linuxdebug/arch/ia64/hp/common/sba_iommu.c

2148 lines
57 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** IA64 System Bus Adapter (SBA) I/O MMU manager
**
** (c) Copyright 2002-2005 Alex Williamson
** (c) Copyright 2002-2003 Grant Grundler
** (c) Copyright 2002-2005 Hewlett-Packard Company
**
** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
**
**
**
** This module initializes the IOC (I/O Controller) found on HP
** McKinley machines and their successors.
**
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <linux/nodemask.h>
#include <linux/bitops.h> /* hweight64() */
#include <linux/crash_dump.h>
#include <linux/iommu-helper.h>
#include <linux/dma-map-ops.h>
#include <linux/prefetch.h>
#include <linux/swiotlb.h>
#include <asm/delay.h> /* ia64_get_itc() */
#include <asm/io.h>
#include <asm/page.h> /* PAGE_OFFSET */
#include <asm/dma.h>
#include <asm/acpi-ext.h>
#define PFX "IOC: "
/*
** Enabling timing search of the pdir resource map. Output in /proc.
** Disabled by default to optimize performance.
*/
#undef PDIR_SEARCH_TIMING
/*
** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
** not defined, all DMA will be 32bit and go through the TLB.
** There's potentially a conflict in the bio merge code with us
** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
** appears to give more performance than bio-level virtual merging, we'll
** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
** completely restrict DMA to the IOMMU.
*/
#define ALLOW_IOV_BYPASS
/*
** This option specifically allows/disallows bypassing scatterlists with
** multiple entries. Coalescing these entries can allow better DMA streaming
** and in some cases shows better performance than entirely bypassing the
** IOMMU. Performance increase on the order of 1-2% sequential output/input
** using bonnie++ on a RAID0 MD device (sym2 & mpt).
*/
#undef ALLOW_IOV_BYPASS_SG
/*
** If a device prefetches beyond the end of a valid pdir entry, it will cause
** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
** disconnect on 4k boundaries and prevent such issues. If the device is
** particularly aggressive, this option will keep the entire pdir valid such
** that prefetching will hit a valid address. This could severely impact
** error containment, and is therefore off by default. The page that is
** used for spill-over is poisoned, so that should help debugging somewhat.
*/
#undef FULL_VALID_PDIR
#define ENABLE_MARK_CLEAN
/*
** The number of debug flags is a clue - this code is fragile. NOTE: since
** tightening the use of res_lock the resource bitmap and actual pdir are no
** longer guaranteed to stay in sync. The sanity checking code isn't going to
** like that.
*/
#undef DEBUG_SBA_INIT
#undef DEBUG_SBA_RUN
#undef DEBUG_SBA_RUN_SG
#undef DEBUG_SBA_RESOURCE
#undef ASSERT_PDIR_SANITY
#undef DEBUG_LARGE_SG_ENTRIES
#undef DEBUG_BYPASS
#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
#endif
#define SBA_INLINE __inline__
/* #define SBA_INLINE */
#ifdef DEBUG_SBA_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#ifdef DEBUG_SBA_RUN
#define DBG_RUN(x...) printk(x)
#else
#define DBG_RUN(x...)
#endif
#ifdef DEBUG_SBA_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif
#ifdef DEBUG_SBA_RESOURCE
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
#ifdef DEBUG_BYPASS
#define DBG_BYPASS(x...) printk(x)
#else
#define DBG_BYPASS(x...)
#endif
#ifdef ASSERT_PDIR_SANITY
#define ASSERT(expr) \
if(!(expr)) { \
printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
panic(#expr); \
}
#else
#define ASSERT(expr)
#endif
/*
** The number of pdir entries to "free" before issuing
** a read to PCOM register to flush out PCOM writes.
** Interacts with allocation granularity (ie 4 or 8 entries
** allocated and free'd/purged at a time might make this
** less interesting).
*/
#define DELAYED_RESOURCE_CNT 64
#define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
#define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
#define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
#define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
#define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
#define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
#define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
#define IOC_FUNC_ID 0x000
#define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
#define IOC_IBASE 0x300 /* IO TLB */
#define IOC_IMASK 0x308
#define IOC_PCOM 0x310
#define IOC_TCNFG 0x318
#define IOC_PDIR_BASE 0x320
#define IOC_ROPE0_CFG 0x500
#define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
/* AGP GART driver looks for this */
#define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
/*
** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
**
** Some IOCs (sx1000) can run at the above pages sizes, but are
** really only supported using the IOC at a 4k page size.
**
** iovp_size could only be greater than PAGE_SIZE if we are
** confident the drivers really only touch the next physical
** page iff that driver instance owns it.
*/
static unsigned long iovp_size;
static unsigned long iovp_shift;
static unsigned long iovp_mask;
struct ioc {
void __iomem *ioc_hpa; /* I/O MMU base address */
char *res_map; /* resource map, bit == pdir entry */
u64 *pdir_base; /* physical base address */
unsigned long ibase; /* pdir IOV Space base */
unsigned long imask; /* pdir IOV Space mask */
unsigned long *res_hint; /* next avail IOVP - circular search */
unsigned long dma_mask;
spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
/* clearing pdir to prevent races with allocations. */
unsigned int res_bitshift; /* from the RIGHT! */
unsigned int res_size; /* size of resource map in bytes */
#ifdef CONFIG_NUMA
unsigned int node; /* node where this IOC lives */
#endif
#if DELAYED_RESOURCE_CNT > 0
spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
/* than res_lock for bigger systems. */
int saved_cnt;
struct sba_dma_pair {
dma_addr_t iova;
size_t size;
} saved[DELAYED_RESOURCE_CNT];
#endif
#ifdef PDIR_SEARCH_TIMING
#define SBA_SEARCH_SAMPLE 0x100
unsigned long avg_search[SBA_SEARCH_SAMPLE];
unsigned long avg_idx; /* current index into avg_search */
#endif
/* Stuff we don't need in performance path */
struct ioc *next; /* list of IOC's in system */
acpi_handle handle; /* for multiple IOC's */
const char *name;
unsigned int func_id;
unsigned int rev; /* HW revision of chip */
u32 iov_size;
unsigned int pdir_size; /* in bytes, determined by IOV Space size */
struct pci_dev *sac_only_dev;
};
static struct ioc *ioc_list, *ioc_found;
static int reserve_sba_gart = 1;
static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
#define sba_sg_address(sg) sg_virt((sg))
#ifdef FULL_VALID_PDIR
static u64 prefetch_spill_page;
#endif
#define GET_IOC(dev) ((dev_is_pci(dev)) \
? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
/*
** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
** (or rather not merge) DMAs into manageable chunks.
** On parisc, this is more of the software/tuning constraint
** rather than the HW. I/O MMU allocation algorithms can be
** faster with smaller sizes (to some degree).
*/
#define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
/************************************
** SBA register read and write support
**
** BE WARNED: register writes are posted.
** (ie follow writes which must reach HW with a read)
**
*/
#define READ_REG(addr) __raw_readq(addr)
#define WRITE_REG(val, addr) __raw_writeq(val, addr)
#ifdef DEBUG_SBA_INIT
/**
* sba_dump_tlb - debugging only - print IOMMU operating parameters
* @hpa: base address of the IOMMU
*
* Print the size/location of the IO MMU PDIR.
*/
static void
sba_dump_tlb(char *hpa)
{
DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
DBG_INIT("\n");
}
#endif
#ifdef ASSERT_PDIR_SANITY
/**
* sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @msg: text to print ont the output line.
* @pide: pdir index.
*
* Print one entry of the IO MMU PDIR in human readable form.
*/
static void
sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
{
/* start printing from lowest pde in rval */
u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
uint rcnt;
printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
rcnt = 0;
while (rcnt < BITS_PER_LONG) {
printk(KERN_DEBUG "%s %2d %p %016Lx\n",
(rcnt == (pide & (BITS_PER_LONG - 1)))
? " -->" : " ",
rcnt, ptr, (unsigned long long) *ptr );
rcnt++;
ptr++;
}
printk(KERN_DEBUG "%s", msg);
}
/**
* sba_check_pdir - debugging only - consistency checker
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @msg: text to print ont the output line.
*
* Verify the resource map and pdir state is consistent
*/
static int
sba_check_pdir(struct ioc *ioc, char *msg)
{
u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
u64 *pptr = ioc->pdir_base; /* pdir ptr */
uint pide = 0;
while (rptr < rptr_end) {
u64 rval;
int rcnt; /* number of bits we might check */
rval = *rptr;
rcnt = 64;
while (rcnt) {
/* Get last byte and highest bit from that */
u32 pde = ((u32)((*pptr >> (63)) & 0x1));
if ((rval & 0x1) ^ pde)
{
/*
** BUMMER! -- res_map != pdir --
** Dump rval and matching pdir entries
*/
sba_dump_pdir_entry(ioc, msg, pide);
return(1);
}
rcnt--;
rval >>= 1; /* try the next bit */
pptr++;
pide++;
}
rptr++; /* look at next word of res_map */
}
/* It'd be nice if we always got here :^) */
return 0;
}
/**
* sba_dump_sg - debugging only - print Scatter-Gather list
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @startsg: head of the SG list
* @nents: number of entries in SG list
*
* print the SG list so we can verify it's correct by hand.
*/
static void
sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
{
while (nents-- > 0) {
printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
startsg->dma_address, startsg->dma_length,
sba_sg_address(startsg));
startsg = sg_next(startsg);
}
}
static void
sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
{
struct scatterlist *the_sg = startsg;
int the_nents = nents;
while (the_nents-- > 0) {
if (sba_sg_address(the_sg) == 0x0UL)
sba_dump_sg(NULL, startsg, nents);
the_sg = sg_next(the_sg);
}
}
#endif /* ASSERT_PDIR_SANITY */
/**************************************************************
*
* I/O Pdir Resource Management
*
* Bits set in the resource map are in use.
* Each bit can represent a number of pages.
* LSbs represent lower addresses (IOVA's).
*
***************************************************************/
#define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
/* Convert from IOVP to IOVA and vice versa. */
#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
#define PDIR_ENTRY_SIZE sizeof(u64)
#define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
#define RESMAP_MASK(n) ~(~0UL << (n))
#define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
/**
* For most cases the normal get_order is sufficient, however it limits us
* to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
* It only incurs about 1 clock cycle to use this one with the static variable
* and makes the code more intuitive.
*/
static SBA_INLINE int
get_iovp_order (unsigned long size)
{
long double d = size - 1;
long order;
order = ia64_getf_exp(d);
order = order - iovp_shift - 0xffff + 1;
if (order < 0)
order = 0;
return order;
}
static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
unsigned int bitshiftcnt)
{
return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
+ bitshiftcnt;
}
/**
* sba_search_bitmap - find free space in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @bits_wanted: number of entries we need.
* @use_hint: use res_hint to indicate where to start looking
*
* Find consecutive free bits in resource bitmap.
* Each bit represents one entry in the IO Pdir.
* Cool perf optimization: search for log2(size) bits at a time.
*/
static SBA_INLINE unsigned long
sba_search_bitmap(struct ioc *ioc, struct device *dev,
unsigned long bits_wanted, int use_hint)
{
unsigned long *res_ptr;
unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
unsigned long flags, pide = ~0UL, tpide;
unsigned long boundary_size;
unsigned long shift;
int ret;
ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
ASSERT(res_ptr < res_end);
boundary_size = dma_get_seg_boundary_nr_pages(dev, iovp_shift);
BUG_ON(ioc->ibase & ~iovp_mask);
shift = ioc->ibase >> iovp_shift;
spin_lock_irqsave(&ioc->res_lock, flags);
/* Allow caller to force a search through the entire resource space */
if (likely(use_hint)) {
res_ptr = ioc->res_hint;
} else {
res_ptr = (ulong *)ioc->res_map;
ioc->res_bitshift = 0;
}
/*
* N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
* if a TLB entry is purged while in use. sba_mark_invalid()
* purges IOTLB entries in power-of-two sizes, so we also
* allocate IOVA space in power-of-two sizes.
*/
bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
if (likely(bits_wanted == 1)) {
unsigned int bitshiftcnt;
for(; res_ptr < res_end ; res_ptr++) {
if (likely(*res_ptr != ~0UL)) {
bitshiftcnt = ffz(*res_ptr);
*res_ptr |= (1UL << bitshiftcnt);
pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
ioc->res_bitshift = bitshiftcnt + bits_wanted;
goto found_it;
}
}
goto not_found;
}
if (likely(bits_wanted <= BITS_PER_LONG/2)) {
/*
** Search the resource bit map on well-aligned values.
** "o" is the alignment.
** We need the alignment to invalidate I/O TLB using
** SBA HW features in the unmap path.
*/
unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
unsigned long mask, base_mask;
base_mask = RESMAP_MASK(bits_wanted);
mask = base_mask << bitshiftcnt;
DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
for(; res_ptr < res_end ; res_ptr++)
{
DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
ASSERT(0 != mask);
for (; mask ; mask <<= o, bitshiftcnt += o) {
tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
ret = iommu_is_span_boundary(tpide, bits_wanted,
shift,
boundary_size);
if ((0 == ((*res_ptr) & mask)) && !ret) {
*res_ptr |= mask; /* mark resources busy! */
pide = tpide;
ioc->res_bitshift = bitshiftcnt + bits_wanted;
goto found_it;
}
}
bitshiftcnt = 0;
mask = base_mask;
}
} else {
int qwords, bits, i;
unsigned long *end;
qwords = bits_wanted >> 6; /* /64 */
bits = bits_wanted - (qwords * BITS_PER_LONG);
end = res_end - qwords;
for (; res_ptr < end; res_ptr++) {
tpide = ptr_to_pide(ioc, res_ptr, 0);
ret = iommu_is_span_boundary(tpide, bits_wanted,
shift, boundary_size);
if (ret)
goto next_ptr;
for (i = 0 ; i < qwords ; i++) {
if (res_ptr[i] != 0)
goto next_ptr;
}
if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
continue;
/* Found it, mark it */
for (i = 0 ; i < qwords ; i++)
res_ptr[i] = ~0UL;
res_ptr[i] |= RESMAP_MASK(bits);
pide = tpide;
res_ptr += qwords;
ioc->res_bitshift = bits;
goto found_it;
next_ptr:
;
}
}
not_found:
prefetch(ioc->res_map);
ioc->res_hint = (unsigned long *) ioc->res_map;
ioc->res_bitshift = 0;
spin_unlock_irqrestore(&ioc->res_lock, flags);
return (pide);
found_it:
ioc->res_hint = res_ptr;
spin_unlock_irqrestore(&ioc->res_lock, flags);
return (pide);
}
/**
* sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @size: number of bytes to create a mapping for
*
* Given a size, find consecutive unmarked and then mark those bits in the
* resource bit map.
*/
static int
sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
{
unsigned int pages_needed = size >> iovp_shift;
#ifdef PDIR_SEARCH_TIMING
unsigned long itc_start;
#endif
unsigned long pide;
ASSERT(pages_needed);
ASSERT(0 == (size & ~iovp_mask));
#ifdef PDIR_SEARCH_TIMING
itc_start = ia64_get_itc();
#endif
/*
** "seek and ye shall find"...praying never hurts either...
*/
pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
if (unlikely(pide >= (ioc->res_size << 3))) {
pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
if (unlikely(pide >= (ioc->res_size << 3))) {
#if DELAYED_RESOURCE_CNT > 0
unsigned long flags;
/*
** With delayed resource freeing, we can give this one more shot. We're
** getting close to being in trouble here, so do what we can to make this
** one count.
*/
spin_lock_irqsave(&ioc->saved_lock, flags);
if (ioc->saved_cnt > 0) {
struct sba_dma_pair *d;
int cnt = ioc->saved_cnt;
d = &(ioc->saved[ioc->saved_cnt - 1]);
spin_lock(&ioc->res_lock);
while (cnt--) {
sba_mark_invalid(ioc, d->iova, d->size);
sba_free_range(ioc, d->iova, d->size);
d--;
}
ioc->saved_cnt = 0;
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
spin_unlock(&ioc->res_lock);
}
spin_unlock_irqrestore(&ioc->saved_lock, flags);
pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
if (unlikely(pide >= (ioc->res_size << 3))) {
printk(KERN_WARNING "%s: I/O MMU @ %p is"
"out of mapping resources, %u %u %lx\n",
__func__, ioc->ioc_hpa, ioc->res_size,
pages_needed, dma_get_seg_boundary(dev));
return -1;
}
#else
printk(KERN_WARNING "%s: I/O MMU @ %p is"
"out of mapping resources, %u %u %lx\n",
__func__, ioc->ioc_hpa, ioc->res_size,
pages_needed, dma_get_seg_boundary(dev));
return -1;
#endif
}
}
#ifdef PDIR_SEARCH_TIMING
ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
#endif
prefetchw(&(ioc->pdir_base[pide]));
#ifdef ASSERT_PDIR_SANITY
/* verify the first enable bit is clear */
if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
}
#endif
DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
__func__, size, pages_needed, pide,
(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
ioc->res_bitshift );
return (pide);
}
/**
* sba_free_range - unmark bits in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @iova: IO virtual address which was previously allocated.
* @size: number of bytes to create a mapping for
*
* clear bits in the ioc's resource map
*/
static SBA_INLINE void
sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
{
unsigned long iovp = SBA_IOVP(ioc, iova);
unsigned int pide = PDIR_INDEX(iovp);
unsigned int ridx = pide >> 3; /* convert bit to byte address */
unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
int bits_not_wanted = size >> iovp_shift;
unsigned long m;
/* Round up to power-of-two size: see AR2305 note above */
bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
for (; bits_not_wanted > 0 ; res_ptr++) {
if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
/* these mappings start 64bit aligned */
*res_ptr = 0UL;
bits_not_wanted -= BITS_PER_LONG;
pide += BITS_PER_LONG;
} else {
/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
bits_not_wanted = 0;
DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
bits_not_wanted, m, pide, res_ptr, *res_ptr);
ASSERT(m != 0);
ASSERT(bits_not_wanted);
ASSERT((*res_ptr & m) == m); /* verify same bits are set */
*res_ptr &= ~m;
}
}
}
/**************************************************************
*
* "Dynamic DMA Mapping" support (aka "Coherent I/O")
*
***************************************************************/
/**
* sba_io_pdir_entry - fill in one IO PDIR entry
* @pdir_ptr: pointer to IO PDIR entry
* @vba: Virtual CPU address of buffer to map
*
* SBA Mapping Routine
*
* Given a virtual address (vba, arg1) sba_io_pdir_entry()
* loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
* Each IO Pdir entry consists of 8 bytes as shown below
* (LSB == bit 0):
*
* 63 40 11 7 0
* +-+---------------------+----------------------------------+----+--------+
* |V| U | PPN[39:12] | U | FF |
* +-+---------------------+----------------------------------+----+--------+
*
* V == Valid Bit
* U == Unused
* PPN == Physical Page Number
*
* The physical address fields are filled with the results of virt_to_phys()
* on the vba.
*/
#if 1
#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
| 0x8000000000000000ULL)
#else
void SBA_INLINE
sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
{
*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
}
#endif
#ifdef ENABLE_MARK_CLEAN
/**
* Since DMA is i-cache coherent, any (complete) pages that were written via
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
* flush them when they get mapped into an executable vm-area.
*/
static void
mark_clean (void *addr, size_t size)
{
unsigned long pg_addr, end;
pg_addr = PAGE_ALIGN((unsigned long) addr);
end = (unsigned long) addr + size;
while (pg_addr + PAGE_SIZE <= end) {
struct page *page = virt_to_page((void *)pg_addr);
set_bit(PG_arch_1, &page->flags);
pg_addr += PAGE_SIZE;
}
}
#endif
/**
* sba_mark_invalid - invalidate one or more IO PDIR entries
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @iova: IO Virtual Address mapped earlier
* @byte_cnt: number of bytes this mapping covers.
*
* Marking the IO PDIR entry(ies) as Invalid and invalidate
* corresponding IO TLB entry. The PCOM (Purge Command Register)
* is to purge stale entries in the IO TLB when unmapping entries.
*
* The PCOM register supports purging of multiple pages, with a minium
* of 1 page and a maximum of 2GB. Hardware requires the address be
* aligned to the size of the range being purged. The size of the range
* must be a power of 2. The "Cool perf optimization" in the
* allocation routine helps keep that true.
*/
static SBA_INLINE void
sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
u32 iovp = (u32) SBA_IOVP(ioc,iova);
int off = PDIR_INDEX(iovp);
/* Must be non-zero and rounded up */
ASSERT(byte_cnt > 0);
ASSERT(0 == (byte_cnt & ~iovp_mask));
#ifdef ASSERT_PDIR_SANITY
/* Assert first pdir entry is set */
if (!(ioc->pdir_base[off] >> 60)) {
sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
}
#endif
if (byte_cnt <= iovp_size)
{
ASSERT(off < ioc->pdir_size);
iovp |= iovp_shift; /* set "size" field for PCOM */
#ifndef FULL_VALID_PDIR
/*
** clear I/O PDIR entry "valid" bit
** Do NOT clear the rest - save it for debugging.
** We should only clear bits that have previously
** been enabled.
*/
ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
#else
/*
** If we want to maintain the PDIR as valid, put in
** the spill page so devices prefetching won't
** cause a hard fail.
*/
ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
#endif
} else {
u32 t = get_iovp_order(byte_cnt) + iovp_shift;
iovp |= t;
ASSERT(t <= 31); /* 2GB! Max value of "size" field */
do {
/* verify this pdir entry is enabled */
ASSERT(ioc->pdir_base[off] >> 63);
#ifndef FULL_VALID_PDIR
/* clear I/O Pdir entry "valid" bit first */
ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
#else
ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
#endif
off++;
byte_cnt -= iovp_size;
} while (byte_cnt > 0);
}
WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
}
/**
* sba_map_page - map one buffer and return IOVA for DMA
* @dev: instance of PCI owned by the driver that's asking.
* @page: page to map
* @poff: offset into page
* @size: number of bytes to map
* @dir: dma direction
* @attrs: optional dma attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static dma_addr_t sba_map_page(struct device *dev, struct page *page,
unsigned long poff, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
struct ioc *ioc;
void *addr = page_address(page) + poff;
dma_addr_t iovp;
dma_addr_t offset;
u64 *pdir_start;
int pide;
#ifdef ASSERT_PDIR_SANITY
unsigned long flags;
#endif
#ifdef ALLOW_IOV_BYPASS
unsigned long pci_addr = virt_to_phys(addr);
#endif
#ifdef ALLOW_IOV_BYPASS
ASSERT(to_pci_dev(dev)->dma_mask);
/*
** Check if the PCI device can DMA to ptr... if so, just return ptr
*/
if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
/*
** Device is bit capable of DMA'ing to the buffer...
** just return the PCI address of ptr
*/
DBG_BYPASS("sba_map_page() bypass mask/addr: "
"0x%lx/0x%lx\n",
to_pci_dev(dev)->dma_mask, pci_addr);
return pci_addr;
}
#endif
ioc = GET_IOC(dev);
ASSERT(ioc);
prefetch(ioc->res_hint);
ASSERT(size > 0);
ASSERT(size <= DMA_CHUNK_SIZE);
/* save offset bits */
offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
/* round up to nearest iovp_size */
size = (size + offset + ~iovp_mask) & iovp_mask;
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
if (sba_check_pdir(ioc,"Check before sba_map_page()"))
panic("Sanity check failed");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
pide = sba_alloc_range(ioc, dev, size);
if (pide < 0)
return DMA_MAPPING_ERROR;
iovp = (dma_addr_t) pide << iovp_shift;
DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
pdir_start = &(ioc->pdir_base[pide]);
while (size > 0) {
ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
sba_io_pdir_entry(pdir_start, (unsigned long) addr);
DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
addr += iovp_size;
size -= iovp_size;
pdir_start++;
}
/* force pdir update */
wmb();
/* form complete address */
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
sba_check_pdir(ioc,"Check after sba_map_page()");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
return SBA_IOVA(ioc, iovp, offset);
}
#ifdef ENABLE_MARK_CLEAN
static SBA_INLINE void
sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
{
u32 iovp = (u32) SBA_IOVP(ioc,iova);
int off = PDIR_INDEX(iovp);
void *addr;
if (size <= iovp_size) {
addr = phys_to_virt(ioc->pdir_base[off] &
~0xE000000000000FFFULL);
mark_clean(addr, size);
} else {
do {
addr = phys_to_virt(ioc->pdir_base[off] &
~0xE000000000000FFFULL);
mark_clean(addr, min(size, iovp_size));
off++;
size -= iovp_size;
} while (size > 0);
}
}
#endif
/**
* sba_unmap_page - unmap one IOVA and free resources
* @dev: instance of PCI owned by the driver that's asking.
* @iova: IOVA of driver buffer previously mapped.
* @size: number of bytes mapped in driver buffer.
* @dir: R/W or both.
* @attrs: optional dma attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
struct ioc *ioc;
#if DELAYED_RESOURCE_CNT > 0
struct sba_dma_pair *d;
#endif
unsigned long flags;
dma_addr_t offset;
ioc = GET_IOC(dev);
ASSERT(ioc);
#ifdef ALLOW_IOV_BYPASS
if (likely((iova & ioc->imask) != ioc->ibase)) {
/*
** Address does not fall w/in IOVA, must be bypassing
*/
DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
iova);
#ifdef ENABLE_MARK_CLEAN
if (dir == DMA_FROM_DEVICE) {
mark_clean(phys_to_virt(iova), size);
}
#endif
return;
}
#endif
offset = iova & ~iovp_mask;
DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
iova ^= offset; /* clear offset bits */
size += offset;
size = ROUNDUP(size, iovp_size);
#ifdef ENABLE_MARK_CLEAN
if (dir == DMA_FROM_DEVICE)
sba_mark_clean(ioc, iova, size);
#endif
#if DELAYED_RESOURCE_CNT > 0
spin_lock_irqsave(&ioc->saved_lock, flags);
d = &(ioc->saved[ioc->saved_cnt]);
d->iova = iova;
d->size = size;
if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
int cnt = ioc->saved_cnt;
spin_lock(&ioc->res_lock);
while (cnt--) {
sba_mark_invalid(ioc, d->iova, d->size);
sba_free_range(ioc, d->iova, d->size);
d--;
}
ioc->saved_cnt = 0;
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
spin_unlock(&ioc->res_lock);
}
spin_unlock_irqrestore(&ioc->saved_lock, flags);
#else /* DELAYED_RESOURCE_CNT == 0 */
spin_lock_irqsave(&ioc->res_lock, flags);
sba_mark_invalid(ioc, iova, size);
sba_free_range(ioc, iova, size);
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif /* DELAYED_RESOURCE_CNT == 0 */
}
/**
* sba_alloc_coherent - allocate/map shared mem for DMA
* @dev: instance of PCI owned by the driver that's asking.
* @size: number of bytes mapped in driver buffer.
* @dma_handle: IOVA of new buffer.
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void *
sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flags, unsigned long attrs)
{
struct page *page;
struct ioc *ioc;
int node = -1;
void *addr;
ioc = GET_IOC(dev);
ASSERT(ioc);
#ifdef CONFIG_NUMA
node = ioc->node;
#endif
page = alloc_pages_node(node, flags, get_order(size));
if (unlikely(!page))
return NULL;
addr = page_address(page);
memset(addr, 0, size);
*dma_handle = page_to_phys(page);
#ifdef ALLOW_IOV_BYPASS
ASSERT(dev->coherent_dma_mask);
/*
** Check if the PCI device can DMA to ptr... if so, just return ptr
*/
if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
dev->coherent_dma_mask, *dma_handle);
return addr;
}
#endif
/*
* If device can't bypass or bypass is disabled, pass the 32bit fake
* device to map single to get an iova mapping.
*/
*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(dev, *dma_handle))
return NULL;
return addr;
}
/**
* sba_free_coherent - free/unmap shared mem for DMA
* @dev: instance of PCI owned by the driver that's asking.
* @size: number of bytes mapped in driver buffer.
* @vaddr: virtual address IOVA of "consistent" buffer.
* @dma_handler: IO virtual address of "consistent" buffer.
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
sba_unmap_page(dev, dma_handle, size, 0, 0);
free_pages((unsigned long) vaddr, get_order(size));
}
/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x1UL
#ifdef DEBUG_LARGE_SG_ENTRIES
int dump_run_sg = 0;
#endif
/**
* sba_fill_pdir - write allocated SG entries into IO PDIR
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @startsg: list of IOVA/size pairs
* @nents: number of entries in startsg list
*
* Take preprocessed SG list and write corresponding entries
* in the IO PDIR.
*/
static SBA_INLINE int
sba_fill_pdir(
struct ioc *ioc,
struct scatterlist *startsg,
int nents)
{
struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
int n_mappings = 0;
u64 *pdirp = NULL;
unsigned long dma_offset = 0;
while (nents-- > 0) {
int cnt = startsg->dma_length;
startsg->dma_length = 0;
#ifdef DEBUG_LARGE_SG_ENTRIES
if (dump_run_sg)
printk(" %2d : %08lx/%05x %p\n",
nents, startsg->dma_address, cnt,
sba_sg_address(startsg));
#else
DBG_RUN_SG(" %d : %08lx/%05x %p\n",
nents, startsg->dma_address, cnt,
sba_sg_address(startsg));
#endif
/*
** Look for the start of a new DMA stream
*/
if (startsg->dma_address & PIDE_FLAG) {
u32 pide = startsg->dma_address & ~PIDE_FLAG;
dma_offset = (unsigned long) pide & ~iovp_mask;
startsg->dma_address = 0;
if (n_mappings)
dma_sg = sg_next(dma_sg);
dma_sg->dma_address = pide | ioc->ibase;
pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
n_mappings++;
}
/*
** Look for a VCONTIG chunk
*/
if (cnt) {
unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
ASSERT(pdirp);
/* Since multiple Vcontig blocks could make up
** one DMA stream, *add* cnt to dma_len.
*/
dma_sg->dma_length += cnt;
cnt += dma_offset;
dma_offset=0; /* only want offset on first chunk */
cnt = ROUNDUP(cnt, iovp_size);
do {
sba_io_pdir_entry(pdirp, vaddr);
vaddr += iovp_size;
cnt -= iovp_size;
pdirp++;
} while (cnt > 0);
}
startsg = sg_next(startsg);
}
/* force pdir update */
wmb();
#ifdef DEBUG_LARGE_SG_ENTRIES
dump_run_sg = 0;
#endif
return(n_mappings);
}
/*
** Two address ranges are DMA contiguous *iff* "end of prev" and
** "start of next" are both on an IOV page boundary.
**
** (shift left is a quick trick to mask off upper bits)
*/
#define DMA_CONTIG(__X, __Y) \
(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
/**
* sba_coalesce_chunks - preprocess the SG list
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @startsg: list of IOVA/size pairs
* @nents: number of entries in startsg list
*
* First pass is to walk the SG list and determine where the breaks are
* in the DMA stream. Allocates PDIR entries but does not fill them.
* Returns the number of DMA chunks.
*
* Doing the fill separate from the coalescing/allocation keeps the
* code simpler. Future enhancement could make one pass through
* the sglist do both.
*/
static SBA_INLINE int
sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
struct scatterlist *startsg,
int nents)
{
struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
unsigned long vcontig_len; /* len of VCONTIG chunk */
unsigned long vcontig_end;
struct scatterlist *dma_sg; /* next DMA stream head */
unsigned long dma_offset, dma_len; /* start/len of DMA stream */
int n_mappings = 0;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
int idx;
while (nents > 0) {
unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
/*
** Prepare for first/next DMA stream
*/
dma_sg = vcontig_sg = startsg;
dma_len = vcontig_len = vcontig_end = startsg->length;
vcontig_end += vaddr;
dma_offset = vaddr & ~iovp_mask;
/* PARANOID: clear entries */
startsg->dma_address = startsg->dma_length = 0;
/*
** This loop terminates one iteration "early" since
** it's always looking one "ahead".
*/
while (--nents > 0) {
unsigned long vaddr; /* tmp */
startsg = sg_next(startsg);
/* PARANOID */
startsg->dma_address = startsg->dma_length = 0;
/* catch brokenness in SCSI layer */
ASSERT(startsg->length <= DMA_CHUNK_SIZE);
/*
** First make sure current dma stream won't
** exceed DMA_CHUNK_SIZE if we coalesce the
** next entry.
*/
if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
> DMA_CHUNK_SIZE)
break;
if (dma_len + startsg->length > max_seg_size)
break;
/*
** Then look for virtually contiguous blocks.
**
** append the next transaction?
*/
vaddr = (unsigned long) sba_sg_address(startsg);
if (vcontig_end == vaddr)
{
vcontig_len += startsg->length;
vcontig_end += startsg->length;
dma_len += startsg->length;
continue;
}
#ifdef DEBUG_LARGE_SG_ENTRIES
dump_run_sg = (vcontig_len > iovp_size);
#endif
/*
** Not virtually contiguous.
** Terminate prev chunk.
** Start a new chunk.
**
** Once we start a new VCONTIG chunk, dma_offset
** can't change. And we need the offset from the first
** chunk - not the last one. Ergo Successive chunks
** must start on page boundaries and dove tail
** with it's predecessor.
*/
vcontig_sg->dma_length = vcontig_len;
vcontig_sg = startsg;
vcontig_len = startsg->length;
/*
** 3) do the entries end/start on page boundaries?
** Don't update vcontig_end until we've checked.
*/
if (DMA_CONTIG(vcontig_end, vaddr))
{
vcontig_end = vcontig_len + vaddr;
dma_len += vcontig_len;
continue;
} else {
break;
}
}
/*
** End of DMA Stream
** Terminate last VCONTIG block.
** Allocate space for DMA stream.
*/
vcontig_sg->dma_length = vcontig_len;
dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
ASSERT(dma_len <= DMA_CHUNK_SIZE);
idx = sba_alloc_range(ioc, dev, dma_len);
if (idx < 0) {
dma_sg->dma_length = 0;
return -1;
}
dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
| dma_offset);
n_mappings++;
}
return n_mappings;
}
static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction dir,
unsigned long attrs);
/**
* sba_map_sg - map Scatter/Gather list
* @dev: instance of PCI owned by the driver that's asking.
* @sglist: array of buffer/length pairs
* @nents: number of entries in list
* @dir: R/W or both.
* @attrs: optional dma attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct ioc *ioc;
int coalesced, filled = 0;
#ifdef ASSERT_PDIR_SANITY
unsigned long flags;
#endif
#ifdef ALLOW_IOV_BYPASS_SG
struct scatterlist *sg;
#endif
DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
ioc = GET_IOC(dev);
ASSERT(ioc);
#ifdef ALLOW_IOV_BYPASS_SG
ASSERT(to_pci_dev(dev)->dma_mask);
if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
for_each_sg(sglist, sg, nents, filled) {
sg->dma_length = sg->length;
sg->dma_address = virt_to_phys(sba_sg_address(sg));
}
return filled;
}
#endif
/* Fast path single entry scatterlists. */
if (nents == 1) {
sglist->dma_length = sglist->length;
sglist->dma_address = sba_map_page(dev, sg_page(sglist),
sglist->offset, sglist->length, dir, attrs);
if (dma_mapping_error(dev, sglist->dma_address))
return -EIO;
return 1;
}
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
{
sba_dump_sg(ioc, sglist, nents);
panic("Check before sba_map_sg_attrs()");
}
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
prefetch(ioc->res_hint);
/*
** First coalesce the chunks and allocate I/O pdir space
**
** If this is one DMA stream, we can properly map using the
** correct virtual address associated with each DMA page.
** w/o this association, we wouldn't have coherent DMA!
** Access to the virtual address is what forces a two pass algorithm.
*/
coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
if (coalesced < 0) {
sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
return -ENOMEM;
}
/*
** Program the I/O Pdir
**
** map the virtual addresses to the I/O Pdir
** o dma_address will contain the pdir index
** o dma_len will contain the number of bytes to map
** o address contains the virtual address.
*/
filled = sba_fill_pdir(ioc, sglist, nents);
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
{
sba_dump_sg(ioc, sglist, nents);
panic("Check after sba_map_sg_attrs()\n");
}
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
ASSERT(coalesced == filled);
DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
return filled;
}
/**
* sba_unmap_sg_attrs - unmap Scatter/Gather list
* @dev: instance of PCI owned by the driver that's asking.
* @sglist: array of buffer/length pairs
* @nents: number of entries in list
* @dir: R/W or both.
* @attrs: optional dma attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
#ifdef ASSERT_PDIR_SANITY
struct ioc *ioc;
unsigned long flags;
#endif
DBG_RUN_SG("%s() START %d entries, %p,%x\n",
__func__, nents, sba_sg_address(sglist), sglist->length);
#ifdef ASSERT_PDIR_SANITY
ioc = GET_IOC(dev);
ASSERT(ioc);
spin_lock_irqsave(&ioc->res_lock, flags);
sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
while (nents && sglist->dma_length) {
sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
dir, attrs);
sglist = sg_next(sglist);
nents--;
}
DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
}
/**************************************************************
*
* Initialization and claim
*
***************************************************************/
static void
ioc_iova_init(struct ioc *ioc)
{
int tcnfg;
int agp_found = 0;
struct pci_dev *device = NULL;
#ifdef FULL_VALID_PDIR
unsigned long index;
#endif
/*
** Firmware programs the base and size of a "safe IOVA space"
** (one that doesn't overlap memory or LMMIO space) in the
** IBASE and IMASK registers.
*/
ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
ioc->iov_size = ~ioc->imask + 1;
DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
ioc->iov_size >> 20);
switch (iovp_size) {
case 4*1024: tcnfg = 0; break;
case 8*1024: tcnfg = 1; break;
case 16*1024: tcnfg = 2; break;
case 64*1024: tcnfg = 3; break;
default:
panic(PFX "Unsupported IOTLB page size %ldK",
iovp_size >> 10);
break;
}
WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
get_order(ioc->pdir_size));
if (!ioc->pdir_base)
panic(PFX "Couldn't allocate I/O Page Table\n");
memset(ioc->pdir_base, 0, ioc->pdir_size);
DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
/*
** If an AGP device is present, only use half of the IOV space
** for PCI DMA. Unfortunately we can't know ahead of time
** whether GART support will actually be used, for now we
** can just key on an AGP device found in the system.
** We program the next pdir index after we stop w/ a key for
** the GART code to handshake on.
*/
for_each_pci_dev(device)
agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
if (agp_found && reserve_sba_gart) {
printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
ioc->pdir_size /= 2;
((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
}
#ifdef FULL_VALID_PDIR
/*
** Check to see if the spill page has been allocated, we don't need more than
** one across multiple SBAs.
*/
if (!prefetch_spill_page) {
char *spill_poison = "SBAIOMMU POISON";
int poison_size = 16;
void *poison_addr, *addr;
addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
if (!addr)
panic(PFX "Couldn't allocate PDIR spill page\n");
poison_addr = addr;
for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
memcpy(poison_addr, spill_poison, poison_size);
prefetch_spill_page = virt_to_phys(addr);
DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
}
/*
** Set all the PDIR entries valid w/ the spill page as the target
*/
for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
#endif
/* Clear I/O TLB of any possible entries */
WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
READ_REG(ioc->ioc_hpa + IOC_PCOM);
/* Enable IOVA translation */
WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
READ_REG(ioc->ioc_hpa + IOC_IBASE);
}
static void __init
ioc_resource_init(struct ioc *ioc)
{
spin_lock_init(&ioc->res_lock);
#if DELAYED_RESOURCE_CNT > 0
spin_lock_init(&ioc->saved_lock);
#endif
/* resource map size dictated by pdir_size */
ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
ioc->res_size >>= 3; /* convert bit count to byte count */
DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
get_order(ioc->res_size));
if (!ioc->res_map)
panic(PFX "Couldn't allocate resource map\n");
memset(ioc->res_map, 0, ioc->res_size);
/* next available IOVP - circular search */
ioc->res_hint = (unsigned long *) ioc->res_map;
#ifdef ASSERT_PDIR_SANITY
/* Mark first bit busy - ie no IOVA 0 */
ioc->res_map[0] = 0x1;
ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
#endif
#ifdef FULL_VALID_PDIR
/* Mark the last resource used so we don't prefetch beyond IOVA space */
ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
| prefetch_spill_page);
#endif
DBG_INIT("%s() res_map %x %p\n", __func__,
ioc->res_size, (void *) ioc->res_map);
}
static void __init
ioc_sac_init(struct ioc *ioc)
{
struct pci_dev *sac = NULL;
struct pci_controller *controller = NULL;
/*
* pci_alloc_coherent() must return a DMA address which is
* SAC (single address cycle) addressable, so allocate a
* pseudo-device to enforce that.
*/
sac = kzalloc(sizeof(*sac), GFP_KERNEL);
if (!sac)
panic(PFX "Couldn't allocate struct pci_dev");
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
if (!controller)
panic(PFX "Couldn't allocate struct pci_controller");
controller->iommu = ioc;
sac->sysdata = controller;
sac->dma_mask = 0xFFFFFFFFUL;
sac->dev.bus = &pci_bus_type;
ioc->sac_only_dev = sac;
}
static void __init
ioc_zx1_init(struct ioc *ioc)
{
unsigned long rope_config;
unsigned int i;
if (ioc->rev < 0x20)
panic(PFX "IOC 2.0 or later required for IOMMU support\n");
/* 38 bit memory controller + extra bit for range displaced by MMIO */
ioc->dma_mask = (0x1UL << 39) - 1;
/*
** Clear ROPE(N)_CONFIG AO bit.
** Disables "NT Ordering" (~= !"Relaxed Ordering")
** Overrides bit 1 in DMA Hint Sets.
** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
*/
for (i=0; i<(8*8); i+=8) {
rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
rope_config &= ~IOC_ROPE_AO;
WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
}
}
typedef void (initfunc)(struct ioc *);
struct ioc_iommu {
u32 func_id;
char *name;
initfunc *init;
};
static struct ioc_iommu ioc_iommu_info[] __initdata = {
{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
{ ZX2_IOC_ID, "zx2", NULL },
{ SX1000_IOC_ID, "sx1000", NULL },
{ SX2000_IOC_ID, "sx2000", NULL },
};
static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
{
struct ioc_iommu *info;
ioc->next = ioc_list;
ioc_list = ioc;
ioc->ioc_hpa = ioremap(hpa, 0x1000);
ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
if (ioc->func_id == info->func_id) {
ioc->name = info->name;
if (info->init)
(info->init)(ioc);
}
}
iovp_size = (1 << iovp_shift);
iovp_mask = ~(iovp_size - 1);
DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
PAGE_SIZE >> 10, iovp_size >> 10);
if (!ioc->name) {
ioc->name = kmalloc(24, GFP_KERNEL);
if (ioc->name)
sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
else
ioc->name = "Unknown";
}
ioc_iova_init(ioc);
ioc_resource_init(ioc);
ioc_sac_init(ioc);
printk(KERN_INFO PFX
"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
hpa, ioc->iov_size >> 20, ioc->ibase);
}
/**************************************************************************
**
** SBA initialization code (HW and SW)
**
** o identify SBA chip itself
** o FIXME: initialize DMA hints for reasonable defaults
**
**************************************************************************/
#ifdef CONFIG_PROC_FS
static void *
ioc_start(struct seq_file *s, loff_t *pos)
{
struct ioc *ioc;
loff_t n = *pos;
for (ioc = ioc_list; ioc; ioc = ioc->next)
if (!n--)
return ioc;
return NULL;
}
static void *
ioc_next(struct seq_file *s, void *v, loff_t *pos)
{
struct ioc *ioc = v;
++*pos;
return ioc->next;
}
static void
ioc_stop(struct seq_file *s, void *v)
{
}
static int
ioc_show(struct seq_file *s, void *v)
{
struct ioc *ioc = v;
unsigned long *res_ptr = (unsigned long *)ioc->res_map;
int i, used = 0;
seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
#ifdef CONFIG_NUMA
if (ioc->node != NUMA_NO_NODE)
seq_printf(s, "NUMA node : %d\n", ioc->node);
#endif
seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
used += hweight64(*res_ptr);
seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
seq_printf(s, "PDIR used : %d entries\n", used);
#ifdef PDIR_SEARCH_TIMING
{
unsigned long i = 0, avg = 0, min, max;
min = max = ioc->avg_search[0];
for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
avg += ioc->avg_search[i];
if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
}
avg /= SBA_SEARCH_SAMPLE;
seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
min, avg, max);
}
#endif
#ifndef ALLOW_IOV_BYPASS
seq_printf(s, "IOVA bypass disabled\n");
#endif
return 0;
}
static const struct seq_operations ioc_seq_ops = {
.start = ioc_start,
.next = ioc_next,
.stop = ioc_stop,
.show = ioc_show
};
static void __init
ioc_proc_init(void)
{
struct proc_dir_entry *dir;
dir = proc_mkdir("bus/mckinley", NULL);
if (!dir)
return;
proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
}
#endif
static void
sba_connect_bus(struct pci_bus *bus)
{
acpi_handle handle, parent;
acpi_status status;
struct ioc *ioc;
if (!PCI_CONTROLLER(bus))
panic(PFX "no sysdata on bus %d!\n", bus->number);
if (PCI_CONTROLLER(bus)->iommu)
return;
handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
if (!handle)
return;
/*
* The IOC scope encloses PCI root bridges in the ACPI
* namespace, so work our way out until we find an IOC we
* claimed previously.
*/
do {
for (ioc = ioc_list; ioc; ioc = ioc->next)
if (ioc->handle == handle) {
PCI_CONTROLLER(bus)->iommu = ioc;
return;
}
status = acpi_get_parent(handle, &parent);
handle = parent;
} while (ACPI_SUCCESS(status));
printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
}
static void __init
sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
{
#ifdef CONFIG_NUMA
unsigned int node;
node = acpi_get_node(handle);
if (node != NUMA_NO_NODE && !node_online(node))
node = NUMA_NO_NODE;
ioc->node = node;
#endif
}
static void __init acpi_sba_ioc_add(struct ioc *ioc)
{
acpi_handle handle = ioc->handle;
acpi_status status;
u64 hpa, length;
struct acpi_device_info *adi;
ioc_found = ioc->next;
status = hp_acpi_csr_space(handle, &hpa, &length);
if (ACPI_FAILURE(status))
goto err;
status = acpi_get_object_info(handle, &adi);
if (ACPI_FAILURE(status))
goto err;
/*
* For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
* root bridges, and its CSR space includes the IOC function.
*/
if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
hpa += ZX1_IOC_OFFSET;
/* zx1 based systems default to kernel page size iommu pages */
if (!iovp_shift)
iovp_shift = min(PAGE_SHIFT, 16);
}
kfree(adi);
/*
* default anything not caught above or specified on cmdline to 4k
* iommu page size
*/
if (!iovp_shift)
iovp_shift = 12;
ioc_init(hpa, ioc);
/* setup NUMA node association */
sba_map_ioc_to_node(ioc, handle);
return;
err:
kfree(ioc);
}
static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
{"HWP0001", 0},
{"HWP0004", 0},
{"", 0},
};
static int acpi_sba_ioc_attach(struct acpi_device *device,
const struct acpi_device_id *not_used)
{
struct ioc *ioc;
ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc)
return -ENOMEM;
ioc->next = ioc_found;
ioc_found = ioc;
ioc->handle = device->handle;
return 1;
}
static struct acpi_scan_handler acpi_sba_ioc_handler = {
.ids = hp_ioc_iommu_device_ids,
.attach = acpi_sba_ioc_attach,
};
static int __init acpi_sba_ioc_init_acpi(void)
{
return acpi_scan_add_handler(&acpi_sba_ioc_handler);
}
/* This has to run before acpi_scan_init(). */
arch_initcall(acpi_sba_ioc_init_acpi);
static int sba_dma_supported (struct device *dev, u64 mask)
{
/* make sure it's at least 32bit capable */
return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
}
static const struct dma_map_ops sba_dma_ops = {
.alloc = sba_alloc_coherent,
.free = sba_free_coherent,
.map_page = sba_map_page,
.unmap_page = sba_unmap_page,
.map_sg = sba_map_sg_attrs,
.unmap_sg = sba_unmap_sg_attrs,
.dma_supported = sba_dma_supported,
.mmap = dma_common_mmap,
.get_sgtable = dma_common_get_sgtable,
.alloc_pages = dma_common_alloc_pages,
.free_pages = dma_common_free_pages,
};
static int __init
sba_init(void)
{
/*
* If we are booting a kdump kernel, the sba_iommu will cause devices
* that were not shutdown properly to MCA as soon as they are turned
* back on. Our only option for a successful kdump kernel boot is to
* use swiotlb.
*/
if (is_kdump_kernel())
return 0;
/*
* ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
* routine, but that only happens if acpi_scan_init() has already run.
*/
while (ioc_found)
acpi_sba_ioc_add(ioc_found);
if (!ioc_list)
return 0;
{
struct pci_bus *b = NULL;
while ((b = pci_find_next_bus(b)) != NULL)
sba_connect_bus(b);
}
/* no need for swiotlb with the iommu */
swiotlb_exit();
dma_ops = &sba_dma_ops;
#ifdef CONFIG_PROC_FS
ioc_proc_init();
#endif
return 0;
}
subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
static int __init
nosbagart(char *str)
{
reserve_sba_gart = 0;
return 1;
}
__setup("nosbagart", nosbagart);
static int __init
sba_page_override(char *str)
{
unsigned long page_size;
page_size = memparse(str, &str);
switch (page_size) {
case 4096:
case 8192:
case 16384:
case 65536:
iovp_shift = ffs(page_size) - 1;
break;
default:
printk("%s: unknown/unsupported iommu page size %ld\n",
__func__, page_size);
}
return 1;
}
__setup("sbapagesize=",sba_page_override);