struct is not kept up-to-date while L2 runs; it is only
* valid within nested_svm_vmrun.
*/
struct vmcb_save_area_cached save;
bool initialized;
/*
* Indicates whether MSR bitmap for L2 needs to be rebuilt due to
* changes in MSR bitmap for L1 or switching to a different L2. Note,
* this flag can only be used reliably in conjunction with a paravirt L1
* which informs L0 whether any changes to MSR bitmap for L2 were done
* on its side.
*/
bool force_msr_bitmap_recalc;
};
struct vcpu_sev_es_state {
/* SEV-ES support */
struct sev_es_save_area *vmsa;
struct ghcb *ghcb;
u8 valid_bitmap[16];
struct kvm_host_map ghcb_map;
bool received_first_sipi;
/* SEV-ES scratch area support */
u64 sw_scratch;
void *ghcb_sa;
u32 ghcb_sa_len;
bool ghcb_sa_sync;
bool ghcb_sa_free;
};
struct vcpu_svm {
struct kvm_vcpu vcpu;
/* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */
struct vmcb *vmcb;
struct kvm_vmcb_info vmcb01;
struct kvm_vmcb_info *current_vmcb;
u32 asid;
u32 sysenter_esp_hi;
u32 sysenter_eip_hi;
uint64_t tsc_aux;
u64 msr_decfg;
u64 next_rip;
u64 spec_ctrl;
u64 tsc_ratio_msr;
/*
* Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
* translated into the appropriate L2_CFG bits on the host to
* perform speculative control.
*/
u64 virt_spec_ctrl;
u32 *msrpm;
ulong nmi_iret_rip;
struct svm_nested_state nested;
bool nmi_singlestep;
u64 nmi_singlestep_guest_rflags;
bool nmi_l1_to_l2;
unsigned long soft_int_csbase;
unsigned long soft_int_old_rip;
unsigned long soft_int_next_rip;
bool soft_int_injected;
/* optional nested SVM features that are enabled for this guest */
bool nrips_enabled : 1;
bool tsc_scaling_enabled : 1;
bool v_vmload_vmsave_enabled : 1;
bool lbrv_enabled : 1;
bool pause_filter_enabled : 1;
bool pause_threshold_enabled : 1;
bool vgif_enabled : 1;
u32 ldr_reg;
u32 dfr_reg;
struct page *avic_backing_page;
u64 *avic_physical_id_cache;
/*
* Per-vcpu list of struct amd_svm_iommu_ir:
* This is used mainly to store interrupt remapping information used
* when update the vcpu affinity. This avoids the need to scan for
* IRTE and try to match ga_tag in the IOMMU driver.
*/
struct list_head ir_list;
spinlock_t ir_list_lock;
/* Save desired MSR intercept (read: pass-through) state */
struct {
DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS);
DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS);
} shadow_msr_intercept;
struct vcpu_sev_es_state sev_es;
bool guest_state_loaded;
bool x2avic_msrs_intercepted;
};
struct svm_cpu_data {
u64 asid_generation;
u32 max_asid;
u32 next_asid;
u32 min_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
unsigned long save_area_pa;
struct vmcb *current_vmcb;
/* index = sev_asid, value = vmcb pointer */
struct vmcb **sev_vmcbs;
};
DECLARE_PER_CPU(struct svm_cpu_data, svm_data);
void recalc_intercepts(struct vcpu_svm *svm);
static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
{
return container_of(kvm, struct kvm_svm, kvm);
}
static __always_inline bool sev_guest(struct kvm *kvm)
{
#ifdef CONFIG_KVM_AMD_SEV
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return sev->active;
#else
return false;
#endif
}
static __always_inline bool sev_es_guest(struct kvm *kvm)
{
#ifdef CONFIG_KVM_AMD_SEV
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return sev->es_active && !WARN_ON_ONCE(!sev->active);
#else
return false;
#endif
}
static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
{
vmcb->control.clean = 0;
}
static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
{
vmcb->control.clean = VMCB_ALL_CLEAN_MASK
& ~VMCB_ALWAYS_DIRTY_MASK;
}
static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
{
vmcb->control.clean &= ~(1 << bit);
}
static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit)
{
return !test_bit(bit, (unsigned long *)&vmcb->control.clean);
}
static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_svm, vcpu);
}
/*
* Only the PDPTRs are loaded on demand into the shadow MMU. All other
* fields are synchronized on VM-Exit, because accessing the VMCB is cheap.
*
* CR3 might be out of date in the VMCB but it is not marked dirty; instead,
* KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3
* is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB.
*/
#define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR)
static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__set_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__clear_bit(bit, (unsigned long *)&control->intercepts);
}
static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
return test_bit(bit, (unsigned long *)&control->intercepts);
}
static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
return test_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void set_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
if (!sev_es_guest(svm->vcpu.kvm)) {
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
}
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
recalc_intercepts(svm);
}
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb->control.intercepts[INTERCEPT_DR] = 0;
/* DR7 access must remain intercepted for an SEV-ES guest */
if (sev_es_guest(svm->vcpu.kvm)) {
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
}
recalc_intercepts(svm);
}
static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
WARN_ON_ONCE(bit >= 32);
vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
WARN_ON_ONCE(bit >= 32);
vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb_set_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb_clr_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
{
return vmcb_is_intercept(&svm->vmcb->control, bit);
}
static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
{
return svm->vgif_enabled && (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
}
static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm)
{
if (!vgif)
return NULL;
if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm))
return svm->nested.vmcb02.ptr;
else
return svm->vmcb01.ptr;
}
static inline void enable_gif(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
vmcb->control.int_ctl |= V_GIF_MASK;
else
svm->vcpu.arch.hflags |= HF_GIF_MASK;
}
static inline void disable_gif(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
vmcb->control.int_ctl &= ~V_GIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
}
static inline bool gif_set(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
return !!(vmcb->control.int_ctl & V_GIF_MASK);
else
return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
}
static inline bool nested_npt_enabled(struct vcpu_svm *svm)
{
return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
}
static inline bool is_x2apic_msrpm_offset(u32 offset)
{
/* 4 msrs per u8, and 4 u8 in u32 */
u32 msr = offset * 16;
return (msr >= APIC_BASE_MSR) &&
(msr < (APIC_BASE_MSR + 0x100));
}
/* svm.c */
#define MSR_INVALID 0xffffffffU
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
extern bool dump_invalid_vmcb;
u32 svm_msrpm_offset(u32 msr);
u32 *svm_vcpu_alloc_msrpm(void);
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm);
void svm_vcpu_free_msrpm(u32 *msrpm);
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
void svm_update_lbrv(struct kvm_vcpu *vcpu);
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void disable_nmi_singlestep(struct vcpu_svm *svm);
bool svm_smi_blocked(struct kvm_vcpu *vcpu);
bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
void svm_set_gif(struct vcpu_svm *svm, bool value);
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code);
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
int read, int write);
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool disable);
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
int trig_mode, int vec);
/* nested.c */
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
}
static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
}
static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
}
static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
}
int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
void svm_leave_nested(struct kvm_vcpu *vcpu);
void svm_free_nested(struct vcpu_svm *svm);
int svm_allocate_nested(struct vcpu_svm *svm);
int nested_svm_vmrun(struct kvm_vcpu *vcpu);
void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
struct vmcb_save_area *from_save);
void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
int nested_svm_vmexit(struct vcpu_svm *svm);
static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
{
svm->vmcb->control.exit_code = exit_code;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
return nested_svm_vmexit(svm);
}
int nested_svm_exit_handled(struct vcpu_svm *svm);
int nested_svm_check_permissions(struct kvm_vcpu *vcpu);
int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code);
int nested_svm_exit_special(struct vcpu_svm *svm);
void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
void __svm_write_tsc_multiplier(u64 multiplier);
void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
struct vmcb_control_area *control);
void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
struct vmcb_save_area *save);
void nested_sync_control_from_vmcb02(struct vcpu_svm *svm);
void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm);
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb);
extern struct kvm_x86_nested_ops svm_nested_ops;
/* avic.c */
bool avic_hardware_setup(struct kvm_x86_ops *ops);
int avic_ga_log_notifier(u32 ga_tag);
void avic_vm_destroy(struct kvm *kvm);
int avic_vm_init(struct kvm *kvm);
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb);
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu);
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu);
int avic_init_vcpu(struct vcpu_svm *svm);
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void avic_vcpu_put(struct kvm_vcpu *vcpu);
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason);
int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
void avic_ring_doorbell(struct kvm_vcpu *vcpu);
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu);
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
/* sev.c */
#define GHCB_VERSION_MAX 1ULL
#define GHCB_VERSION_MIN 1ULL
extern unsigned int max_sev_asid;
void sev_vm_destroy(struct kvm *kvm);
int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp);
int sev_mem_enc_register_region(struct kvm *kvm,
struct kvm_enc_region *range);
int sev_mem_enc_unregister_region(struct kvm *kvm,
struct kvm_enc_region *range);
int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd);
int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd);
void sev_guest_memory_reclaimed(struct kvm *kvm);
void pre_sev_run(struct vcpu_svm *svm, int cpu);
void __init sev_set_cpu_caps(void);
void __init sev_hardware_setup(void);
void sev_hardware_unsetup(void);
int sev_cpu_init(struct svm_cpu_data *sd);
void sev_init_vmcb(struct vcpu_svm *svm);
void sev_free_vcpu(struct kvm_vcpu *vcpu);
int sev_handle_vmgexit(struct kvm_vcpu *vcpu);
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
void sev_es_vcpu_reset(struct vcpu_svm *svm);
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa);
void sev_es_unmap_ghcb(struct vcpu_svm *svm);
/* vmenter.S */
void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
#define DEFINE_KVM_GHCB_ACCESSORS(field) \
static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \
{ \
return test_bit(GHCB_BITMAP_IDX(field), \
(unsigned long *)&svm->sev_es.valid_bitmap); \
} \
\
static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm, struct ghcb *ghcb) \
{ \
return kvm_ghcb_##field##_is_valid(svm) ? ghcb->save.field : 0; \
} \
DEFINE_KVM_GHCB_ACCESSORS(cpl)
DEFINE_KVM_GHCB_ACCESSORS(rax)
DEFINE_KVM_GHCB_ACCESSORS(rcx)
DEFINE_KVM_GHCB_ACCESSORS(rdx)
DEFINE_KVM_GHCB_ACCESSORS(rbx)
DEFINE_KVM_GHCB_ACCESSORS(rsi)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2)
DEFINE_KVM_GHCB_ACCESSORS(sw_scratch)
DEFINE_KVM_GHCB_ACCESSORS(xcr0)
#endif