linuxdebug/fs/ecryptfs/main.c

903 lines
25 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2003 Erez Zadok
* Copyright (C) 2001-2003 Stony Brook University
* Copyright (C) 2004-2007 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompson <mcthomps@us.ibm.com>
* Tyler Hicks <code@tyhicks.com>
*/
#include <linux/dcache.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/skbuff.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/key.h>
#include <linux/parser.h>
#include <linux/fs_stack.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include "ecryptfs_kernel.h"
/*
* Module parameter that defines the ecryptfs_verbosity level.
*/
int ecryptfs_verbosity = 0;
module_param(ecryptfs_verbosity, int, 0);
MODULE_PARM_DESC(ecryptfs_verbosity,
"Initial verbosity level (0 or 1; defaults to "
"0, which is Quiet)");
/*
* Module parameter that defines the number of message buffer elements
*/
unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
module_param(ecryptfs_message_buf_len, uint, 0);
MODULE_PARM_DESC(ecryptfs_message_buf_len,
"Number of message buffer elements");
/*
* Module parameter that defines the maximum guaranteed amount of time to wait
* for a response from ecryptfsd. The actual sleep time will be, more than
* likely, a small amount greater than this specified value, but only less if
* the message successfully arrives.
*/
signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
module_param(ecryptfs_message_wait_timeout, long, 0);
MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
"Maximum number of seconds that an operation will "
"sleep while waiting for a message response from "
"userspace");
/*
* Module parameter that is an estimate of the maximum number of users
* that will be concurrently using eCryptfs. Set this to the right
* value to balance performance and memory use.
*/
unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
module_param(ecryptfs_number_of_users, uint, 0);
MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
"concurrent users of eCryptfs");
void __ecryptfs_printk(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (fmt[1] == '7') { /* KERN_DEBUG */
if (ecryptfs_verbosity >= 1)
vprintk(fmt, args);
} else
vprintk(fmt, args);
va_end(args);
}
/*
* ecryptfs_init_lower_file
* @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
* the lower dentry and the lower mount set
*
* eCryptfs only ever keeps a single open file for every lower
* inode. All I/O operations to the lower inode occur through that
* file. When the first eCryptfs dentry that interposes with the first
* lower dentry for that inode is created, this function creates the
* lower file struct and associates it with the eCryptfs
* inode. When all eCryptfs files associated with the inode are released, the
* file is closed.
*
* The lower file will be opened with read/write permissions, if
* possible. Otherwise, it is opened read-only.
*
* This function does nothing if a lower file is already
* associated with the eCryptfs inode.
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_init_lower_file(struct dentry *dentry,
struct file **lower_file)
{
const struct cred *cred = current_cred();
const struct path *path = ecryptfs_dentry_to_lower_path(dentry);
int rc;
rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
cred);
if (rc) {
printk(KERN_ERR "Error opening lower file "
"for lower_dentry [0x%p] and lower_mnt [0x%p]; "
"rc = [%d]\n", path->dentry, path->mnt, rc);
(*lower_file) = NULL;
}
return rc;
}
int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
{
struct ecryptfs_inode_info *inode_info;
int count, rc = 0;
inode_info = ecryptfs_inode_to_private(inode);
mutex_lock(&inode_info->lower_file_mutex);
count = atomic_inc_return(&inode_info->lower_file_count);
if (WARN_ON_ONCE(count < 1))
rc = -EINVAL;
else if (count == 1) {
rc = ecryptfs_init_lower_file(dentry,
&inode_info->lower_file);
if (rc)
atomic_set(&inode_info->lower_file_count, 0);
}
mutex_unlock(&inode_info->lower_file_mutex);
return rc;
}
void ecryptfs_put_lower_file(struct inode *inode)
{
struct ecryptfs_inode_info *inode_info;
inode_info = ecryptfs_inode_to_private(inode);
if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
&inode_info->lower_file_mutex)) {
filemap_write_and_wait(inode->i_mapping);
fput(inode_info->lower_file);
inode_info->lower_file = NULL;
mutex_unlock(&inode_info->lower_file_mutex);
}
}
enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
ecryptfs_opt_ecryptfs_key_bytes,
ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
ecryptfs_opt_check_dev_ruid,
ecryptfs_opt_err };
static const match_table_t tokens = {
{ecryptfs_opt_sig, "sig=%s"},
{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
{ecryptfs_opt_cipher, "cipher=%s"},
{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
{ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
{ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
{ecryptfs_opt_err, NULL}
};
static int ecryptfs_init_global_auth_toks(
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
struct ecryptfs_global_auth_tok *global_auth_tok;
struct ecryptfs_auth_tok *auth_tok;
int rc = 0;
list_for_each_entry(global_auth_tok,
&mount_crypt_stat->global_auth_tok_list,
mount_crypt_stat_list) {
rc = ecryptfs_keyring_auth_tok_for_sig(
&global_auth_tok->global_auth_tok_key, &auth_tok,
global_auth_tok->sig);
if (rc) {
printk(KERN_ERR "Could not find valid key in user "
"session keyring for sig specified in mount "
"option: [%s]\n", global_auth_tok->sig);
global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
goto out;
} else {
global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
up_write(&(global_auth_tok->global_auth_tok_key)->sem);
}
}
out:
return rc;
}
static void ecryptfs_init_mount_crypt_stat(
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
memset((void *)mount_crypt_stat, 0,
sizeof(struct ecryptfs_mount_crypt_stat));
INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
}
/**
* ecryptfs_parse_options
* @sbi: The ecryptfs super block
* @options: The options passed to the kernel
* @check_ruid: set to 1 if device uid should be checked against the ruid
*
* Parse mount options:
* debug=N - ecryptfs_verbosity level for debug output
* sig=XXX - description(signature) of the key to use
*
* Returns the dentry object of the lower-level (lower/interposed)
* directory; We want to mount our stackable file system on top of
* that lower directory.
*
* The signature of the key to use must be the description of a key
* already in the keyring. Mounting will fail if the key can not be
* found.
*
* Returns zero on success; non-zero on error
*/
static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
uid_t *check_ruid)
{
char *p;
int rc = 0;
int sig_set = 0;
int cipher_name_set = 0;
int fn_cipher_name_set = 0;
int cipher_key_bytes;
int cipher_key_bytes_set = 0;
int fn_cipher_key_bytes;
int fn_cipher_key_bytes_set = 0;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&sbi->mount_crypt_stat;
substring_t args[MAX_OPT_ARGS];
int token;
char *sig_src;
char *cipher_name_dst;
char *cipher_name_src;
char *fn_cipher_name_dst;
char *fn_cipher_name_src;
char *fnek_dst;
char *fnek_src;
char *cipher_key_bytes_src;
char *fn_cipher_key_bytes_src;
u8 cipher_code;
*check_ruid = 0;
if (!options) {
rc = -EINVAL;
goto out;
}
ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
while ((p = strsep(&options, ",")) != NULL) {
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case ecryptfs_opt_sig:
case ecryptfs_opt_ecryptfs_sig:
sig_src = args[0].from;
rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
sig_src, 0);
if (rc) {
printk(KERN_ERR "Error attempting to register "
"global sig; rc = [%d]\n", rc);
goto out;
}
sig_set = 1;
break;
case ecryptfs_opt_cipher:
case ecryptfs_opt_ecryptfs_cipher:
cipher_name_src = args[0].from;
cipher_name_dst =
mount_crypt_stat->
global_default_cipher_name;
strncpy(cipher_name_dst, cipher_name_src,
ECRYPTFS_MAX_CIPHER_NAME_SIZE);
cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
cipher_name_set = 1;
break;
case ecryptfs_opt_ecryptfs_key_bytes:
cipher_key_bytes_src = args[0].from;
cipher_key_bytes =
(int)simple_strtol(cipher_key_bytes_src,
&cipher_key_bytes_src, 0);
mount_crypt_stat->global_default_cipher_key_size =
cipher_key_bytes;
cipher_key_bytes_set = 1;
break;
case ecryptfs_opt_passthrough:
mount_crypt_stat->flags |=
ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
break;
case ecryptfs_opt_xattr_metadata:
mount_crypt_stat->flags |=
ECRYPTFS_XATTR_METADATA_ENABLED;
break;
case ecryptfs_opt_encrypted_view:
mount_crypt_stat->flags |=
ECRYPTFS_XATTR_METADATA_ENABLED;
mount_crypt_stat->flags |=
ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
break;
case ecryptfs_opt_fnek_sig:
fnek_src = args[0].from;
fnek_dst =
mount_crypt_stat->global_default_fnek_sig;
strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
mount_crypt_stat->global_default_fnek_sig[
ECRYPTFS_SIG_SIZE_HEX] = '\0';
rc = ecryptfs_add_global_auth_tok(
mount_crypt_stat,
mount_crypt_stat->global_default_fnek_sig,
ECRYPTFS_AUTH_TOK_FNEK);
if (rc) {
printk(KERN_ERR "Error attempting to register "
"global fnek sig [%s]; rc = [%d]\n",
mount_crypt_stat->global_default_fnek_sig,
rc);
goto out;
}
mount_crypt_stat->flags |=
(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
| ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
break;
case ecryptfs_opt_fn_cipher:
fn_cipher_name_src = args[0].from;
fn_cipher_name_dst =
mount_crypt_stat->global_default_fn_cipher_name;
strncpy(fn_cipher_name_dst, fn_cipher_name_src,
ECRYPTFS_MAX_CIPHER_NAME_SIZE);
mount_crypt_stat->global_default_fn_cipher_name[
ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
fn_cipher_name_set = 1;
break;
case ecryptfs_opt_fn_cipher_key_bytes:
fn_cipher_key_bytes_src = args[0].from;
fn_cipher_key_bytes =
(int)simple_strtol(fn_cipher_key_bytes_src,
&fn_cipher_key_bytes_src, 0);
mount_crypt_stat->global_default_fn_cipher_key_bytes =
fn_cipher_key_bytes;
fn_cipher_key_bytes_set = 1;
break;
case ecryptfs_opt_unlink_sigs:
mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
break;
case ecryptfs_opt_mount_auth_tok_only:
mount_crypt_stat->flags |=
ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
break;
case ecryptfs_opt_check_dev_ruid:
*check_ruid = 1;
break;
case ecryptfs_opt_err:
default:
printk(KERN_WARNING
"%s: eCryptfs: unrecognized option [%s]\n",
__func__, p);
}
}
if (!sig_set) {
rc = -EINVAL;
ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
"auth tok signature as a mount "
"parameter; see the eCryptfs README\n");
goto out;
}
if (!cipher_name_set) {
int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
strcpy(mount_crypt_stat->global_default_cipher_name,
ECRYPTFS_DEFAULT_CIPHER);
}
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
&& !fn_cipher_name_set)
strcpy(mount_crypt_stat->global_default_fn_cipher_name,
mount_crypt_stat->global_default_cipher_name);
if (!cipher_key_bytes_set)
mount_crypt_stat->global_default_cipher_key_size = 0;
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
&& !fn_cipher_key_bytes_set)
mount_crypt_stat->global_default_fn_cipher_key_bytes =
mount_crypt_stat->global_default_cipher_key_size;
cipher_code = ecryptfs_code_for_cipher_string(
mount_crypt_stat->global_default_cipher_name,
mount_crypt_stat->global_default_cipher_key_size);
if (!cipher_code) {
ecryptfs_printk(KERN_ERR,
"eCryptfs doesn't support cipher: %s\n",
mount_crypt_stat->global_default_cipher_name);
rc = -EINVAL;
goto out;
}
mutex_lock(&key_tfm_list_mutex);
if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
NULL)) {
rc = ecryptfs_add_new_key_tfm(
NULL, mount_crypt_stat->global_default_cipher_name,
mount_crypt_stat->global_default_cipher_key_size);
if (rc) {
printk(KERN_ERR "Error attempting to initialize "
"cipher with name = [%s] and key size = [%td]; "
"rc = [%d]\n",
mount_crypt_stat->global_default_cipher_name,
mount_crypt_stat->global_default_cipher_key_size,
rc);
rc = -EINVAL;
mutex_unlock(&key_tfm_list_mutex);
goto out;
}
}
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
&& !ecryptfs_tfm_exists(
mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
rc = ecryptfs_add_new_key_tfm(
NULL, mount_crypt_stat->global_default_fn_cipher_name,
mount_crypt_stat->global_default_fn_cipher_key_bytes);
if (rc) {
printk(KERN_ERR "Error attempting to initialize "
"cipher with name = [%s] and key size = [%td]; "
"rc = [%d]\n",
mount_crypt_stat->global_default_fn_cipher_name,
mount_crypt_stat->global_default_fn_cipher_key_bytes,
rc);
rc = -EINVAL;
mutex_unlock(&key_tfm_list_mutex);
goto out;
}
}
mutex_unlock(&key_tfm_list_mutex);
rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
if (rc)
printk(KERN_WARNING "One or more global auth toks could not "
"properly register; rc = [%d]\n", rc);
out:
return rc;
}
struct kmem_cache *ecryptfs_sb_info_cache;
static struct file_system_type ecryptfs_fs_type;
/*
* ecryptfs_mount
* @fs_type: The filesystem type that the superblock should belong to
* @flags: The flags associated with the mount
* @dev_name: The path to mount over
* @raw_data: The options passed into the kernel
*/
static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *raw_data)
{
struct super_block *s;
struct ecryptfs_sb_info *sbi;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
struct ecryptfs_dentry_info *root_info;
const char *err = "Getting sb failed";
struct inode *inode;
struct path path;
uid_t check_ruid;
int rc;
sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
if (!sbi) {
rc = -ENOMEM;
goto out;
}
if (!dev_name) {
rc = -EINVAL;
err = "Device name cannot be null";
goto out;
}
rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
if (rc) {
err = "Error parsing options";
goto out;
}
mount_crypt_stat = &sbi->mount_crypt_stat;
s = sget(fs_type, NULL, set_anon_super, flags, NULL);
if (IS_ERR(s)) {
rc = PTR_ERR(s);
goto out;
}
rc = super_setup_bdi(s);
if (rc)
goto out1;
ecryptfs_set_superblock_private(s, sbi);
/* ->kill_sb() will take care of sbi after that point */
sbi = NULL;
s->s_op = &ecryptfs_sops;
s->s_xattr = ecryptfs_xattr_handlers;
s->s_d_op = &ecryptfs_dops;
err = "Reading sb failed";
rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
if (rc) {
ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
goto out1;
}
if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
rc = -EINVAL;
printk(KERN_ERR "Mount on filesystem of type "
"eCryptfs explicitly disallowed due to "
"known incompatibilities\n");
goto out_free;
}
if (is_idmapped_mnt(path.mnt)) {
rc = -EINVAL;
printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
goto out_free;
}
if (check_ruid && !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
rc = -EPERM;
printk(KERN_ERR "Mount of device (uid: %d) not owned by "
"requested user (uid: %d)\n",
i_uid_read(d_inode(path.dentry)),
from_kuid(&init_user_ns, current_uid()));
goto out_free;
}
ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
/**
* Set the POSIX ACL flag based on whether they're enabled in the lower
* mount.
*/
s->s_flags = flags & ~SB_POSIXACL;
s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
/**
* Force a read-only eCryptfs mount when:
* 1) The lower mount is ro
* 2) The ecryptfs_encrypted_view mount option is specified
*/
if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
s->s_flags |= SB_RDONLY;
s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
s->s_blocksize = path.dentry->d_sb->s_blocksize;
s->s_magic = ECRYPTFS_SUPER_MAGIC;
s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
rc = -EINVAL;
if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
goto out_free;
}
inode = ecryptfs_get_inode(d_inode(path.dentry), s);
rc = PTR_ERR(inode);
if (IS_ERR(inode))
goto out_free;
s->s_root = d_make_root(inode);
if (!s->s_root) {
rc = -ENOMEM;
goto out_free;
}
rc = -ENOMEM;
root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
if (!root_info)
goto out_free;
/* ->kill_sb() will take care of root_info */
ecryptfs_set_dentry_private(s->s_root, root_info);
root_info->lower_path = path;
s->s_flags |= SB_ACTIVE;
return dget(s->s_root);
out_free:
path_put(&path);
out1:
deactivate_locked_super(s);
out:
if (sbi) {
ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
kmem_cache_free(ecryptfs_sb_info_cache, sbi);
}
printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
return ERR_PTR(rc);
}
/**
* ecryptfs_kill_block_super
* @sb: The ecryptfs super block
*
* Used to bring the superblock down and free the private data.
*/
static void ecryptfs_kill_block_super(struct super_block *sb)
{
struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
kill_anon_super(sb);
if (!sb_info)
return;
ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
}
static struct file_system_type ecryptfs_fs_type = {
.owner = THIS_MODULE,
.name = "ecryptfs",
.mount = ecryptfs_mount,
.kill_sb = ecryptfs_kill_block_super,
.fs_flags = 0
};
MODULE_ALIAS_FS("ecryptfs");
/*
* inode_info_init_once
*
* Initializes the ecryptfs_inode_info_cache when it is created
*/
static void
inode_info_init_once(void *vptr)
{
struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
inode_init_once(&ei->vfs_inode);
}
static struct ecryptfs_cache_info {
struct kmem_cache **cache;
const char *name;
size_t size;
slab_flags_t flags;
void (*ctor)(void *obj);
} ecryptfs_cache_infos[] = {
{
.cache = &ecryptfs_auth_tok_list_item_cache,
.name = "ecryptfs_auth_tok_list_item",
.size = sizeof(struct ecryptfs_auth_tok_list_item),
},
{
.cache = &ecryptfs_file_info_cache,
.name = "ecryptfs_file_cache",
.size = sizeof(struct ecryptfs_file_info),
},
{
.cache = &ecryptfs_dentry_info_cache,
.name = "ecryptfs_dentry_info_cache",
.size = sizeof(struct ecryptfs_dentry_info),
},
{
.cache = &ecryptfs_inode_info_cache,
.name = "ecryptfs_inode_cache",
.size = sizeof(struct ecryptfs_inode_info),
.flags = SLAB_ACCOUNT,
.ctor = inode_info_init_once,
},
{
.cache = &ecryptfs_sb_info_cache,
.name = "ecryptfs_sb_cache",
.size = sizeof(struct ecryptfs_sb_info),
},
{
.cache = &ecryptfs_header_cache,
.name = "ecryptfs_headers",
.size = PAGE_SIZE,
},
{
.cache = &ecryptfs_xattr_cache,
.name = "ecryptfs_xattr_cache",
.size = PAGE_SIZE,
},
{
.cache = &ecryptfs_key_record_cache,
.name = "ecryptfs_key_record_cache",
.size = sizeof(struct ecryptfs_key_record),
},
{
.cache = &ecryptfs_key_sig_cache,
.name = "ecryptfs_key_sig_cache",
.size = sizeof(struct ecryptfs_key_sig),
},
{
.cache = &ecryptfs_global_auth_tok_cache,
.name = "ecryptfs_global_auth_tok_cache",
.size = sizeof(struct ecryptfs_global_auth_tok),
},
{
.cache = &ecryptfs_key_tfm_cache,
.name = "ecryptfs_key_tfm_cache",
.size = sizeof(struct ecryptfs_key_tfm),
},
};
static void ecryptfs_free_kmem_caches(void)
{
int i;
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
struct ecryptfs_cache_info *info;
info = &ecryptfs_cache_infos[i];
kmem_cache_destroy(*(info->cache));
}
}
/**
* ecryptfs_init_kmem_caches
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_init_kmem_caches(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
struct ecryptfs_cache_info *info;
info = &ecryptfs_cache_infos[i];
*(info->cache) = kmem_cache_create(info->name, info->size, 0,
SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
if (!*(info->cache)) {
ecryptfs_free_kmem_caches();
ecryptfs_printk(KERN_WARNING, "%s: "
"kmem_cache_create failed\n",
info->name);
return -ENOMEM;
}
}
return 0;
}
static struct kobject *ecryptfs_kobj;
static ssize_t version_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buff)
{
return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
}
static struct kobj_attribute version_attr = __ATTR_RO(version);
static struct attribute *attributes[] = {
&version_attr.attr,
NULL,
};
static const struct attribute_group attr_group = {
.attrs = attributes,
};
static int do_sysfs_registration(void)
{
int rc;
ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
if (!ecryptfs_kobj) {
printk(KERN_ERR "Unable to create ecryptfs kset\n");
rc = -ENOMEM;
goto out;
}
rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
if (rc) {
printk(KERN_ERR
"Unable to create ecryptfs version attributes\n");
kobject_put(ecryptfs_kobj);
}
out:
return rc;
}
static void do_sysfs_unregistration(void)
{
sysfs_remove_group(ecryptfs_kobj, &attr_group);
kobject_put(ecryptfs_kobj);
}
static int __init ecryptfs_init(void)
{
int rc;
if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
rc = -EINVAL;
ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
"larger than the host's page size, and so "
"eCryptfs cannot run on this system. The "
"default eCryptfs extent size is [%u] bytes; "
"the page size is [%lu] bytes.\n",
ECRYPTFS_DEFAULT_EXTENT_SIZE,
(unsigned long)PAGE_SIZE);
goto out;
}
rc = ecryptfs_init_kmem_caches();
if (rc) {
printk(KERN_ERR
"Failed to allocate one or more kmem_cache objects\n");
goto out;
}
rc = do_sysfs_registration();
if (rc) {
printk(KERN_ERR "sysfs registration failed\n");
goto out_free_kmem_caches;
}
rc = ecryptfs_init_kthread();
if (rc) {
printk(KERN_ERR "%s: kthread initialization failed; "
"rc = [%d]\n", __func__, rc);
goto out_do_sysfs_unregistration;
}
rc = ecryptfs_init_messaging();
if (rc) {
printk(KERN_ERR "Failure occurred while attempting to "
"initialize the communications channel to "
"ecryptfsd\n");
goto out_destroy_kthread;
}
rc = ecryptfs_init_crypto();
if (rc) {
printk(KERN_ERR "Failure whilst attempting to init crypto; "
"rc = [%d]\n", rc);
goto out_release_messaging;
}
rc = register_filesystem(&ecryptfs_fs_type);
if (rc) {
printk(KERN_ERR "Failed to register filesystem\n");
goto out_destroy_crypto;
}
if (ecryptfs_verbosity > 0)
printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
"will be written to the syslog!\n", ecryptfs_verbosity);
goto out;
out_destroy_crypto:
ecryptfs_destroy_crypto();
out_release_messaging:
ecryptfs_release_messaging();
out_destroy_kthread:
ecryptfs_destroy_kthread();
out_do_sysfs_unregistration:
do_sysfs_unregistration();
out_free_kmem_caches:
ecryptfs_free_kmem_caches();
out:
return rc;
}
static void __exit ecryptfs_exit(void)
{
int rc;
rc = ecryptfs_destroy_crypto();
if (rc)
printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
"rc = [%d]\n", rc);
ecryptfs_release_messaging();
ecryptfs_destroy_kthread();
do_sysfs_unregistration();
unregister_filesystem(&ecryptfs_fs_type);
ecryptfs_free_kmem_caches();
}
MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
MODULE_DESCRIPTION("eCryptfs");
MODULE_LICENSE("GPL");
module_init(ecryptfs_init)
module_exit(ecryptfs_exit)