linuxdebug/arch/csky/kernel/ptrace.c

522 lines
12 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
#include <linux/audit.h>
#include <linux/elf.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/uaccess.h>
#include <linux/user.h>
#include <asm/thread_info.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/asm-offsets.h>
#include <abi/regdef.h>
#include <abi/ckmmu.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
/* sets the trace bits. */
#define TRACE_MODE_SI (1 << 14)
#define TRACE_MODE_RUN 0
#define TRACE_MODE_MASK ~(0x3 << 14)
/*
* Make sure the single step bit is not set.
*/
static void singlestep_disable(struct task_struct *tsk)
{
struct pt_regs *regs;
regs = task_pt_regs(tsk);
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
/* Enable irq */
regs->sr |= BIT(6);
}
static void singlestep_enable(struct task_struct *tsk)
{
struct pt_regs *regs;
regs = task_pt_regs(tsk);
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
/* Disable irq */
regs->sr &= ~BIT(6);
}
/*
* Make sure the single step bit is set.
*/
void user_enable_single_step(struct task_struct *child)
{
singlestep_enable(child);
}
void user_disable_single_step(struct task_struct *child)
{
singlestep_disable(child);
}
enum csky_regset {
REGSET_GPR,
REGSET_FPR,
};
static int gpr_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
struct pt_regs *regs = task_pt_regs(target);
/* Abiv1 regs->tls is fake and we need sync here. */
regs->tls = task_thread_info(target)->tp_value;
return membuf_write(&to, regs, sizeof(*regs));
}
static int gpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
struct pt_regs regs;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &regs, 0, -1);
if (ret)
return ret;
/* BIT(0) of regs.sr is Condition Code/Carry bit */
regs.sr = (regs.sr & BIT(0)) | (task_pt_regs(target)->sr & ~BIT(0));
#ifdef CONFIG_CPU_HAS_HILO
regs.dcsr = task_pt_regs(target)->dcsr;
#endif
task_thread_info(target)->tp_value = regs.tls;
*task_pt_regs(target) = regs;
return 0;
}
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
#if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
int i;
struct user_fp tmp = *regs;
for (i = 0; i < 16; i++) {
tmp.vr[i*4] = regs->vr[i*2];
tmp.vr[i*4 + 1] = regs->vr[i*2 + 1];
}
for (i = 0; i < 32; i++)
tmp.vr[64 + i] = regs->vr[32 + i];
return membuf_write(&to, &tmp, sizeof(tmp));
#else
return membuf_write(&to, regs, sizeof(*regs));
#endif
}
static int fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
#if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
int i;
struct user_fp tmp;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1);
*regs = tmp;
for (i = 0; i < 16; i++) {
regs->vr[i*2] = tmp.vr[i*4];
regs->vr[i*2 + 1] = tmp.vr[i*4 + 1];
}
for (i = 0; i < 32; i++)
regs->vr[32 + i] = tmp.vr[64 + i];
#else
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1);
#endif
return ret;
}
static const struct user_regset csky_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = sizeof(struct pt_regs) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.regset_get = gpr_get,
.set = gpr_set,
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = sizeof(struct user_fp) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.regset_get = fpr_get,
.set = fpr_set,
},
};
static const struct user_regset_view user_csky_view = {
.name = "csky",
.e_machine = ELF_ARCH,
.regsets = csky_regsets,
.n = ARRAY_SIZE(csky_regsets),
};
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
return &user_csky_view;
}
struct pt_regs_offset {
const char *name;
int offset;
};
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
#define REG_OFFSET_END {.name = NULL, .offset = 0}
static const struct pt_regs_offset regoffset_table[] = {
REG_OFFSET_NAME(tls),
REG_OFFSET_NAME(lr),
REG_OFFSET_NAME(pc),
REG_OFFSET_NAME(sr),
REG_OFFSET_NAME(usp),
REG_OFFSET_NAME(orig_a0),
REG_OFFSET_NAME(a0),
REG_OFFSET_NAME(a1),
REG_OFFSET_NAME(a2),
REG_OFFSET_NAME(a3),
REG_OFFSET_NAME(regs[0]),
REG_OFFSET_NAME(regs[1]),
REG_OFFSET_NAME(regs[2]),
REG_OFFSET_NAME(regs[3]),
REG_OFFSET_NAME(regs[4]),
REG_OFFSET_NAME(regs[5]),
REG_OFFSET_NAME(regs[6]),
REG_OFFSET_NAME(regs[7]),
REG_OFFSET_NAME(regs[8]),
REG_OFFSET_NAME(regs[9]),
#if defined(__CSKYABIV2__)
REG_OFFSET_NAME(exregs[0]),
REG_OFFSET_NAME(exregs[1]),
REG_OFFSET_NAME(exregs[2]),
REG_OFFSET_NAME(exregs[3]),
REG_OFFSET_NAME(exregs[4]),
REG_OFFSET_NAME(exregs[5]),
REG_OFFSET_NAME(exregs[6]),
REG_OFFSET_NAME(exregs[7]),
REG_OFFSET_NAME(exregs[8]),
REG_OFFSET_NAME(exregs[9]),
REG_OFFSET_NAME(exregs[10]),
REG_OFFSET_NAME(exregs[11]),
REG_OFFSET_NAME(exregs[12]),
REG_OFFSET_NAME(exregs[13]),
REG_OFFSET_NAME(exregs[14]),
REG_OFFSET_NAME(rhi),
REG_OFFSET_NAME(rlo),
REG_OFFSET_NAME(dcsr),
#endif
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
/**
* regs_within_kernel_stack() - check the address in the stack
* @regs: pt_regs which contains kernel stack pointer.
* @addr: address which is checked.
*
* regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
* If @addr is within the kernel stack, it returns true. If not, returns false.
*/
static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
{
return (addr & ~(THREAD_SIZE - 1)) ==
(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1));
}
/**
* regs_get_kernel_stack_nth() - get Nth entry of the stack
* @regs: pt_regs which contains kernel stack pointer.
* @n: stack entry number.
*
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
* is specified by @regs. If the @n th entry is NOT in the kernel stack,
* this returns 0.
*/
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
{
unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
addr += n;
if (regs_within_kernel_stack(regs, (unsigned long)addr))
return *addr;
else
return 0;
}
void ptrace_disable(struct task_struct *child)
{
singlestep_disable(child);
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
long ret = -EIO;
switch (request) {
default:
ret = ptrace_request(child, request, addr, data);
break;
}
return ret;
}
asmlinkage int syscall_trace_enter(struct pt_regs *regs)
{
if (test_thread_flag(TIF_SYSCALL_TRACE))
if (ptrace_report_syscall_entry(regs))
return -1;
if (secure_computing() == -1)
return -1;
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
trace_sys_enter(regs, syscall_get_nr(current, regs));
audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3);
return 0;
}
asmlinkage void syscall_trace_exit(struct pt_regs *regs)
{
audit_syscall_exit(regs);
if (test_thread_flag(TIF_SYSCALL_TRACE))
ptrace_report_syscall_exit(regs, 0);
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
trace_sys_exit(regs, syscall_get_return_value(current, regs));
}
#ifdef CONFIG_CPU_CK860
static void show_iutlb(void)
{
int entry, i;
unsigned long flags;
unsigned long oldpid;
unsigned long entryhi[16], entrylo0[16], entrylo1[16];
oldpid = read_mmu_entryhi();
entry = 0x8000;
local_irq_save(flags);
for (i = 0; i < 16; i++) {
write_mmu_index(entry);
tlb_read();
entryhi[i] = read_mmu_entryhi();
entrylo0[i] = read_mmu_entrylo0();
entrylo1[i] = read_mmu_entrylo1();
entry++;
}
local_irq_restore(flags);
write_mmu_entryhi(oldpid);
printk("\n\n\n");
for (i = 0; i < 16; i++)
printk("iutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
" entrylo1 - 0x%lx\n",
i, entryhi[i], entrylo0[i], entrylo1[i]);
printk("\n\n\n");
}
static void show_dutlb(void)
{
int entry, i;
unsigned long flags;
unsigned long oldpid;
unsigned long entryhi[16], entrylo0[16], entrylo1[16];
oldpid = read_mmu_entryhi();
entry = 0x4000;
local_irq_save(flags);
for (i = 0; i < 16; i++) {
write_mmu_index(entry);
tlb_read();
entryhi[i] = read_mmu_entryhi();
entrylo0[i] = read_mmu_entrylo0();
entrylo1[i] = read_mmu_entrylo1();
entry++;
}
local_irq_restore(flags);
write_mmu_entryhi(oldpid);
printk("\n\n\n");
for (i = 0; i < 16; i++)
printk("dutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
" entrylo1 - 0x%lx\n",
i, entryhi[i], entrylo0[i], entrylo1[i]);
printk("\n\n\n");
}
static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024];
static void show_jtlb(void)
{
int entry;
unsigned long flags;
unsigned long oldpid;
oldpid = read_mmu_entryhi();
entry = 0;
local_irq_save(flags);
while (entry < 1024) {
write_mmu_index(entry);
tlb_read();
entryhi[entry] = read_mmu_entryhi();
entrylo0[entry] = read_mmu_entrylo0();
entrylo1[entry] = read_mmu_entrylo1();
entry++;
}
local_irq_restore(flags);
write_mmu_entryhi(oldpid);
printk("\n\n\n");
for (entry = 0; entry < 1024; entry++)
printk("jtlb[%x]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
" entrylo1 - 0x%lx\n",
entry, entryhi[entry], entrylo0[entry], entrylo1[entry]);
printk("\n\n\n");
}
static void show_tlb(void)
{
show_iutlb();
show_dutlb();
show_jtlb();
}
#else
static void show_tlb(void)
{
return;
}
#endif
void show_regs(struct pt_regs *fp)
{
pr_info("\nCURRENT PROCESS:\n\n");
pr_info("COMM=%s PID=%d\n", current->comm, current->pid);
if (current->mm) {
pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n",
(int) current->mm->start_code,
(int) current->mm->end_code,
(int) current->mm->start_data,
(int) current->mm->end_data,
(int) current->mm->end_data,
(int) current->mm->brk);
pr_info("USER-STACK=%08x KERNEL-STACK=%08x\n\n",
(int) current->mm->start_stack,
(int) (((unsigned long) current) + 2 * PAGE_SIZE));
}
pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc);
pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr);
pr_info("SP: 0x%08lx\n", (long)fp->usp);
pr_info("PSR: 0x%08lx\n", (long)fp->sr);
pr_info("orig_a0: 0x%08lx\n", fp->orig_a0);
pr_info("PT_REGS: 0x%08lx\n", (long)fp);
pr_info(" a0: 0x%08lx a1: 0x%08lx a2: 0x%08lx a3: 0x%08lx\n",
fp->a0, fp->a1, fp->a2, fp->a3);
#if defined(__CSKYABIV2__)
pr_info(" r4: 0x%08lx r5: 0x%08lx r6: 0x%08lx r7: 0x%08lx\n",
fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
pr_info(" r8: 0x%08lx r9: 0x%08lx r10: 0x%08lx r11: 0x%08lx\n",
fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
pr_info("r12: 0x%08lx r13: 0x%08lx r15: 0x%08lx\n",
fp->regs[8], fp->regs[9], fp->lr);
pr_info("r16: 0x%08lx r17: 0x%08lx r18: 0x%08lx r19: 0x%08lx\n",
fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]);
pr_info("r20: 0x%08lx r21: 0x%08lx r22: 0x%08lx r23: 0x%08lx\n",
fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]);
pr_info("r24: 0x%08lx r25: 0x%08lx r26: 0x%08lx r27: 0x%08lx\n",
fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]);
pr_info("r28: 0x%08lx r29: 0x%08lx r30: 0x%08lx tls: 0x%08lx\n",
fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls);
pr_info(" hi: 0x%08lx lo: 0x%08lx\n",
fp->rhi, fp->rlo);
#else
pr_info(" r6: 0x%08lx r7: 0x%08lx r8: 0x%08lx r9: 0x%08lx\n",
fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
pr_info("r10: 0x%08lx r11: 0x%08lx r12: 0x%08lx r13: 0x%08lx\n",
fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
pr_info("r14: 0x%08lx r1: 0x%08lx\n",
fp->regs[8], fp->regs[9]);
#endif
show_tlb();
return;
}