129 lines
4.9 KiB
C
129 lines
4.9 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _ASM_POWERPC_NOHASH_32_PTE_44x_H
|
||
|
#define _ASM_POWERPC_NOHASH_32_PTE_44x_H
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* Definitions for PPC440
|
||
|
*
|
||
|
* Because of the 3 word TLB entries to support 36-bit addressing,
|
||
|
* the attribute are difficult to map in such a fashion that they
|
||
|
* are easily loaded during exception processing. I decided to
|
||
|
* organize the entry so the ERPN is the only portion in the
|
||
|
* upper word of the PTE and the attribute bits below are packed
|
||
|
* in as sensibly as they can be in the area below a 4KB page size
|
||
|
* oriented RPN. This at least makes it easy to load the RPN and
|
||
|
* ERPN fields in the TLB. -Matt
|
||
|
*
|
||
|
* This isn't entirely true anymore, at least some bits are now
|
||
|
* easier to move into the TLB from the PTE. -BenH.
|
||
|
*
|
||
|
* Note that these bits preclude future use of a page size
|
||
|
* less than 4KB.
|
||
|
*
|
||
|
*
|
||
|
* PPC 440 core has following TLB attribute fields;
|
||
|
*
|
||
|
* TLB1:
|
||
|
* 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
||
|
* RPN................................. - - - - - - ERPN.......
|
||
|
*
|
||
|
* TLB2:
|
||
|
* 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
||
|
* - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
|
||
|
*
|
||
|
* Newer 440 cores (440x6 as used on AMCC 460EX/460GT) have additional
|
||
|
* TLB2 storage attribute fields. Those are:
|
||
|
*
|
||
|
* TLB2:
|
||
|
* 0...10 11 12 13 14 15 16...31
|
||
|
* no change WL1 IL1I IL1D IL2I IL2D no change
|
||
|
*
|
||
|
* There are some constrains and options, to decide mapping software bits
|
||
|
* into TLB entry.
|
||
|
*
|
||
|
* - PRESENT *must* be in the bottom three bits because swap cache
|
||
|
* entries use the top 29 bits for TLB2.
|
||
|
*
|
||
|
* - CACHE COHERENT bit (M) has no effect on original PPC440 cores,
|
||
|
* because it doesn't support SMP. However, some later 460 variants
|
||
|
* have -some- form of SMP support and so I keep the bit there for
|
||
|
* future use
|
||
|
*
|
||
|
* With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
|
||
|
* for memory protection related functions (see PTE structure in
|
||
|
* include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the
|
||
|
* above bits. Note that the bit values are CPU specific, not architecture
|
||
|
* specific.
|
||
|
*
|
||
|
* The kernel PTE entry holds an arch-dependent swp_entry structure under
|
||
|
* certain situations. In other words, in such situations some portion of
|
||
|
* the PTE bits are used as a swp_entry. In the PPC implementation, the
|
||
|
* 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
|
||
|
* hold protection values. That means the three protection bits are
|
||
|
* reserved for both PTE and SWAP entry at the most significant three
|
||
|
* LSBs.
|
||
|
*
|
||
|
* There are three protection bits available for SWAP entry:
|
||
|
* _PAGE_PRESENT
|
||
|
* _PAGE_HASHPTE (if HW has)
|
||
|
*
|
||
|
* So those three bits have to be inside of 0-2nd LSB of PTE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
|
||
|
#define _PAGE_RW 0x00000002 /* S: Write permission */
|
||
|
#define _PAGE_EXEC 0x00000004 /* H: Execute permission */
|
||
|
#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
|
||
|
#define _PAGE_DIRTY 0x00000010 /* S: Page dirty */
|
||
|
#define _PAGE_SPECIAL 0x00000020 /* S: Special page */
|
||
|
#define _PAGE_USER 0x00000040 /* S: User page */
|
||
|
#define _PAGE_ENDIAN 0x00000080 /* H: E bit */
|
||
|
#define _PAGE_GUARDED 0x00000100 /* H: G bit */
|
||
|
#define _PAGE_COHERENT 0x00000200 /* H: M bit */
|
||
|
#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
|
||
|
#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
|
||
|
|
||
|
/* No page size encoding in the linux PTE */
|
||
|
#define _PAGE_PSIZE 0
|
||
|
|
||
|
#define _PAGE_KERNEL_RO 0
|
||
|
#define _PAGE_KERNEL_ROX _PAGE_EXEC
|
||
|
#define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
|
||
|
#define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
|
||
|
|
||
|
/* TODO: Add large page lowmem mapping support */
|
||
|
#define _PMD_PRESENT 0
|
||
|
#define _PMD_PRESENT_MASK (PAGE_MASK)
|
||
|
#define _PMD_BAD (~PAGE_MASK)
|
||
|
#define _PMD_USER 0
|
||
|
|
||
|
/* ERPN in a PTE never gets cleared, ignore it */
|
||
|
#define _PTE_NONE_MASK 0xffffffff00000000ULL
|
||
|
|
||
|
/*
|
||
|
* We define 2 sets of base prot bits, one for basic pages (ie,
|
||
|
* cacheable kernel and user pages) and one for non cacheable
|
||
|
* pages. We always set _PAGE_COHERENT when SMP is enabled or
|
||
|
* the processor might need it for DMA coherency.
|
||
|
*/
|
||
|
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
|
||
|
#if defined(CONFIG_SMP)
|
||
|
#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
|
||
|
#else
|
||
|
#define _PAGE_BASE (_PAGE_BASE_NC)
|
||
|
#endif
|
||
|
|
||
|
/* Permission masks used to generate the __P and __S table */
|
||
|
#define PAGE_NONE __pgprot(_PAGE_BASE)
|
||
|
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
|
||
|
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
|
||
|
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
|
||
|
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
#endif /* _ASM_POWERPC_NOHASH_32_PTE_44x_H */
|