linuxdebug/drivers/net/phy/mxl-gpy.c

944 lines
25 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2021 Maxlinear Corporation
* Copyright (C) 2020 Intel Corporation
*
* Drivers for Maxlinear Ethernet GPY
*
*/
#include <linux/module.h>
#include <linux/bitfield.h>
#include <linux/hwmon.h>
#include <linux/mutex.h>
#include <linux/phy.h>
#include <linux/polynomial.h>
#include <linux/netdevice.h>
/* PHY ID */
#define PHY_ID_GPYx15B_MASK 0xFFFFFFFC
#define PHY_ID_GPY21xB_MASK 0xFFFFFFF9
#define PHY_ID_GPY2xx 0x67C9DC00
#define PHY_ID_GPY115B 0x67C9DF00
#define PHY_ID_GPY115C 0x67C9DF10
#define PHY_ID_GPY211B 0x67C9DE08
#define PHY_ID_GPY211C 0x67C9DE10
#define PHY_ID_GPY212B 0x67C9DE09
#define PHY_ID_GPY212C 0x67C9DE20
#define PHY_ID_GPY215B 0x67C9DF04
#define PHY_ID_GPY215C 0x67C9DF20
#define PHY_ID_GPY241B 0x67C9DE40
#define PHY_ID_GPY241BM 0x67C9DE80
#define PHY_ID_GPY245B 0x67C9DEC0
#define PHY_MIISTAT 0x18 /* MII state */
#define PHY_IMASK 0x19 /* interrupt mask */
#define PHY_ISTAT 0x1A /* interrupt status */
#define PHY_FWV 0x1E /* firmware version */
#define PHY_MIISTAT_SPD_MASK GENMASK(2, 0)
#define PHY_MIISTAT_DPX BIT(3)
#define PHY_MIISTAT_LS BIT(10)
#define PHY_MIISTAT_SPD_10 0
#define PHY_MIISTAT_SPD_100 1
#define PHY_MIISTAT_SPD_1000 2
#define PHY_MIISTAT_SPD_2500 4
#define PHY_IMASK_WOL BIT(15) /* Wake-on-LAN */
#define PHY_IMASK_ANC BIT(10) /* Auto-Neg complete */
#define PHY_IMASK_ADSC BIT(5) /* Link auto-downspeed detect */
#define PHY_IMASK_DXMC BIT(2) /* Duplex mode change */
#define PHY_IMASK_LSPC BIT(1) /* Link speed change */
#define PHY_IMASK_LSTC BIT(0) /* Link state change */
#define PHY_IMASK_MASK (PHY_IMASK_LSTC | \
PHY_IMASK_LSPC | \
PHY_IMASK_DXMC | \
PHY_IMASK_ADSC | \
PHY_IMASK_ANC)
#define PHY_FWV_REL_MASK BIT(15)
#define PHY_FWV_MAJOR_MASK GENMASK(11, 8)
#define PHY_FWV_MINOR_MASK GENMASK(7, 0)
/* SGMII */
#define VSPEC1_SGMII_CTRL 0x08
#define VSPEC1_SGMII_CTRL_ANEN BIT(12) /* Aneg enable */
#define VSPEC1_SGMII_CTRL_ANRS BIT(9) /* Restart Aneg */
#define VSPEC1_SGMII_ANEN_ANRS (VSPEC1_SGMII_CTRL_ANEN | \
VSPEC1_SGMII_CTRL_ANRS)
/* Temperature sensor */
#define VPSPEC1_TEMP_STA 0x0E
#define VPSPEC1_TEMP_STA_DATA GENMASK(9, 0)
/* Mailbox */
#define VSPEC1_MBOX_DATA 0x5
#define VSPEC1_MBOX_ADDRLO 0x6
#define VSPEC1_MBOX_CMD 0x7
#define VSPEC1_MBOX_CMD_ADDRHI GENMASK(7, 0)
#define VSPEC1_MBOX_CMD_RD (0 << 8)
#define VSPEC1_MBOX_CMD_READY BIT(15)
/* WoL */
#define VPSPEC2_WOL_CTL 0x0E06
#define VPSPEC2_WOL_AD01 0x0E08
#define VPSPEC2_WOL_AD23 0x0E09
#define VPSPEC2_WOL_AD45 0x0E0A
#define WOL_EN BIT(0)
/* Internal registers, access via mbox */
#define REG_GPIO0_OUT 0xd3ce00
struct gpy_priv {
/* serialize mailbox acesses */
struct mutex mbox_lock;
u8 fw_major;
u8 fw_minor;
};
static const struct {
int major;
int minor;
} ver_need_sgmii_reaneg[] = {
{7, 0x6D},
{8, 0x6D},
{9, 0x73},
};
#if IS_ENABLED(CONFIG_HWMON)
/* The original translation formulae of the temperature (in degrees of Celsius)
* are as follows:
*
* T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
* 3.0762e-1*(N^1) + -5.2156e1
*
* where [-52.156, 137.961]C and N = [0, 1023].
*
* They must be accordingly altered to be suitable for the integer arithmetics.
* The technique is called 'factor redistribution', which just makes sure the
* multiplications and divisions are made so to have a result of the operations
* within the integer numbers limit. In addition we need to translate the
* formulae to accept millidegrees of Celsius. Here what it looks like after
* the alterations:
*
* T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
* 307620e-3*(N^1) + -52156
*
* where T = [-52156, 137961]mC and N = [0, 1023].
*/
static const struct polynomial poly_N_to_temp = {
.terms = {
{4, -25761, 1000, 1},
{3, 97332, 1000, 1},
{2, -191650, 1000, 1},
{1, 307620, 1000, 1},
{0, -52156, 1, 1}
}
};
static int gpy_hwmon_read(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long *value)
{
struct phy_device *phydev = dev_get_drvdata(dev);
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VPSPEC1_TEMP_STA);
if (ret < 0)
return ret;
if (!ret)
return -ENODATA;
*value = polynomial_calc(&poly_N_to_temp,
FIELD_GET(VPSPEC1_TEMP_STA_DATA, ret));
return 0;
}
static umode_t gpy_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
return 0444;
}
static const struct hwmon_channel_info *gpy_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
NULL
};
static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
.is_visible = gpy_hwmon_is_visible,
.read = gpy_hwmon_read,
};
static const struct hwmon_chip_info gpy_hwmon_chip_info = {
.ops = &gpy_hwmon_hwmon_ops,
.info = gpy_hwmon_info,
};
static int gpy_hwmon_register(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct device *hwmon_dev;
char *hwmon_name;
hwmon_name = devm_hwmon_sanitize_name(dev, dev_name(dev));
if (IS_ERR(hwmon_name))
return PTR_ERR(hwmon_name);
hwmon_dev = devm_hwmon_device_register_with_info(dev, hwmon_name,
phydev,
&gpy_hwmon_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
#else
static int gpy_hwmon_register(struct phy_device *phydev)
{
return 0;
}
#endif
static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
{
struct gpy_priv *priv = phydev->priv;
int val, ret;
u16 cmd;
mutex_lock(&priv->mbox_lock);
ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
addr);
if (ret)
goto out;
cmd = VSPEC1_MBOX_CMD_RD;
cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
if (ret)
goto out;
/* The mbox read is used in the interrupt workaround. It was observed
* that a read might take up to 2.5ms. This is also the time for which
* the interrupt line is stuck low. To be on the safe side, poll the
* ready bit for 10ms.
*/
ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
VSPEC1_MBOX_CMD, val,
(val & VSPEC1_MBOX_CMD_READY),
500, 10000, false);
if (ret)
goto out;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
out:
mutex_unlock(&priv->mbox_lock);
return ret;
}
static int gpy_config_init(struct phy_device *phydev)
{
int ret;
/* Mask all interrupts */
ret = phy_write(phydev, PHY_IMASK, 0);
if (ret)
return ret;
/* Clear all pending interrupts */
ret = phy_read(phydev, PHY_ISTAT);
return ret < 0 ? ret : 0;
}
static bool gpy_has_broken_mdint(struct phy_device *phydev)
{
/* At least these PHYs are known to have broken interrupt handling */
return phydev->drv->phy_id == PHY_ID_GPY215B ||
phydev->drv->phy_id == PHY_ID_GPY215C;
}
static int gpy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct gpy_priv *priv;
int fw_version;
int ret;
if (!phydev->is_c45) {
ret = phy_get_c45_ids(phydev);
if (ret < 0)
return ret;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
mutex_init(&priv->mbox_lock);
fw_version = phy_read(phydev, PHY_FWV);
if (fw_version < 0)
return fw_version;
priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
ret = gpy_hwmon_register(phydev);
if (ret)
return ret;
/* Show GPY PHY FW version in dmesg */
phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
priv->fw_major, priv->fw_minor, fw_version,
fw_version & PHY_FWV_REL_MASK ? "" : " test version");
return 0;
}
static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
{
struct gpy_priv *priv = phydev->priv;
size_t i;
for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
continue;
if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
return true;
break;
}
return false;
}
static bool gpy_2500basex_chk(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, PHY_MIISTAT);
if (ret < 0) {
phydev_err(phydev, "Error: MDIO register access failed: %d\n",
ret);
return false;
}
if (!(ret & PHY_MIISTAT_LS) ||
FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
return false;
phydev->speed = SPEED_2500;
phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANEN, 0);
return true;
}
static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
if (ret < 0) {
phydev_err(phydev, "Error: MMD register access failed: %d\n",
ret);
return true;
}
return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
}
static int gpy_config_aneg(struct phy_device *phydev)
{
bool changed = false;
u32 adv;
int ret;
if (phydev->autoneg == AUTONEG_DISABLE) {
/* Configure half duplex with genphy_setup_forced,
* because genphy_c45_pma_setup_forced does not support.
*/
return phydev->duplex != DUPLEX_FULL
? genphy_setup_forced(phydev)
: genphy_c45_pma_setup_forced(phydev);
}
ret = genphy_c45_an_config_aneg(phydev);
if (ret < 0)
return ret;
if (ret > 0)
changed = true;
adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
ret = phy_modify_changed(phydev, MII_CTRL1000,
ADVERTISE_1000FULL | ADVERTISE_1000HALF,
adv);
if (ret < 0)
return ret;
if (ret > 0)
changed = true;
ret = genphy_c45_check_and_restart_aneg(phydev, changed);
if (ret < 0)
return ret;
if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
return 0;
/* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
* disabled.
*/
if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
!gpy_sgmii_aneg_en(phydev))
return 0;
/* There is a design constraint in GPY2xx device where SGMII AN is
* only triggered when there is change of speed. If, PHY link
* partner`s speed is still same even after PHY TPI is down and up
* again, SGMII AN is not triggered and hence no new in-band message
* from GPY to MAC side SGMII.
* This could cause an issue during power up, when PHY is up prior to
* MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
* wouldn`t receive new in-band message from GPY with correct link
* status, speed and duplex info.
*
* 1) If PHY is already up and TPI link status is still down (such as
* hard reboot), TPI link status is polled for 4 seconds before
* retriggerring SGMII AN.
* 2) If PHY is already up and TPI link status is also up (such as soft
* reboot), polling of TPI link status is not needed and SGMII AN is
* immediately retriggered.
* 3) Other conditions such as PHY is down, speed change etc, skip
* retriggering SGMII AN. Note: in case of speed change, GPY FW will
* initiate SGMII AN.
*/
if (phydev->state != PHY_UP)
return 0;
ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
20000, 4000000, false);
if (ret == -ETIMEDOUT)
return 0;
else if (ret < 0)
return ret;
/* Trigger SGMII AN. */
return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
}
static void gpy_update_interface(struct phy_device *phydev)
{
int ret;
/* Interface mode is fixed for USXGMII and integrated PHY */
if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
return;
/* Automatically switch SERDES interface between SGMII and 2500-BaseX
* according to speed. Disable ANEG in 2500-BaseX mode.
*/
switch (phydev->speed) {
case SPEED_2500:
phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANEN, 0);
if (ret < 0)
phydev_err(phydev,
"Error: Disable of SGMII ANEG failed: %d\n",
ret);
break;
case SPEED_1000:
case SPEED_100:
case SPEED_10:
phydev->interface = PHY_INTERFACE_MODE_SGMII;
if (gpy_sgmii_aneg_en(phydev))
break;
/* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
* if ANEG is disabled (in 2500-BaseX mode).
*/
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_ANEN_ANRS,
VSPEC1_SGMII_ANEN_ANRS);
if (ret < 0)
phydev_err(phydev,
"Error: Enable of SGMII ANEG failed: %d\n",
ret);
break;
}
if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000)
genphy_read_master_slave(phydev);
}
static int gpy_read_status(struct phy_device *phydev)
{
int ret;
ret = genphy_update_link(phydev);
if (ret)
return ret;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
ret = genphy_c45_read_lpa(phydev);
if (ret < 0)
return ret;
/* Read the link partner's 1G advertisement */
ret = phy_read(phydev, MII_STAT1000);
if (ret < 0)
return ret;
mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
} else if (phydev->autoneg == AUTONEG_DISABLE) {
linkmode_zero(phydev->lp_advertising);
}
ret = phy_read(phydev, PHY_MIISTAT);
if (ret < 0)
return ret;
phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
case PHY_MIISTAT_SPD_10:
phydev->speed = SPEED_10;
break;
case PHY_MIISTAT_SPD_100:
phydev->speed = SPEED_100;
break;
case PHY_MIISTAT_SPD_1000:
phydev->speed = SPEED_1000;
break;
case PHY_MIISTAT_SPD_2500:
phydev->speed = SPEED_2500;
break;
}
if (phydev->link)
gpy_update_interface(phydev);
return 0;
}
static int gpy_config_intr(struct phy_device *phydev)
{
u16 mask = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
mask = PHY_IMASK_MASK;
return phy_write(phydev, PHY_IMASK, mask);
}
static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
{
int reg;
reg = phy_read(phydev, PHY_ISTAT);
if (reg < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(reg & PHY_IMASK_MASK))
return IRQ_NONE;
/* The PHY might leave the interrupt line asserted even after PHY_ISTAT
* is read. To avoid interrupt storms, delay the interrupt handling as
* long as the PHY drives the interrupt line. An internal bus read will
* stall as long as the interrupt line is asserted, thus just read a
* random register here.
* Because we cannot access the internal bus at all while the interrupt
* is driven by the PHY, there is no way to make the interrupt line
* unstuck (e.g. by changing the pinmux to GPIO input) during that time
* frame. Therefore, polling is the best we can do and won't do any more
* harm.
* It was observed that this bug happens on link state and link speed
* changes on a GPY215B and GYP215C independent of the firmware version
* (which doesn't mean that this list is exhaustive).
*/
if (gpy_has_broken_mdint(phydev) &&
(reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC))) {
reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
if (reg < 0) {
phy_error(phydev);
return IRQ_NONE;
}
}
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int gpy_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
struct net_device *attach_dev = phydev->attached_dev;
int ret;
if (wol->wolopts & WAKE_MAGIC) {
/* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
* VPSPEC2_WOL_AD45 = Byte0:Byte1
* VPSPEC2_WOL_AD23 = Byte2:Byte3
* VPSPEC2_WOL_AD01 = Byte4:Byte5
*/
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD45,
((attach_dev->dev_addr[0] << 8) |
attach_dev->dev_addr[1]));
if (ret < 0)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD23,
((attach_dev->dev_addr[2] << 8) |
attach_dev->dev_addr[3]));
if (ret < 0)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD01,
((attach_dev->dev_addr[4] << 8) |
attach_dev->dev_addr[5]));
if (ret < 0)
return ret;
/* Enable the WOL interrupt */
ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
if (ret < 0)
return ret;
/* Enable magic packet matching */
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_CTL,
WOL_EN);
if (ret < 0)
return ret;
/* Clear the interrupt status register.
* Only WoL is enabled so clear all.
*/
ret = phy_read(phydev, PHY_ISTAT);
if (ret < 0)
return ret;
} else {
/* Disable magic packet matching */
ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_CTL,
WOL_EN);
if (ret < 0)
return ret;
}
if (wol->wolopts & WAKE_PHY) {
/* Enable the link state change interrupt */
ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
if (ret < 0)
return ret;
/* Clear the interrupt status register */
ret = phy_read(phydev, PHY_ISTAT);
if (ret < 0)
return ret;
if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
phy_trigger_machine(phydev);
return 0;
}
/* Disable the link state change interrupt */
return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
}
static void gpy_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int ret;
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, VPSPEC2_WOL_CTL);
if (ret & WOL_EN)
wol->wolopts |= WAKE_MAGIC;
ret = phy_read(phydev, PHY_IMASK);
if (ret & PHY_IMASK_LSTC)
wol->wolopts |= WAKE_PHY;
}
static int gpy_loopback(struct phy_device *phydev, bool enable)
{
int ret;
ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK,
enable ? BMCR_LOOPBACK : 0);
if (!ret) {
/* It takes some time for PHY device to switch
* into/out-of loopback mode.
*/
msleep(100);
}
return ret;
}
static int gpy115_loopback(struct phy_device *phydev, bool enable)
{
struct gpy_priv *priv = phydev->priv;
if (enable)
return gpy_loopback(phydev, enable);
if (priv->fw_minor > 0x76)
return gpy_loopback(phydev, 0);
return genphy_soft_reset(phydev);
}
static struct phy_driver gpy_drivers[] = {
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
.name = "Maxlinear Ethernet GPY2xx",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY115B,
.phy_id_mask = PHY_ID_GPYx15B_MASK,
.name = "Maxlinear Ethernet GPY115B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy115_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
.name = "Maxlinear Ethernet GPY115C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy115_loopback,
},
{
.phy_id = PHY_ID_GPY211B,
.phy_id_mask = PHY_ID_GPY21xB_MASK,
.name = "Maxlinear Ethernet GPY211B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
.name = "Maxlinear Ethernet GPY211C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY212B,
.phy_id_mask = PHY_ID_GPY21xB_MASK,
.name = "Maxlinear Ethernet GPY212B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
.name = "Maxlinear Ethernet GPY212C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY215B,
.phy_id_mask = PHY_ID_GPYx15B_MASK,
.name = "Maxlinear Ethernet GPY215B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
.name = "Maxlinear Ethernet GPY215C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
.name = "Maxlinear Ethernet GPY241B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
.name = "Maxlinear Ethernet GPY241BM",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
.name = "Maxlinear Ethernet GPY245B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
};
module_phy_driver(gpy_drivers);
static struct mdio_device_id __maybe_unused gpy_tbl[] = {
{PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
{PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
{PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
{PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
{PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
{ }
};
MODULE_DEVICE_TABLE(mdio, gpy_tbl);
MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
MODULE_AUTHOR("Xu Liang");
MODULE_LICENSE("GPL");