262 lines
5.8 KiB
C
262 lines
5.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* MIPS idle loop and WAIT instruction support.
|
||
|
*
|
||
|
* Copyright (C) xxxx the Anonymous
|
||
|
* Copyright (C) 1994 - 2006 Ralf Baechle
|
||
|
* Copyright (C) 2003, 2004 Maciej W. Rozycki
|
||
|
* Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
|
||
|
*/
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/irqflags.h>
|
||
|
#include <linux/printk.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <asm/cpu.h>
|
||
|
#include <asm/cpu-info.h>
|
||
|
#include <asm/cpu-type.h>
|
||
|
#include <asm/idle.h>
|
||
|
#include <asm/mipsregs.h>
|
||
|
|
||
|
/*
|
||
|
* Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
|
||
|
* the implementation of the "wait" feature differs between CPU families. This
|
||
|
* points to the function that implements CPU specific wait.
|
||
|
* The wait instruction stops the pipeline and reduces the power consumption of
|
||
|
* the CPU very much.
|
||
|
*/
|
||
|
void (*cpu_wait)(void);
|
||
|
EXPORT_SYMBOL(cpu_wait);
|
||
|
|
||
|
static void __cpuidle r3081_wait(void)
|
||
|
{
|
||
|
unsigned long cfg = read_c0_conf();
|
||
|
write_c0_conf(cfg | R30XX_CONF_HALT);
|
||
|
raw_local_irq_enable();
|
||
|
}
|
||
|
|
||
|
void __cpuidle r4k_wait(void)
|
||
|
{
|
||
|
raw_local_irq_enable();
|
||
|
__r4k_wait();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This variant is preferable as it allows testing need_resched and going to
|
||
|
* sleep depending on the outcome atomically. Unfortunately the "It is
|
||
|
* implementation-dependent whether the pipeline restarts when a non-enabled
|
||
|
* interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
|
||
|
* using this version a gamble.
|
||
|
*/
|
||
|
void __cpuidle r4k_wait_irqoff(void)
|
||
|
{
|
||
|
if (!need_resched())
|
||
|
__asm__(
|
||
|
" .set push \n"
|
||
|
" .set arch=r4000 \n"
|
||
|
" wait \n"
|
||
|
" .set pop \n");
|
||
|
raw_local_irq_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The RM7000 variant has to handle erratum 38. The workaround is to not
|
||
|
* have any pending stores when the WAIT instruction is executed.
|
||
|
*/
|
||
|
static void __cpuidle rm7k_wait_irqoff(void)
|
||
|
{
|
||
|
if (!need_resched())
|
||
|
__asm__(
|
||
|
" .set push \n"
|
||
|
" .set arch=r4000 \n"
|
||
|
" .set noat \n"
|
||
|
" mfc0 $1, $12 \n"
|
||
|
" sync \n"
|
||
|
" mtc0 $1, $12 # stalls until W stage \n"
|
||
|
" wait \n"
|
||
|
" mtc0 $1, $12 # stalls until W stage \n"
|
||
|
" .set pop \n");
|
||
|
raw_local_irq_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Au1 'wait' is only useful when the 32kHz counter is used as timer,
|
||
|
* since coreclock (and the cp0 counter) stops upon executing it. Only an
|
||
|
* interrupt can wake it, so they must be enabled before entering idle modes.
|
||
|
*/
|
||
|
static void __cpuidle au1k_wait(void)
|
||
|
{
|
||
|
unsigned long c0status = read_c0_status() | 1; /* irqs on */
|
||
|
|
||
|
__asm__(
|
||
|
" .set push \n"
|
||
|
" .set arch=r4000 \n"
|
||
|
" cache 0x14, 0(%0) \n"
|
||
|
" cache 0x14, 32(%0) \n"
|
||
|
" sync \n"
|
||
|
" mtc0 %1, $12 \n" /* wr c0status */
|
||
|
" wait \n"
|
||
|
" nop \n"
|
||
|
" nop \n"
|
||
|
" nop \n"
|
||
|
" nop \n"
|
||
|
" .set pop \n"
|
||
|
: : "r" (au1k_wait), "r" (c0status));
|
||
|
}
|
||
|
|
||
|
static int __initdata nowait;
|
||
|
|
||
|
static int __init wait_disable(char *s)
|
||
|
{
|
||
|
nowait = 1;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("nowait", wait_disable);
|
||
|
|
||
|
void __init check_wait(void)
|
||
|
{
|
||
|
struct cpuinfo_mips *c = ¤t_cpu_data;
|
||
|
|
||
|
if (nowait) {
|
||
|
printk("Wait instruction disabled.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* MIPSr6 specifies that masked interrupts should unblock an executing
|
||
|
* wait instruction, and thus that it is safe for us to use
|
||
|
* r4k_wait_irqoff. Yippee!
|
||
|
*/
|
||
|
if (cpu_has_mips_r6) {
|
||
|
cpu_wait = r4k_wait_irqoff;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (current_cpu_type()) {
|
||
|
case CPU_R3081:
|
||
|
case CPU_R3081E:
|
||
|
cpu_wait = r3081_wait;
|
||
|
break;
|
||
|
case CPU_R4200:
|
||
|
/* case CPU_R4300: */
|
||
|
case CPU_R4600:
|
||
|
case CPU_R4640:
|
||
|
case CPU_R4650:
|
||
|
case CPU_R4700:
|
||
|
case CPU_R5000:
|
||
|
case CPU_R5500:
|
||
|
case CPU_NEVADA:
|
||
|
case CPU_4KC:
|
||
|
case CPU_4KEC:
|
||
|
case CPU_4KSC:
|
||
|
case CPU_5KC:
|
||
|
case CPU_5KE:
|
||
|
case CPU_25KF:
|
||
|
case CPU_PR4450:
|
||
|
case CPU_BMIPS3300:
|
||
|
case CPU_BMIPS4350:
|
||
|
case CPU_BMIPS4380:
|
||
|
case CPU_CAVIUM_OCTEON:
|
||
|
case CPU_CAVIUM_OCTEON_PLUS:
|
||
|
case CPU_CAVIUM_OCTEON2:
|
||
|
case CPU_CAVIUM_OCTEON3:
|
||
|
case CPU_XBURST:
|
||
|
case CPU_LOONGSON32:
|
||
|
cpu_wait = r4k_wait;
|
||
|
break;
|
||
|
case CPU_LOONGSON64:
|
||
|
if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
|
||
|
(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
|
||
|
(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
|
||
|
cpu_wait = r4k_wait;
|
||
|
break;
|
||
|
|
||
|
case CPU_BMIPS5000:
|
||
|
cpu_wait = r4k_wait_irqoff;
|
||
|
break;
|
||
|
case CPU_RM7000:
|
||
|
cpu_wait = rm7k_wait_irqoff;
|
||
|
break;
|
||
|
|
||
|
case CPU_PROAPTIV:
|
||
|
case CPU_P5600:
|
||
|
/*
|
||
|
* Incoming Fast Debug Channel (FDC) data during a wait
|
||
|
* instruction causes the wait never to resume, even if an
|
||
|
* interrupt is received. Avoid using wait at all if FDC data is
|
||
|
* likely to be received.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_MIPS_EJTAG_FDC_TTY))
|
||
|
break;
|
||
|
fallthrough;
|
||
|
case CPU_M14KC:
|
||
|
case CPU_M14KEC:
|
||
|
case CPU_24K:
|
||
|
case CPU_34K:
|
||
|
case CPU_1004K:
|
||
|
case CPU_1074K:
|
||
|
case CPU_INTERAPTIV:
|
||
|
case CPU_M5150:
|
||
|
case CPU_QEMU_GENERIC:
|
||
|
cpu_wait = r4k_wait;
|
||
|
if (read_c0_config7() & MIPS_CONF7_WII)
|
||
|
cpu_wait = r4k_wait_irqoff;
|
||
|
break;
|
||
|
|
||
|
case CPU_74K:
|
||
|
cpu_wait = r4k_wait;
|
||
|
if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
|
||
|
cpu_wait = r4k_wait_irqoff;
|
||
|
break;
|
||
|
|
||
|
case CPU_TX49XX:
|
||
|
cpu_wait = r4k_wait_irqoff;
|
||
|
break;
|
||
|
case CPU_ALCHEMY:
|
||
|
cpu_wait = au1k_wait;
|
||
|
break;
|
||
|
case CPU_20KC:
|
||
|
/*
|
||
|
* WAIT on Rev1.0 has E1, E2, E3 and E16.
|
||
|
* WAIT on Rev2.0 and Rev3.0 has E16.
|
||
|
* Rev3.1 WAIT is nop, why bother
|
||
|
*/
|
||
|
if ((c->processor_id & 0xff) <= 0x64)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Another rev is incrementing c0_count at a reduced clock
|
||
|
* rate while in WAIT mode. So we basically have the choice
|
||
|
* between using the cp0 timer as clocksource or avoiding
|
||
|
* the WAIT instruction. Until more details are known,
|
||
|
* disable the use of WAIT for 20Kc entirely.
|
||
|
cpu_wait = r4k_wait;
|
||
|
*/
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void arch_cpu_idle(void)
|
||
|
{
|
||
|
if (cpu_wait)
|
||
|
cpu_wait();
|
||
|
else
|
||
|
raw_local_irq_enable();
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_CPU_IDLE
|
||
|
|
||
|
int mips_cpuidle_wait_enter(struct cpuidle_device *dev,
|
||
|
struct cpuidle_driver *drv, int index)
|
||
|
{
|
||
|
arch_cpu_idle();
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
#endif
|