2421 lines
66 KiB
C
2421 lines
66 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2008-2013 Solarflare Communications Inc.
|
||
|
*/
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include "net_driver.h"
|
||
|
#include "nic.h"
|
||
|
#include "io.h"
|
||
|
#include "farch_regs.h"
|
||
|
#include "mcdi_pcol.h"
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Management-Controller-to-Driver Interface
|
||
|
*
|
||
|
**************************************************************************
|
||
|
*/
|
||
|
|
||
|
#define MCDI_RPC_TIMEOUT (10 * HZ)
|
||
|
|
||
|
/* A reboot/assertion causes the MCDI status word to be set after the
|
||
|
* command word is set or a REBOOT event is sent. If we notice a reboot
|
||
|
* via these mechanisms then wait 250ms for the status word to be set.
|
||
|
*/
|
||
|
#define MCDI_STATUS_DELAY_US 100
|
||
|
#define MCDI_STATUS_DELAY_COUNT 2500
|
||
|
#define MCDI_STATUS_SLEEP_MS \
|
||
|
(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
|
||
|
|
||
|
#define SEQ_MASK \
|
||
|
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
|
||
|
|
||
|
struct efx_mcdi_async_param {
|
||
|
struct list_head list;
|
||
|
unsigned int cmd;
|
||
|
size_t inlen;
|
||
|
size_t outlen;
|
||
|
bool quiet;
|
||
|
efx_mcdi_async_completer *complete;
|
||
|
unsigned long cookie;
|
||
|
/* followed by request/response buffer */
|
||
|
};
|
||
|
|
||
|
static void efx_mcdi_timeout_async(struct timer_list *t);
|
||
|
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
|
||
|
bool *was_attached_out);
|
||
|
static bool efx_mcdi_poll_once(struct efx_nic *efx);
|
||
|
static void efx_mcdi_abandon(struct efx_nic *efx);
|
||
|
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
static bool mcdi_logging_default;
|
||
|
module_param(mcdi_logging_default, bool, 0644);
|
||
|
MODULE_PARM_DESC(mcdi_logging_default,
|
||
|
"Enable MCDI logging on newly-probed functions");
|
||
|
#endif
|
||
|
|
||
|
int efx_mcdi_init(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi;
|
||
|
bool already_attached;
|
||
|
int rc = -ENOMEM;
|
||
|
|
||
|
efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
|
||
|
if (!efx->mcdi)
|
||
|
goto fail;
|
||
|
|
||
|
mcdi = efx_mcdi(efx);
|
||
|
mcdi->efx = efx;
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
/* consuming code assumes buffer is page-sized */
|
||
|
mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
|
||
|
if (!mcdi->logging_buffer)
|
||
|
goto fail1;
|
||
|
mcdi->logging_enabled = mcdi_logging_default;
|
||
|
#endif
|
||
|
init_waitqueue_head(&mcdi->wq);
|
||
|
init_waitqueue_head(&mcdi->proxy_rx_wq);
|
||
|
spin_lock_init(&mcdi->iface_lock);
|
||
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
||
|
mcdi->mode = MCDI_MODE_POLL;
|
||
|
spin_lock_init(&mcdi->async_lock);
|
||
|
INIT_LIST_HEAD(&mcdi->async_list);
|
||
|
timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
|
||
|
|
||
|
(void) efx_mcdi_poll_reboot(efx);
|
||
|
mcdi->new_epoch = true;
|
||
|
|
||
|
/* Recover from a failed assertion before probing */
|
||
|
rc = efx_mcdi_handle_assertion(efx);
|
||
|
if (rc)
|
||
|
goto fail2;
|
||
|
|
||
|
/* Let the MC (and BMC, if this is a LOM) know that the driver
|
||
|
* is loaded. We should do this before we reset the NIC.
|
||
|
*/
|
||
|
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
|
||
|
if (rc) {
|
||
|
pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
|
||
|
goto fail2;
|
||
|
}
|
||
|
if (already_attached)
|
||
|
/* Not a fatal error */
|
||
|
pci_err(efx->pci_dev, "Host already registered with MCPU\n");
|
||
|
|
||
|
if (efx->mcdi->fn_flags &
|
||
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
|
||
|
efx->primary = efx;
|
||
|
|
||
|
return 0;
|
||
|
fail2:
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
free_page((unsigned long)mcdi->logging_buffer);
|
||
|
fail1:
|
||
|
#endif
|
||
|
kfree(efx->mcdi);
|
||
|
efx->mcdi = NULL;
|
||
|
fail:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_mcdi_detach(struct efx_nic *efx)
|
||
|
{
|
||
|
if (!efx->mcdi)
|
||
|
return;
|
||
|
|
||
|
BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
|
||
|
|
||
|
/* Relinquish the device (back to the BMC, if this is a LOM) */
|
||
|
efx_mcdi_drv_attach(efx, false, NULL);
|
||
|
}
|
||
|
|
||
|
void efx_mcdi_fini(struct efx_nic *efx)
|
||
|
{
|
||
|
if (!efx->mcdi)
|
||
|
return;
|
||
|
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
free_page((unsigned long)efx->mcdi->iface.logging_buffer);
|
||
|
#endif
|
||
|
|
||
|
kfree(efx->mcdi);
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
char *buf = mcdi->logging_buffer; /* page-sized */
|
||
|
#endif
|
||
|
efx_dword_t hdr[2];
|
||
|
size_t hdr_len;
|
||
|
u32 xflags, seqno;
|
||
|
|
||
|
BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
|
||
|
|
||
|
/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
|
||
|
spin_lock_bh(&mcdi->iface_lock);
|
||
|
++mcdi->seqno;
|
||
|
seqno = mcdi->seqno & SEQ_MASK;
|
||
|
spin_unlock_bh(&mcdi->iface_lock);
|
||
|
|
||
|
xflags = 0;
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS)
|
||
|
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
|
||
|
|
||
|
if (efx->type->mcdi_max_ver == 1) {
|
||
|
/* MCDI v1 */
|
||
|
EFX_POPULATE_DWORD_7(hdr[0],
|
||
|
MCDI_HEADER_RESPONSE, 0,
|
||
|
MCDI_HEADER_RESYNC, 1,
|
||
|
MCDI_HEADER_CODE, cmd,
|
||
|
MCDI_HEADER_DATALEN, inlen,
|
||
|
MCDI_HEADER_SEQ, seqno,
|
||
|
MCDI_HEADER_XFLAGS, xflags,
|
||
|
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
|
||
|
hdr_len = 4;
|
||
|
} else {
|
||
|
/* MCDI v2 */
|
||
|
BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
|
||
|
EFX_POPULATE_DWORD_7(hdr[0],
|
||
|
MCDI_HEADER_RESPONSE, 0,
|
||
|
MCDI_HEADER_RESYNC, 1,
|
||
|
MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
|
||
|
MCDI_HEADER_DATALEN, 0,
|
||
|
MCDI_HEADER_SEQ, seqno,
|
||
|
MCDI_HEADER_XFLAGS, xflags,
|
||
|
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
|
||
|
EFX_POPULATE_DWORD_2(hdr[1],
|
||
|
MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
|
||
|
MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
|
||
|
hdr_len = 8;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
|
||
|
int bytes = 0;
|
||
|
int i;
|
||
|
/* Lengths should always be a whole number of dwords, so scream
|
||
|
* if they're not.
|
||
|
*/
|
||
|
WARN_ON_ONCE(hdr_len % 4);
|
||
|
WARN_ON_ONCE(inlen % 4);
|
||
|
|
||
|
/* We own the logging buffer, as only one MCDI can be in
|
||
|
* progress on a NIC at any one time. So no need for locking.
|
||
|
*/
|
||
|
for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
|
||
|
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
|
||
|
" %08x",
|
||
|
le32_to_cpu(hdr[i].u32[0]));
|
||
|
|
||
|
for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
|
||
|
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
|
||
|
" %08x",
|
||
|
le32_to_cpu(inbuf[i].u32[0]));
|
||
|
|
||
|
netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
|
||
|
|
||
|
mcdi->new_epoch = false;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_errno(unsigned int mcdi_err)
|
||
|
{
|
||
|
switch (mcdi_err) {
|
||
|
case 0:
|
||
|
return 0;
|
||
|
#define TRANSLATE_ERROR(name) \
|
||
|
case MC_CMD_ERR_ ## name: \
|
||
|
return -name;
|
||
|
TRANSLATE_ERROR(EPERM);
|
||
|
TRANSLATE_ERROR(ENOENT);
|
||
|
TRANSLATE_ERROR(EINTR);
|
||
|
TRANSLATE_ERROR(EAGAIN);
|
||
|
TRANSLATE_ERROR(EACCES);
|
||
|
TRANSLATE_ERROR(EBUSY);
|
||
|
TRANSLATE_ERROR(EINVAL);
|
||
|
TRANSLATE_ERROR(EDEADLK);
|
||
|
TRANSLATE_ERROR(ENOSYS);
|
||
|
TRANSLATE_ERROR(ETIME);
|
||
|
TRANSLATE_ERROR(EALREADY);
|
||
|
TRANSLATE_ERROR(ENOSPC);
|
||
|
#undef TRANSLATE_ERROR
|
||
|
case MC_CMD_ERR_ENOTSUP:
|
||
|
return -EOPNOTSUPP;
|
||
|
case MC_CMD_ERR_ALLOC_FAIL:
|
||
|
return -ENOBUFS;
|
||
|
case MC_CMD_ERR_MAC_EXIST:
|
||
|
return -EADDRINUSE;
|
||
|
default:
|
||
|
return -EPROTO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_read_response_header(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
unsigned int respseq, respcmd, error;
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
char *buf = mcdi->logging_buffer; /* page-sized */
|
||
|
#endif
|
||
|
efx_dword_t hdr;
|
||
|
|
||
|
efx->type->mcdi_read_response(efx, &hdr, 0, 4);
|
||
|
respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
|
||
|
respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
|
||
|
error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
|
||
|
|
||
|
if (respcmd != MC_CMD_V2_EXTN) {
|
||
|
mcdi->resp_hdr_len = 4;
|
||
|
mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
|
||
|
} else {
|
||
|
efx->type->mcdi_read_response(efx, &hdr, 4, 4);
|
||
|
mcdi->resp_hdr_len = 8;
|
||
|
mcdi->resp_data_len =
|
||
|
EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SFC_MCDI_LOGGING
|
||
|
if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
|
||
|
size_t hdr_len, data_len;
|
||
|
int bytes = 0;
|
||
|
int i;
|
||
|
|
||
|
WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
|
||
|
hdr_len = mcdi->resp_hdr_len / 4;
|
||
|
/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
|
||
|
* to dword size, and the MCDI buffer is always dword size
|
||
|
*/
|
||
|
data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
|
||
|
|
||
|
/* We own the logging buffer, as only one MCDI can be in
|
||
|
* progress on a NIC at any one time. So no need for locking.
|
||
|
*/
|
||
|
for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
|
||
|
efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
|
||
|
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
|
||
|
" %08x", le32_to_cpu(hdr.u32[0]));
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
|
||
|
efx->type->mcdi_read_response(efx, &hdr,
|
||
|
mcdi->resp_hdr_len + (i * 4), 4);
|
||
|
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
|
||
|
" %08x", le32_to_cpu(hdr.u32[0]));
|
||
|
}
|
||
|
|
||
|
netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
mcdi->resprc_raw = 0;
|
||
|
if (error && mcdi->resp_data_len == 0) {
|
||
|
netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
|
||
|
mcdi->resprc = -EIO;
|
||
|
} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MC response mismatch tx seq 0x%x rx seq 0x%x\n",
|
||
|
respseq, mcdi->seqno);
|
||
|
mcdi->resprc = -EIO;
|
||
|
} else if (error) {
|
||
|
efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
|
||
|
mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
|
||
|
mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
|
||
|
} else {
|
||
|
mcdi->resprc = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool efx_mcdi_poll_once(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
rmb();
|
||
|
if (!efx->type->mcdi_poll_response(efx))
|
||
|
return false;
|
||
|
|
||
|
spin_lock_bh(&mcdi->iface_lock);
|
||
|
efx_mcdi_read_response_header(efx);
|
||
|
spin_unlock_bh(&mcdi->iface_lock);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_poll(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
unsigned long time, finish;
|
||
|
unsigned int spins;
|
||
|
int rc;
|
||
|
|
||
|
/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
|
||
|
rc = efx_mcdi_poll_reboot(efx);
|
||
|
if (rc) {
|
||
|
spin_lock_bh(&mcdi->iface_lock);
|
||
|
mcdi->resprc = rc;
|
||
|
mcdi->resp_hdr_len = 0;
|
||
|
mcdi->resp_data_len = 0;
|
||
|
spin_unlock_bh(&mcdi->iface_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
|
||
|
* because generally mcdi responses are fast. After that, back off
|
||
|
* and poll once a jiffy (approximately)
|
||
|
*/
|
||
|
spins = USER_TICK_USEC;
|
||
|
finish = jiffies + MCDI_RPC_TIMEOUT;
|
||
|
|
||
|
while (1) {
|
||
|
if (spins != 0) {
|
||
|
--spins;
|
||
|
udelay(1);
|
||
|
} else {
|
||
|
schedule_timeout_uninterruptible(1);
|
||
|
}
|
||
|
|
||
|
time = jiffies;
|
||
|
|
||
|
if (efx_mcdi_poll_once(efx))
|
||
|
break;
|
||
|
|
||
|
if (time_after(time, finish))
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
/* Return rc=0 like wait_event_timeout() */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Test and clear MC-rebooted flag for this port/function; reset
|
||
|
* software state as necessary.
|
||
|
*/
|
||
|
int efx_mcdi_poll_reboot(struct efx_nic *efx)
|
||
|
{
|
||
|
if (!efx->mcdi)
|
||
|
return 0;
|
||
|
|
||
|
return efx->type->mcdi_poll_reboot(efx);
|
||
|
}
|
||
|
|
||
|
static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
|
||
|
{
|
||
|
return cmpxchg(&mcdi->state,
|
||
|
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
|
||
|
MCDI_STATE_QUIESCENT;
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
|
||
|
{
|
||
|
/* Wait until the interface becomes QUIESCENT and we win the race
|
||
|
* to mark it RUNNING_SYNC.
|
||
|
*/
|
||
|
wait_event(mcdi->wq,
|
||
|
cmpxchg(&mcdi->state,
|
||
|
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
|
||
|
MCDI_STATE_QUIESCENT);
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_await_completion(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
|
||
|
MCDI_RPC_TIMEOUT) == 0)
|
||
|
return -ETIMEDOUT;
|
||
|
|
||
|
/* Check if efx_mcdi_set_mode() switched us back to polled completions.
|
||
|
* In which case, poll for completions directly. If efx_mcdi_ev_cpl()
|
||
|
* completed the request first, then we'll just end up completing the
|
||
|
* request again, which is safe.
|
||
|
*
|
||
|
* We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
|
||
|
* wait_event_timeout() implicitly provides.
|
||
|
*/
|
||
|
if (mcdi->mode == MCDI_MODE_POLL)
|
||
|
return efx_mcdi_poll(efx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
|
||
|
* requester. Return whether this was done. Does not take any locks.
|
||
|
*/
|
||
|
static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
|
||
|
{
|
||
|
if (cmpxchg(&mcdi->state,
|
||
|
MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
|
||
|
MCDI_STATE_RUNNING_SYNC) {
|
||
|
wake_up(&mcdi->wq);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
|
||
|
{
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
||
|
struct efx_mcdi_async_param *async;
|
||
|
struct efx_nic *efx = mcdi->efx;
|
||
|
|
||
|
/* Process the asynchronous request queue */
|
||
|
spin_lock_bh(&mcdi->async_lock);
|
||
|
async = list_first_entry_or_null(
|
||
|
&mcdi->async_list, struct efx_mcdi_async_param, list);
|
||
|
if (async) {
|
||
|
mcdi->state = MCDI_STATE_RUNNING_ASYNC;
|
||
|
efx_mcdi_send_request(efx, async->cmd,
|
||
|
(const efx_dword_t *)(async + 1),
|
||
|
async->inlen);
|
||
|
mod_timer(&mcdi->async_timer,
|
||
|
jiffies + MCDI_RPC_TIMEOUT);
|
||
|
}
|
||
|
spin_unlock_bh(&mcdi->async_lock);
|
||
|
|
||
|
if (async)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
||
|
wake_up(&mcdi->wq);
|
||
|
}
|
||
|
|
||
|
/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
|
||
|
* asynchronous completion function, and release the interface.
|
||
|
* Return whether this was done. Must be called in bh-disabled
|
||
|
* context. Will take iface_lock and async_lock.
|
||
|
*/
|
||
|
static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
|
||
|
{
|
||
|
struct efx_nic *efx = mcdi->efx;
|
||
|
struct efx_mcdi_async_param *async;
|
||
|
size_t hdr_len, data_len, err_len;
|
||
|
efx_dword_t *outbuf;
|
||
|
MCDI_DECLARE_BUF_ERR(errbuf);
|
||
|
int rc;
|
||
|
|
||
|
if (cmpxchg(&mcdi->state,
|
||
|
MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
|
||
|
MCDI_STATE_RUNNING_ASYNC)
|
||
|
return false;
|
||
|
|
||
|
spin_lock(&mcdi->iface_lock);
|
||
|
if (timeout) {
|
||
|
/* Ensure that if the completion event arrives later,
|
||
|
* the seqno check in efx_mcdi_ev_cpl() will fail
|
||
|
*/
|
||
|
++mcdi->seqno;
|
||
|
++mcdi->credits;
|
||
|
rc = -ETIMEDOUT;
|
||
|
hdr_len = 0;
|
||
|
data_len = 0;
|
||
|
} else {
|
||
|
rc = mcdi->resprc;
|
||
|
hdr_len = mcdi->resp_hdr_len;
|
||
|
data_len = mcdi->resp_data_len;
|
||
|
}
|
||
|
spin_unlock(&mcdi->iface_lock);
|
||
|
|
||
|
/* Stop the timer. In case the timer function is running, we
|
||
|
* must wait for it to return so that there is no possibility
|
||
|
* of it aborting the next request.
|
||
|
*/
|
||
|
if (!timeout)
|
||
|
del_timer_sync(&mcdi->async_timer);
|
||
|
|
||
|
spin_lock(&mcdi->async_lock);
|
||
|
async = list_first_entry(&mcdi->async_list,
|
||
|
struct efx_mcdi_async_param, list);
|
||
|
list_del(&async->list);
|
||
|
spin_unlock(&mcdi->async_lock);
|
||
|
|
||
|
outbuf = (efx_dword_t *)(async + 1);
|
||
|
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
|
||
|
min(async->outlen, data_len));
|
||
|
if (!timeout && rc && !async->quiet) {
|
||
|
err_len = min(sizeof(errbuf), data_len);
|
||
|
efx->type->mcdi_read_response(efx, errbuf, hdr_len,
|
||
|
sizeof(errbuf));
|
||
|
efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
|
||
|
err_len, rc);
|
||
|
}
|
||
|
|
||
|
if (async->complete)
|
||
|
async->complete(efx, async->cookie, rc, outbuf,
|
||
|
min(async->outlen, data_len));
|
||
|
kfree(async);
|
||
|
|
||
|
efx_mcdi_release(mcdi);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
|
||
|
unsigned int datalen, unsigned int mcdi_err)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
bool wake = false;
|
||
|
|
||
|
spin_lock(&mcdi->iface_lock);
|
||
|
|
||
|
if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
|
||
|
if (mcdi->credits)
|
||
|
/* The request has been cancelled */
|
||
|
--mcdi->credits;
|
||
|
else
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MC response mismatch tx seq 0x%x rx "
|
||
|
"seq 0x%x\n", seqno, mcdi->seqno);
|
||
|
} else {
|
||
|
if (efx->type->mcdi_max_ver >= 2) {
|
||
|
/* MCDI v2 responses don't fit in an event */
|
||
|
efx_mcdi_read_response_header(efx);
|
||
|
} else {
|
||
|
mcdi->resprc = efx_mcdi_errno(mcdi_err);
|
||
|
mcdi->resp_hdr_len = 4;
|
||
|
mcdi->resp_data_len = datalen;
|
||
|
}
|
||
|
|
||
|
wake = true;
|
||
|
}
|
||
|
|
||
|
spin_unlock(&mcdi->iface_lock);
|
||
|
|
||
|
if (wake) {
|
||
|
if (!efx_mcdi_complete_async(mcdi, false))
|
||
|
(void) efx_mcdi_complete_sync(mcdi);
|
||
|
|
||
|
/* If the interface isn't RUNNING_ASYNC or
|
||
|
* RUNNING_SYNC then we've received a duplicate
|
||
|
* completion after we've already transitioned back to
|
||
|
* QUIESCENT. [A subsequent invocation would increment
|
||
|
* seqno, so would have failed the seqno check].
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_timeout_async(struct timer_list *t)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
|
||
|
|
||
|
efx_mcdi_complete_async(mcdi, true);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
|
||
|
{
|
||
|
if (efx->type->mcdi_max_ver < 0 ||
|
||
|
(efx->type->mcdi_max_ver < 2 &&
|
||
|
cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
|
||
|
(efx->type->mcdi_max_ver < 2 &&
|
||
|
inlen > MCDI_CTL_SDU_LEN_MAX_V1))
|
||
|
return -EMSGSIZE;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
|
||
|
size_t hdr_len, size_t data_len,
|
||
|
u32 *proxy_handle)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF_ERR(testbuf);
|
||
|
const size_t buflen = sizeof(testbuf);
|
||
|
|
||
|
if (!proxy_handle || data_len < buflen)
|
||
|
return false;
|
||
|
|
||
|
efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
|
||
|
if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
|
||
|
*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
|
||
|
size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual, bool quiet,
|
||
|
u32 *proxy_handle, int *raw_rc)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
MCDI_DECLARE_BUF_ERR(errbuf);
|
||
|
int rc;
|
||
|
|
||
|
if (mcdi->mode == MCDI_MODE_POLL)
|
||
|
rc = efx_mcdi_poll(efx);
|
||
|
else
|
||
|
rc = efx_mcdi_await_completion(efx);
|
||
|
|
||
|
if (rc != 0) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MC command 0x%x inlen %d mode %d timed out\n",
|
||
|
cmd, (int)inlen, mcdi->mode);
|
||
|
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MCDI request was completed without an event\n");
|
||
|
rc = 0;
|
||
|
}
|
||
|
|
||
|
efx_mcdi_abandon(efx);
|
||
|
|
||
|
/* Close the race with efx_mcdi_ev_cpl() executing just too late
|
||
|
* and completing a request we've just cancelled, by ensuring
|
||
|
* that the seqno check therein fails.
|
||
|
*/
|
||
|
spin_lock_bh(&mcdi->iface_lock);
|
||
|
++mcdi->seqno;
|
||
|
++mcdi->credits;
|
||
|
spin_unlock_bh(&mcdi->iface_lock);
|
||
|
}
|
||
|
|
||
|
if (proxy_handle)
|
||
|
*proxy_handle = 0;
|
||
|
|
||
|
if (rc != 0) {
|
||
|
if (outlen_actual)
|
||
|
*outlen_actual = 0;
|
||
|
} else {
|
||
|
size_t hdr_len, data_len, err_len;
|
||
|
|
||
|
/* At the very least we need a memory barrier here to ensure
|
||
|
* we pick up changes from efx_mcdi_ev_cpl(). Protect against
|
||
|
* a spurious efx_mcdi_ev_cpl() running concurrently by
|
||
|
* acquiring the iface_lock. */
|
||
|
spin_lock_bh(&mcdi->iface_lock);
|
||
|
rc = mcdi->resprc;
|
||
|
if (raw_rc)
|
||
|
*raw_rc = mcdi->resprc_raw;
|
||
|
hdr_len = mcdi->resp_hdr_len;
|
||
|
data_len = mcdi->resp_data_len;
|
||
|
err_len = min(sizeof(errbuf), data_len);
|
||
|
spin_unlock_bh(&mcdi->iface_lock);
|
||
|
|
||
|
BUG_ON(rc > 0);
|
||
|
|
||
|
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
|
||
|
min(outlen, data_len));
|
||
|
if (outlen_actual)
|
||
|
*outlen_actual = data_len;
|
||
|
|
||
|
efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
|
||
|
|
||
|
if (cmd == MC_CMD_REBOOT && rc == -EIO) {
|
||
|
/* Don't reset if MC_CMD_REBOOT returns EIO */
|
||
|
} else if (rc == -EIO || rc == -EINTR) {
|
||
|
netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
|
||
|
netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
|
||
|
cmd, -rc);
|
||
|
if (efx->type->mcdi_reboot_detected)
|
||
|
efx->type->mcdi_reboot_detected(efx);
|
||
|
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
|
||
|
} else if (proxy_handle && (rc == -EPROTO) &&
|
||
|
efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
|
||
|
proxy_handle)) {
|
||
|
mcdi->proxy_rx_status = 0;
|
||
|
mcdi->proxy_rx_handle = 0;
|
||
|
mcdi->state = MCDI_STATE_PROXY_WAIT;
|
||
|
} else if (rc && !quiet) {
|
||
|
efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
|
||
|
rc);
|
||
|
}
|
||
|
|
||
|
if (rc == -EIO || rc == -EINTR) {
|
||
|
msleep(MCDI_STATUS_SLEEP_MS);
|
||
|
efx_mcdi_poll_reboot(efx);
|
||
|
mcdi->new_epoch = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!proxy_handle || !*proxy_handle)
|
||
|
efx_mcdi_release(mcdi);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
|
||
|
{
|
||
|
if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
|
||
|
/* Interrupt the proxy wait. */
|
||
|
mcdi->proxy_rx_status = -EINTR;
|
||
|
wake_up(&mcdi->proxy_rx_wq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
|
||
|
u32 handle, int status)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
|
||
|
|
||
|
mcdi->proxy_rx_status = efx_mcdi_errno(status);
|
||
|
/* Ensure the status is written before we update the handle, since the
|
||
|
* latter is used to check if we've finished.
|
||
|
*/
|
||
|
wmb();
|
||
|
mcdi->proxy_rx_handle = handle;
|
||
|
wake_up(&mcdi->proxy_rx_wq);
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
int rc;
|
||
|
|
||
|
/* Wait for a proxy event, or timeout. */
|
||
|
rc = wait_event_timeout(mcdi->proxy_rx_wq,
|
||
|
mcdi->proxy_rx_handle != 0 ||
|
||
|
mcdi->proxy_rx_status == -EINTR,
|
||
|
MCDI_RPC_TIMEOUT);
|
||
|
|
||
|
if (rc <= 0) {
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"MCDI proxy timeout %d\n", handle);
|
||
|
return -ETIMEDOUT;
|
||
|
} else if (mcdi->proxy_rx_handle != handle) {
|
||
|
netif_warn(efx, hw, efx->net_dev,
|
||
|
"MCDI proxy unexpected handle %d (expected %d)\n",
|
||
|
mcdi->proxy_rx_handle, handle);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return mcdi->proxy_rx_status;
|
||
|
}
|
||
|
|
||
|
static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual, bool quiet, int *raw_rc)
|
||
|
{
|
||
|
u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
|
||
|
int rc;
|
||
|
|
||
|
if (inbuf && inlen && (inbuf == outbuf)) {
|
||
|
/* The input buffer can't be aliased with the output. */
|
||
|
WARN_ON(1);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
||
|
outlen_actual, quiet, &proxy_handle, raw_rc);
|
||
|
|
||
|
if (proxy_handle) {
|
||
|
/* Handle proxy authorisation. This allows approval of MCDI
|
||
|
* operations to be delegated to the admin function, allowing
|
||
|
* fine control over (eg) multicast subscriptions.
|
||
|
*/
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"MCDI waiting for proxy auth %d\n",
|
||
|
proxy_handle);
|
||
|
rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
|
||
|
|
||
|
if (rc == 0) {
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"MCDI proxy retry %d\n", proxy_handle);
|
||
|
|
||
|
/* We now retry the original request. */
|
||
|
mcdi->state = MCDI_STATE_RUNNING_SYNC;
|
||
|
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
|
||
|
|
||
|
rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
|
||
|
outbuf, outlen, outlen_actual,
|
||
|
quiet, NULL, raw_rc);
|
||
|
} else {
|
||
|
netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
|
||
|
"MC command 0x%x failed after proxy auth rc=%d\n",
|
||
|
cmd, rc);
|
||
|
|
||
|
if (rc == -EINTR || rc == -EIO)
|
||
|
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
|
||
|
efx_mcdi_release(mcdi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual, bool quiet)
|
||
|
{
|
||
|
int raw_rc = 0;
|
||
|
int rc;
|
||
|
|
||
|
rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
|
||
|
outbuf, outlen, outlen_actual, true, &raw_rc);
|
||
|
|
||
|
if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
|
||
|
efx->type->is_vf) {
|
||
|
/* If the EVB port isn't available within a VF this may
|
||
|
* mean the PF is still bringing the switch up. We should
|
||
|
* retry our request shortly.
|
||
|
*/
|
||
|
unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
|
||
|
unsigned int delay_us = 10000;
|
||
|
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"%s: NO_EVB_PORT; will retry request\n",
|
||
|
__func__);
|
||
|
|
||
|
do {
|
||
|
usleep_range(delay_us, delay_us + 10000);
|
||
|
rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
|
||
|
outbuf, outlen, outlen_actual,
|
||
|
true, &raw_rc);
|
||
|
if (delay_us < 100000)
|
||
|
delay_us <<= 1;
|
||
|
} while ((rc == -EPROTO) &&
|
||
|
(raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
|
||
|
time_before(jiffies, abort_time));
|
||
|
}
|
||
|
|
||
|
if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
|
||
|
efx_mcdi_display_error(efx, cmd, inlen,
|
||
|
outbuf, outlen, rc);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efx_mcdi_rpc - Issue an MCDI command and wait for completion
|
||
|
* @efx: NIC through which to issue the command
|
||
|
* @cmd: Command type number
|
||
|
* @inbuf: Command parameters
|
||
|
* @inlen: Length of command parameters, in bytes. Must be a multiple
|
||
|
* of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
|
||
|
* @outbuf: Response buffer. May be %NULL if @outlen is 0.
|
||
|
* @outlen: Length of response buffer, in bytes. If the actual
|
||
|
* response is longer than @outlen & ~3, it will be truncated
|
||
|
* to that length.
|
||
|
* @outlen_actual: Pointer through which to return the actual response
|
||
|
* length. May be %NULL if this is not needed.
|
||
|
*
|
||
|
* This function may sleep and therefore must be called in an appropriate
|
||
|
* context.
|
||
|
*
|
||
|
* Return: A negative error code, or zero if successful. The error
|
||
|
* code may come from the MCDI response or may indicate a failure
|
||
|
* to communicate with the MC. In the former case, the response
|
||
|
* will still be copied to @outbuf and *@outlen_actual will be
|
||
|
* set accordingly. In the latter case, *@outlen_actual will be
|
||
|
* set to zero.
|
||
|
*/
|
||
|
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
|
||
|
outlen_actual, false);
|
||
|
}
|
||
|
|
||
|
/* Normally, on receiving an error code in the MCDI response,
|
||
|
* efx_mcdi_rpc will log an error message containing (among other
|
||
|
* things) the raw error code, by means of efx_mcdi_display_error.
|
||
|
* This _quiet version suppresses that; if the caller wishes to log
|
||
|
* the error conditionally on the return code, it should call this
|
||
|
* function and is then responsible for calling efx_mcdi_display_error
|
||
|
* as needed.
|
||
|
*/
|
||
|
int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
|
||
|
outlen_actual, true);
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_check_supported(efx, cmd, inlen);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (efx->mc_bist_for_other_fn)
|
||
|
return -ENETDOWN;
|
||
|
|
||
|
if (mcdi->mode == MCDI_MODE_FAIL)
|
||
|
return -ENETDOWN;
|
||
|
|
||
|
efx_mcdi_acquire_sync(mcdi);
|
||
|
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
size_t outlen,
|
||
|
efx_mcdi_async_completer *complete,
|
||
|
unsigned long cookie, bool quiet)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
struct efx_mcdi_async_param *async;
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_check_supported(efx, cmd, inlen);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (efx->mc_bist_for_other_fn)
|
||
|
return -ENETDOWN;
|
||
|
|
||
|
async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
|
||
|
GFP_ATOMIC);
|
||
|
if (!async)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
async->cmd = cmd;
|
||
|
async->inlen = inlen;
|
||
|
async->outlen = outlen;
|
||
|
async->quiet = quiet;
|
||
|
async->complete = complete;
|
||
|
async->cookie = cookie;
|
||
|
memcpy(async + 1, inbuf, inlen);
|
||
|
|
||
|
spin_lock_bh(&mcdi->async_lock);
|
||
|
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
||
|
list_add_tail(&async->list, &mcdi->async_list);
|
||
|
|
||
|
/* If this is at the front of the queue, try to start it
|
||
|
* immediately
|
||
|
*/
|
||
|
if (mcdi->async_list.next == &async->list &&
|
||
|
efx_mcdi_acquire_async(mcdi)) {
|
||
|
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
|
||
|
mod_timer(&mcdi->async_timer,
|
||
|
jiffies + MCDI_RPC_TIMEOUT);
|
||
|
}
|
||
|
} else {
|
||
|
kfree(async);
|
||
|
rc = -ENETDOWN;
|
||
|
}
|
||
|
|
||
|
spin_unlock_bh(&mcdi->async_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
|
||
|
* @efx: NIC through which to issue the command
|
||
|
* @cmd: Command type number
|
||
|
* @inbuf: Command parameters
|
||
|
* @inlen: Length of command parameters, in bytes
|
||
|
* @outlen: Length to allocate for response buffer, in bytes
|
||
|
* @complete: Function to be called on completion or cancellation.
|
||
|
* @cookie: Arbitrary value to be passed to @complete.
|
||
|
*
|
||
|
* This function does not sleep and therefore may be called in atomic
|
||
|
* context. It will fail if event queues are disabled or if MCDI
|
||
|
* event completions have been disabled due to an error.
|
||
|
*
|
||
|
* If it succeeds, the @complete function will be called exactly once
|
||
|
* in atomic context, when one of the following occurs:
|
||
|
* (a) the completion event is received (in NAPI context)
|
||
|
* (b) event queues are disabled (in the process that disables them)
|
||
|
* (c) the request times-out (in timer context)
|
||
|
*/
|
||
|
int
|
||
|
efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen, size_t outlen,
|
||
|
efx_mcdi_async_completer *complete, unsigned long cookie)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
|
||
|
cookie, false);
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
|
||
|
const efx_dword_t *inbuf, size_t inlen,
|
||
|
size_t outlen, efx_mcdi_async_completer *complete,
|
||
|
unsigned long cookie)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
|
||
|
cookie, true);
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
||
|
outlen_actual, false, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
|
||
|
efx_dword_t *outbuf, size_t outlen,
|
||
|
size_t *outlen_actual)
|
||
|
{
|
||
|
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
|
||
|
outlen_actual, true, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
|
||
|
size_t inlen, efx_dword_t *outbuf,
|
||
|
size_t outlen, int rc)
|
||
|
{
|
||
|
int code = 0, err_arg = 0;
|
||
|
|
||
|
if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
|
||
|
code = MCDI_DWORD(outbuf, ERR_CODE);
|
||
|
if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
|
||
|
err_arg = MCDI_DWORD(outbuf, ERR_ARG);
|
||
|
netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
|
||
|
"MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
|
||
|
cmd, inlen, rc, code, err_arg);
|
||
|
}
|
||
|
|
||
|
/* Switch to polled MCDI completions. This can be called in various
|
||
|
* error conditions with various locks held, so it must be lockless.
|
||
|
* Caller is responsible for flushing asynchronous requests later.
|
||
|
*/
|
||
|
void efx_mcdi_mode_poll(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi;
|
||
|
|
||
|
if (!efx->mcdi)
|
||
|
return;
|
||
|
|
||
|
mcdi = efx_mcdi(efx);
|
||
|
/* If already in polling mode, nothing to do.
|
||
|
* If in fail-fast state, don't switch to polled completion.
|
||
|
* FLR recovery will do that later.
|
||
|
*/
|
||
|
if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
|
||
|
return;
|
||
|
|
||
|
/* We can switch from event completion to polled completion, because
|
||
|
* mcdi requests are always completed in shared memory. We do this by
|
||
|
* switching the mode to POLL'd then completing the request.
|
||
|
* efx_mcdi_await_completion() will then call efx_mcdi_poll().
|
||
|
*
|
||
|
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
|
||
|
* which efx_mcdi_complete_sync() provides for us.
|
||
|
*/
|
||
|
mcdi->mode = MCDI_MODE_POLL;
|
||
|
|
||
|
efx_mcdi_complete_sync(mcdi);
|
||
|
}
|
||
|
|
||
|
/* Flush any running or queued asynchronous requests, after event processing
|
||
|
* is stopped
|
||
|
*/
|
||
|
void efx_mcdi_flush_async(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_async_param *async, *next;
|
||
|
struct efx_mcdi_iface *mcdi;
|
||
|
|
||
|
if (!efx->mcdi)
|
||
|
return;
|
||
|
|
||
|
mcdi = efx_mcdi(efx);
|
||
|
|
||
|
/* We must be in poll or fail mode so no more requests can be queued */
|
||
|
BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
|
||
|
|
||
|
del_timer_sync(&mcdi->async_timer);
|
||
|
|
||
|
/* If a request is still running, make sure we give the MC
|
||
|
* time to complete it so that the response won't overwrite our
|
||
|
* next request.
|
||
|
*/
|
||
|
if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
|
||
|
efx_mcdi_poll(efx);
|
||
|
mcdi->state = MCDI_STATE_QUIESCENT;
|
||
|
}
|
||
|
|
||
|
/* Nothing else will access the async list now, so it is safe
|
||
|
* to walk it without holding async_lock. If we hold it while
|
||
|
* calling a completer then lockdep may warn that we have
|
||
|
* acquired locks in the wrong order.
|
||
|
*/
|
||
|
list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
|
||
|
if (async->complete)
|
||
|
async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
|
||
|
list_del(&async->list);
|
||
|
kfree(async);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void efx_mcdi_mode_event(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi;
|
||
|
|
||
|
if (!efx->mcdi)
|
||
|
return;
|
||
|
|
||
|
mcdi = efx_mcdi(efx);
|
||
|
/* If already in event completion mode, nothing to do.
|
||
|
* If in fail-fast state, don't switch to event completion. FLR
|
||
|
* recovery will do that later.
|
||
|
*/
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
|
||
|
return;
|
||
|
|
||
|
/* We can't switch from polled to event completion in the middle of a
|
||
|
* request, because the completion method is specified in the request.
|
||
|
* So acquire the interface to serialise the requestors. We don't need
|
||
|
* to acquire the iface_lock to change the mode here, but we do need a
|
||
|
* write memory barrier ensure that efx_mcdi_rpc() sees it, which
|
||
|
* efx_mcdi_acquire() provides.
|
||
|
*/
|
||
|
efx_mcdi_acquire_sync(mcdi);
|
||
|
mcdi->mode = MCDI_MODE_EVENTS;
|
||
|
efx_mcdi_release(mcdi);
|
||
|
}
|
||
|
|
||
|
static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
/* If there is an outstanding MCDI request, it has been terminated
|
||
|
* either by a BADASSERT or REBOOT event. If the mcdi interface is
|
||
|
* in polled mode, then do nothing because the MC reboot handler will
|
||
|
* set the header correctly. However, if the mcdi interface is waiting
|
||
|
* for a CMDDONE event it won't receive it [and since all MCDI events
|
||
|
* are sent to the same queue, we can't be racing with
|
||
|
* efx_mcdi_ev_cpl()]
|
||
|
*
|
||
|
* If there is an outstanding asynchronous request, we can't
|
||
|
* complete it now (efx_mcdi_complete() would deadlock). The
|
||
|
* reset process will take care of this.
|
||
|
*
|
||
|
* There's a race here with efx_mcdi_send_request(), because
|
||
|
* we might receive a REBOOT event *before* the request has
|
||
|
* been copied out. In polled mode (during startup) this is
|
||
|
* irrelevant, because efx_mcdi_complete_sync() is ignored. In
|
||
|
* event mode, this condition is just an edge-case of
|
||
|
* receiving a REBOOT event after posting the MCDI
|
||
|
* request. Did the mc reboot before or after the copyout? The
|
||
|
* best we can do always is just return failure.
|
||
|
*
|
||
|
* If there is an outstanding proxy response expected it is not going
|
||
|
* to arrive. We should thus abort it.
|
||
|
*/
|
||
|
spin_lock(&mcdi->iface_lock);
|
||
|
efx_mcdi_proxy_abort(mcdi);
|
||
|
|
||
|
if (efx_mcdi_complete_sync(mcdi)) {
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
||
|
mcdi->resprc = rc;
|
||
|
mcdi->resp_hdr_len = 0;
|
||
|
mcdi->resp_data_len = 0;
|
||
|
++mcdi->credits;
|
||
|
}
|
||
|
} else {
|
||
|
int count;
|
||
|
|
||
|
/* Consume the status word since efx_mcdi_rpc_finish() won't */
|
||
|
for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
|
||
|
rc = efx_mcdi_poll_reboot(efx);
|
||
|
if (rc)
|
||
|
break;
|
||
|
udelay(MCDI_STATUS_DELAY_US);
|
||
|
}
|
||
|
|
||
|
/* On EF10, a CODE_MC_REBOOT event can be received without the
|
||
|
* reboot detection in efx_mcdi_poll_reboot() being triggered.
|
||
|
* If zero was returned from the final call to
|
||
|
* efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
|
||
|
* MC has definitely rebooted so prepare for the reset.
|
||
|
*/
|
||
|
if (!rc && efx->type->mcdi_reboot_detected)
|
||
|
efx->type->mcdi_reboot_detected(efx);
|
||
|
|
||
|
mcdi->new_epoch = true;
|
||
|
|
||
|
/* Nobody was waiting for an MCDI request, so trigger a reset */
|
||
|
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
|
||
|
}
|
||
|
|
||
|
spin_unlock(&mcdi->iface_lock);
|
||
|
}
|
||
|
|
||
|
/* The MC is going down in to BIST mode. set the BIST flag to block
|
||
|
* new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
|
||
|
* (which doesn't actually execute a reset, it waits for the controlling
|
||
|
* function to reset it).
|
||
|
*/
|
||
|
static void efx_mcdi_ev_bist(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
spin_lock(&mcdi->iface_lock);
|
||
|
efx->mc_bist_for_other_fn = true;
|
||
|
efx_mcdi_proxy_abort(mcdi);
|
||
|
|
||
|
if (efx_mcdi_complete_sync(mcdi)) {
|
||
|
if (mcdi->mode == MCDI_MODE_EVENTS) {
|
||
|
mcdi->resprc = -EIO;
|
||
|
mcdi->resp_hdr_len = 0;
|
||
|
mcdi->resp_data_len = 0;
|
||
|
++mcdi->credits;
|
||
|
}
|
||
|
}
|
||
|
mcdi->new_epoch = true;
|
||
|
efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
|
||
|
spin_unlock(&mcdi->iface_lock);
|
||
|
}
|
||
|
|
||
|
/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
|
||
|
* to recover.
|
||
|
*/
|
||
|
static void efx_mcdi_abandon(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
|
||
|
if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
|
||
|
return; /* it had already been done */
|
||
|
netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
|
||
|
efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
|
||
|
}
|
||
|
|
||
|
static void efx_handle_drain_event(struct efx_nic *efx)
|
||
|
{
|
||
|
if (atomic_dec_and_test(&efx->active_queues))
|
||
|
wake_up(&efx->flush_wq);
|
||
|
|
||
|
WARN_ON(atomic_read(&efx->active_queues) < 0);
|
||
|
}
|
||
|
|
||
|
/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
|
||
|
void efx_mcdi_process_event(struct efx_channel *channel,
|
||
|
efx_qword_t *event)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
|
||
|
u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
|
||
|
|
||
|
switch (code) {
|
||
|
case MCDI_EVENT_CODE_BADSSERT:
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MC watchdog or assertion failure at 0x%x\n", data);
|
||
|
efx_mcdi_ev_death(efx, -EINTR);
|
||
|
break;
|
||
|
|
||
|
case MCDI_EVENT_CODE_PMNOTICE:
|
||
|
netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
|
||
|
break;
|
||
|
|
||
|
case MCDI_EVENT_CODE_CMDDONE:
|
||
|
efx_mcdi_ev_cpl(efx,
|
||
|
MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
|
||
|
MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
|
||
|
MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
|
||
|
break;
|
||
|
|
||
|
case MCDI_EVENT_CODE_LINKCHANGE:
|
||
|
efx_mcdi_process_link_change(efx, event);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_SENSOREVT:
|
||
|
efx_sensor_event(efx, event);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_SCHEDERR:
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"MC Scheduler alert (0x%x)\n", data);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_REBOOT:
|
||
|
case MCDI_EVENT_CODE_MC_REBOOT:
|
||
|
netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
|
||
|
efx_mcdi_ev_death(efx, -EIO);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_MC_BIST:
|
||
|
netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
|
||
|
efx_mcdi_ev_bist(efx);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_MAC_STATS_DMA:
|
||
|
/* MAC stats are gather lazily. We can ignore this. */
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_FLR:
|
||
|
if (efx->type->sriov_flr)
|
||
|
efx->type->sriov_flr(efx,
|
||
|
MCDI_EVENT_FIELD(*event, FLR_VF));
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_PTP_RX:
|
||
|
case MCDI_EVENT_CODE_PTP_FAULT:
|
||
|
case MCDI_EVENT_CODE_PTP_PPS:
|
||
|
efx_ptp_event(efx, event);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_PTP_TIME:
|
||
|
efx_time_sync_event(channel, event);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_TX_FLUSH:
|
||
|
case MCDI_EVENT_CODE_RX_FLUSH:
|
||
|
/* Two flush events will be sent: one to the same event
|
||
|
* queue as completions, and one to event queue 0.
|
||
|
* In the latter case the {RX,TX}_FLUSH_TO_DRIVER
|
||
|
* flag will be set, and we should ignore the event
|
||
|
* because we want to wait for all completions.
|
||
|
*/
|
||
|
BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
|
||
|
MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
|
||
|
if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
|
||
|
efx_handle_drain_event(efx);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_TX_ERR:
|
||
|
case MCDI_EVENT_CODE_RX_ERR:
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"%s DMA error (event: "EFX_QWORD_FMT")\n",
|
||
|
code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
|
||
|
EFX_QWORD_VAL(*event));
|
||
|
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
|
||
|
break;
|
||
|
case MCDI_EVENT_CODE_PROXY_RESPONSE:
|
||
|
efx_mcdi_ev_proxy_response(efx,
|
||
|
MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
|
||
|
MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
|
||
|
break;
|
||
|
default:
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"Unknown MCDI event " EFX_QWORD_FMT "\n",
|
||
|
EFX_QWORD_VAL(*event));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Specific request functions
|
||
|
*
|
||
|
**************************************************************************
|
||
|
*/
|
||
|
|
||
|
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
|
||
|
size_t outlength;
|
||
|
const __le16 *ver_words;
|
||
|
size_t offset;
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
|
||
|
outbuf, sizeof(outbuf), &outlength);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
|
||
|
offset = scnprintf(buf, len, "%u.%u.%u.%u",
|
||
|
le16_to_cpu(ver_words[0]),
|
||
|
le16_to_cpu(ver_words[1]),
|
||
|
le16_to_cpu(ver_words[2]),
|
||
|
le16_to_cpu(ver_words[3]));
|
||
|
|
||
|
if (efx->type->print_additional_fwver)
|
||
|
offset += efx->type->print_additional_fwver(efx, buf + offset,
|
||
|
len - offset);
|
||
|
|
||
|
/* It's theoretically possible for the string to exceed 31
|
||
|
* characters, though in practice the first three version
|
||
|
* components are short enough that this doesn't happen.
|
||
|
*/
|
||
|
if (WARN_ON(offset >= len))
|
||
|
buf[0] = 0;
|
||
|
|
||
|
return;
|
||
|
|
||
|
fail:
|
||
|
pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
buf[0] = 0;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
|
||
|
bool *was_attached)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
|
||
|
driver_operating ? 1 : 0);
|
||
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
|
||
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
|
||
|
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
|
||
|
* specified will fail with EPERM, and we have to tell the MC we don't
|
||
|
* care what firmware we get.
|
||
|
*/
|
||
|
if (rc == -EPERM) {
|
||
|
pci_dbg(efx->pci_dev,
|
||
|
"%s with fw-variant setting failed EPERM, trying without it\n",
|
||
|
__func__);
|
||
|
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
|
||
|
MC_CMD_FW_DONT_CARE);
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
|
||
|
sizeof(inbuf), outbuf, sizeof(outbuf),
|
||
|
&outlen);
|
||
|
}
|
||
|
if (rc) {
|
||
|
efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
|
||
|
outbuf, outlen, rc);
|
||
|
goto fail;
|
||
|
}
|
||
|
if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (driver_operating) {
|
||
|
if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
|
||
|
efx->mcdi->fn_flags =
|
||
|
MCDI_DWORD(outbuf,
|
||
|
DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
|
||
|
} else {
|
||
|
/* Synthesise flags for Siena */
|
||
|
efx->mcdi->fn_flags =
|
||
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
|
||
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
|
||
|
(efx_port_num(efx) == 0) <<
|
||
|
MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We currently assume we have control of the external link
|
||
|
* and are completely trusted by firmware. Abort probing
|
||
|
* if that's not true for this function.
|
||
|
*/
|
||
|
|
||
|
if (was_attached != NULL)
|
||
|
*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
|
||
|
u16 *fw_subtype_list, u32 *capabilities)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
|
||
|
size_t outlen, i;
|
||
|
int port_num = efx_port_num(efx);
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
|
||
|
/* we need __aligned(2) for ether_addr_copy */
|
||
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
|
||
|
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (mac_address)
|
||
|
ether_addr_copy(mac_address,
|
||
|
port_num ?
|
||
|
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
|
||
|
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
|
||
|
if (fw_subtype_list) {
|
||
|
for (i = 0;
|
||
|
i < MCDI_VAR_ARRAY_LEN(outlen,
|
||
|
GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
|
||
|
i++)
|
||
|
fw_subtype_list[i] = MCDI_ARRAY_WORD(
|
||
|
outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
|
||
|
for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
|
||
|
fw_subtype_list[i] = 0;
|
||
|
}
|
||
|
if (capabilities) {
|
||
|
if (port_num)
|
||
|
*capabilities = MCDI_DWORD(outbuf,
|
||
|
GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
|
||
|
else
|
||
|
*capabilities = MCDI_DWORD(outbuf,
|
||
|
GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
|
||
|
__func__, rc, (int)outlen);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
|
||
|
u32 dest = 0;
|
||
|
int rc;
|
||
|
|
||
|
if (uart)
|
||
|
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
|
||
|
if (evq)
|
||
|
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
|
||
|
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
|
||
|
__func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* This function finds types using the new NVRAM_PARTITIONS mcdi. */
|
||
|
static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
|
||
|
u32 *nvram_types)
|
||
|
{
|
||
|
efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
|
||
|
GFP_KERNEL);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
if (!outbuf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
|
||
|
outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
*number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
|
||
|
|
||
|
memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
|
||
|
*number * sizeof(u32));
|
||
|
|
||
|
fail:
|
||
|
kfree(outbuf);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
|
||
|
size_t *size_out, size_t *erase_size_out,
|
||
|
bool *protected_out)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
|
||
|
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
|
||
|
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
|
||
|
(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), NULL);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
|
||
|
case MC_CMD_NVRAM_TEST_PASS:
|
||
|
case MC_CMD_NVRAM_TEST_NOTSUPP:
|
||
|
return 0;
|
||
|
default:
|
||
|
return -EIO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* This function tests nvram partitions using the new mcdi partition lookup scheme */
|
||
|
int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
|
||
|
{
|
||
|
u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
|
||
|
GFP_KERNEL);
|
||
|
unsigned int number;
|
||
|
int rc, i;
|
||
|
|
||
|
if (!nvram_types)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
/* Require at least one check */
|
||
|
rc = -EAGAIN;
|
||
|
|
||
|
for (i = 0; i < number; i++) {
|
||
|
if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
|
||
|
nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
|
||
|
continue;
|
||
|
|
||
|
rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
fail:
|
||
|
kfree(nvram_types);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_nvram_test_all(struct efx_nic *efx)
|
||
|
{
|
||
|
u32 nvram_types;
|
||
|
unsigned int type;
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_nvram_types(efx, &nvram_types);
|
||
|
if (rc)
|
||
|
goto fail1;
|
||
|
|
||
|
type = 0;
|
||
|
while (nvram_types != 0) {
|
||
|
if (nvram_types & 1) {
|
||
|
rc = efx_mcdi_nvram_test(efx, type);
|
||
|
if (rc)
|
||
|
goto fail2;
|
||
|
}
|
||
|
type++;
|
||
|
nvram_types >>= 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail2:
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
|
||
|
__func__, type);
|
||
|
fail1:
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Returns 1 if an assertion was read, 0 if no assertion had fired,
|
||
|
* negative on error.
|
||
|
*/
|
||
|
static int efx_mcdi_read_assertion(struct efx_nic *efx)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
|
||
|
unsigned int flags, index;
|
||
|
const char *reason;
|
||
|
size_t outlen;
|
||
|
int retry;
|
||
|
int rc;
|
||
|
|
||
|
/* Attempt to read any stored assertion state before we reboot
|
||
|
* the mcfw out of the assertion handler. Retry twice, once
|
||
|
* because a boot-time assertion might cause this command to fail
|
||
|
* with EINTR. And once again because GET_ASSERTS can race with
|
||
|
* MC_CMD_REBOOT running on the other port. */
|
||
|
retry = 2;
|
||
|
do {
|
||
|
MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
|
||
|
inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc == -EPERM)
|
||
|
return 0;
|
||
|
} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
|
||
|
|
||
|
if (rc) {
|
||
|
efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
|
||
|
MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
|
||
|
outlen, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
|
||
|
return -EIO;
|
||
|
|
||
|
/* Print out any recorded assertion state */
|
||
|
flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
|
||
|
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
|
||
|
return 0;
|
||
|
|
||
|
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
|
||
|
? "system-level assertion"
|
||
|
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
|
||
|
? "thread-level assertion"
|
||
|
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
|
||
|
? "watchdog reset"
|
||
|
: "unknown assertion";
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
|
||
|
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
|
||
|
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
|
||
|
|
||
|
/* Print out the registers */
|
||
|
for (index = 0;
|
||
|
index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
|
||
|
index++)
|
||
|
netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
|
||
|
1 + index,
|
||
|
MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
|
||
|
index));
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_exit_assertion(struct efx_nic *efx)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
/* If the MC is running debug firmware, it might now be
|
||
|
* waiting for a debugger to attach, but we just want it to
|
||
|
* reboot. We set a flag that makes the command a no-op if it
|
||
|
* has already done so.
|
||
|
* The MCDI will thus return either 0 or -EIO.
|
||
|
*/
|
||
|
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
|
||
|
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
|
||
|
MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
|
||
|
NULL, 0, NULL);
|
||
|
if (rc == -EIO)
|
||
|
rc = 0;
|
||
|
if (rc)
|
||
|
efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
|
||
|
NULL, 0, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_handle_assertion(struct efx_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_read_assertion(efx);
|
||
|
if (rc <= 0)
|
||
|
return rc;
|
||
|
|
||
|
return efx_mcdi_exit_assertion(efx);
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
|
||
|
|
||
|
BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
|
||
|
BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
|
||
|
BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
|
||
|
|
||
|
return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_reset_func(struct efx_nic *efx)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
|
||
|
MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
|
||
|
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_reset_mc(struct efx_nic *efx)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
|
||
|
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
/* White is black, and up is down */
|
||
|
if (rc == -EIO)
|
||
|
return 0;
|
||
|
if (rc == 0)
|
||
|
rc = -EIO;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
|
||
|
{
|
||
|
return RESET_TYPE_RECOVER_OR_ALL;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* If MCDI is down, we can't handle_assertion */
|
||
|
if (method == RESET_TYPE_MCDI_TIMEOUT) {
|
||
|
rc = pci_reset_function(efx->pci_dev);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
/* Re-enable polled MCDI completion */
|
||
|
if (efx->mcdi) {
|
||
|
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
|
||
|
mcdi->mode = MCDI_MODE_POLL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Recover from a failed assertion pre-reset */
|
||
|
rc = efx_mcdi_handle_assertion(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (method == RESET_TYPE_DATAPATH)
|
||
|
return 0;
|
||
|
else if (method == RESET_TYPE_WORLD)
|
||
|
return efx_mcdi_reset_mc(efx);
|
||
|
else
|
||
|
return efx_mcdi_reset_func(efx);
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
|
||
|
const u8 *mac, int *id_out)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
|
||
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
|
||
|
MC_CMD_FILTER_MODE_SIMPLE);
|
||
|
ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
*id_out = -1;
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
int
|
||
|
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
|
||
|
{
|
||
|
return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
|
||
|
}
|
||
|
|
||
|
|
||
|
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
*id_out = -1;
|
||
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_flush_rxqs(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_channel *channel;
|
||
|
struct efx_rx_queue *rx_queue;
|
||
|
MCDI_DECLARE_BUF(inbuf,
|
||
|
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
|
||
|
int rc, count;
|
||
|
|
||
|
BUILD_BUG_ON(EFX_MAX_CHANNELS >
|
||
|
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
|
||
|
|
||
|
count = 0;
|
||
|
efx_for_each_channel(channel, efx) {
|
||
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
||
|
if (rx_queue->flush_pending) {
|
||
|
rx_queue->flush_pending = false;
|
||
|
atomic_dec(&efx->rxq_flush_pending);
|
||
|
MCDI_SET_ARRAY_DWORD(
|
||
|
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
|
||
|
count, efx_rx_queue_index(rx_queue));
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
|
||
|
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
|
||
|
WARN_ON(rc < 0);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
|
||
|
unsigned int *flags)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
|
||
|
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
|
||
|
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (!flags)
|
||
|
return 0;
|
||
|
|
||
|
if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
|
||
|
*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
|
||
|
else
|
||
|
*flags = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
|
||
|
unsigned int *enabled_out)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
|
||
|
rc = -EIO;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (impl_out)
|
||
|
*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
|
||
|
|
||
|
if (enabled_out)
|
||
|
*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
|
||
|
* terrifying. The call site will have to deal with it though.
|
||
|
*/
|
||
|
netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
|
||
|
"%s: failed rc=%d\n", __func__, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Failure to read a privilege mask is never fatal, because we can always
|
||
|
* carry on as though we didn't have the privilege we were interested in.
|
||
|
* So use efx_mcdi_rpc_quiet().
|
||
|
*/
|
||
|
int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
|
||
|
MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
u16 pf, vf;
|
||
|
int rc;
|
||
|
|
||
|
if (!efx || !mask)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Get our function number */
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
|
||
|
fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
|
||
|
&outlen);
|
||
|
if (rc != 0)
|
||
|
return rc;
|
||
|
if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
|
||
|
return -EIO;
|
||
|
|
||
|
pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
|
||
|
vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
|
||
|
|
||
|
MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
|
||
|
PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
|
||
|
PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
|
||
|
|
||
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
|
||
|
pm_inbuf, sizeof(pm_inbuf),
|
||
|
pm_outbuf, sizeof(pm_outbuf), &outlen);
|
||
|
|
||
|
if (rc != 0)
|
||
|
return rc;
|
||
|
if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
|
||
|
return -EIO;
|
||
|
|
||
|
*mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SFC_MTD
|
||
|
|
||
|
#define EFX_MCDI_NVRAM_LEN_MAX 128
|
||
|
|
||
|
static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
|
||
|
MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
|
||
|
NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
|
||
|
1);
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
|
||
|
loff_t offset, u8 *buffer, size_t length)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf,
|
||
|
MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
|
||
|
size_t outlen;
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
|
||
|
MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
|
||
|
loff_t offset, const u8 *buffer, size_t length)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf,
|
||
|
MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
|
||
|
memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
|
||
|
ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
|
||
|
NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
|
||
|
loff_t offset, size_t length)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
|
||
|
int rc;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
|
||
|
|
||
|
BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
|
||
|
NULL, 0, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
|
||
|
{
|
||
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
|
||
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
|
||
|
size_t outlen;
|
||
|
int rc, rc2;
|
||
|
|
||
|
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
|
||
|
/* Always set this flag. Old firmware ignores it */
|
||
|
MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
|
||
|
NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
|
||
|
1);
|
||
|
|
||
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
|
||
|
outbuf, sizeof(outbuf), &outlen);
|
||
|
if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
|
||
|
rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
|
||
|
if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"NVRAM update failed verification with code 0x%x\n",
|
||
|
rc2);
|
||
|
switch (rc2) {
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
|
||
|
break;
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
|
||
|
rc = -EIO;
|
||
|
break;
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
|
||
|
rc = -EINVAL;
|
||
|
break;
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
|
||
|
case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
|
||
|
rc = -EPERM;
|
||
|
break;
|
||
|
default:
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"Unknown response to NVRAM_UPDATE_FINISH\n");
|
||
|
rc = -EIO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
|
||
|
size_t len, size_t *retlen, u8 *buffer)
|
||
|
{
|
||
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
||
|
struct efx_nic *efx = mtd->priv;
|
||
|
loff_t offset = start;
|
||
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
||
|
size_t chunk;
|
||
|
int rc = 0;
|
||
|
|
||
|
while (offset < end) {
|
||
|
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
|
||
|
rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
|
||
|
buffer, chunk);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
offset += chunk;
|
||
|
buffer += chunk;
|
||
|
}
|
||
|
out:
|
||
|
*retlen = offset - start;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
|
||
|
{
|
||
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
||
|
struct efx_nic *efx = mtd->priv;
|
||
|
loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
|
||
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
||
|
size_t chunk = part->common.mtd.erasesize;
|
||
|
int rc = 0;
|
||
|
|
||
|
if (!part->updating) {
|
||
|
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
part->updating = true;
|
||
|
}
|
||
|
|
||
|
/* The MCDI interface can in fact do multiple erase blocks at once;
|
||
|
* but erasing may be slow, so we make multiple calls here to avoid
|
||
|
* tripping the MCDI RPC timeout. */
|
||
|
while (offset < end) {
|
||
|
rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
|
||
|
chunk);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
offset += chunk;
|
||
|
}
|
||
|
out:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
|
||
|
size_t len, size_t *retlen, const u8 *buffer)
|
||
|
{
|
||
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
||
|
struct efx_nic *efx = mtd->priv;
|
||
|
loff_t offset = start;
|
||
|
loff_t end = min_t(loff_t, start + len, mtd->size);
|
||
|
size_t chunk;
|
||
|
int rc = 0;
|
||
|
|
||
|
if (!part->updating) {
|
||
|
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
part->updating = true;
|
||
|
}
|
||
|
|
||
|
while (offset < end) {
|
||
|
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
|
||
|
rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
|
||
|
buffer, chunk);
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
offset += chunk;
|
||
|
buffer += chunk;
|
||
|
}
|
||
|
out:
|
||
|
*retlen = offset - start;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int efx_mcdi_mtd_sync(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
|
||
|
struct efx_nic *efx = mtd->priv;
|
||
|
int rc = 0;
|
||
|
|
||
|
if (part->updating) {
|
||
|
part->updating = false;
|
||
|
rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
|
||
|
{
|
||
|
struct efx_mcdi_mtd_partition *mcdi_part =
|
||
|
container_of(part, struct efx_mcdi_mtd_partition, common);
|
||
|
struct efx_nic *efx = part->mtd.priv;
|
||
|
|
||
|
snprintf(part->name, sizeof(part->name), "%s %s:%02x",
|
||
|
efx->name, part->type_name, mcdi_part->fw_subtype);
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_SFC_MTD */
|