linuxdebug/drivers/net/ethernet/mscc/ocelot_vcap.c

1433 lines
43 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Microsemi Ocelot Switch driver
* Copyright (c) 2019 Microsemi Corporation
*/
#include <linux/iopoll.h>
#include <linux/proc_fs.h>
#include <soc/mscc/ocelot_vcap.h>
#include "ocelot_police.h"
#include "ocelot_vcap.h"
#define ENTRY_WIDTH 32
enum vcap_sel {
VCAP_SEL_ENTRY = 0x1,
VCAP_SEL_ACTION = 0x2,
VCAP_SEL_COUNTER = 0x4,
VCAP_SEL_ALL = 0x7,
};
enum vcap_cmd {
VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */
VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */
VCAP_CMD_MOVE_UP = 2, /* Move <count> up */
VCAP_CMD_MOVE_DOWN = 3, /* Move <count> down */
VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */
};
#define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */
#define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */
struct vcap_data {
u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */
u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */
u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */
u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */
u32 tg; /* TG_DAT */
u32 type; /* Action type */
u32 tg_sw; /* Current type-group */
u32 cnt; /* Current counter */
u32 key_offset; /* Current entry offset */
u32 action_offset; /* Current action offset */
u32 counter_offset; /* Current counter offset */
u32 tg_value; /* Current type-group value */
u32 tg_mask; /* Current type-group mask */
};
static u32 vcap_read_update_ctrl(struct ocelot *ocelot,
const struct vcap_props *vcap)
{
return ocelot_target_read(ocelot, vcap->target, VCAP_CORE_UPDATE_CTRL);
}
static void vcap_cmd(struct ocelot *ocelot, const struct vcap_props *vcap,
u16 ix, int cmd, int sel)
{
u32 value = (VCAP_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) |
VCAP_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) |
VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT);
if ((sel & VCAP_SEL_ENTRY) && ix >= vcap->entry_count)
return;
if (!(sel & VCAP_SEL_ENTRY))
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS;
if (!(sel & VCAP_SEL_ACTION))
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS;
if (!(sel & VCAP_SEL_COUNTER))
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_CNT_DIS;
ocelot_target_write(ocelot, vcap->target, value, VCAP_CORE_UPDATE_CTRL);
read_poll_timeout(vcap_read_update_ctrl, value,
(value & VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0,
10, 100000, false, ocelot, vcap);
}
/* Convert from 0-based row to VCAP entry row and run command */
static void vcap_row_cmd(struct ocelot *ocelot, const struct vcap_props *vcap,
u32 row, int cmd, int sel)
{
vcap_cmd(ocelot, vcap, vcap->entry_count - row - 1, cmd, sel);
}
static void vcap_entry2cache(struct ocelot *ocelot,
const struct vcap_props *vcap,
struct vcap_data *data)
{
u32 entry_words, i;
entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH);
for (i = 0; i < entry_words; i++) {
ocelot_target_write_rix(ocelot, vcap->target, data->entry[i],
VCAP_CACHE_ENTRY_DAT, i);
ocelot_target_write_rix(ocelot, vcap->target, ~data->mask[i],
VCAP_CACHE_MASK_DAT, i);
}
ocelot_target_write(ocelot, vcap->target, data->tg, VCAP_CACHE_TG_DAT);
}
static void vcap_cache2entry(struct ocelot *ocelot,
const struct vcap_props *vcap,
struct vcap_data *data)
{
u32 entry_words, i;
entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH);
for (i = 0; i < entry_words; i++) {
data->entry[i] = ocelot_target_read_rix(ocelot, vcap->target,
VCAP_CACHE_ENTRY_DAT, i);
// Invert mask
data->mask[i] = ~ocelot_target_read_rix(ocelot, vcap->target,
VCAP_CACHE_MASK_DAT, i);
}
data->tg = ocelot_target_read(ocelot, vcap->target, VCAP_CACHE_TG_DAT);
}
static void vcap_action2cache(struct ocelot *ocelot,
const struct vcap_props *vcap,
struct vcap_data *data)
{
u32 action_words, mask;
int i, width;
/* Encode action type */
width = vcap->action_type_width;
if (width) {
mask = GENMASK(width, 0);
data->action[0] = ((data->action[0] & ~mask) | data->type);
}
action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH);
for (i = 0; i < action_words; i++)
ocelot_target_write_rix(ocelot, vcap->target, data->action[i],
VCAP_CACHE_ACTION_DAT, i);
for (i = 0; i < vcap->counter_words; i++)
ocelot_target_write_rix(ocelot, vcap->target, data->counter[i],
VCAP_CACHE_CNT_DAT, i);
}
static void vcap_cache2action(struct ocelot *ocelot,
const struct vcap_props *vcap,
struct vcap_data *data)
{
u32 action_words;
int i, width;
action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH);
for (i = 0; i < action_words; i++)
data->action[i] = ocelot_target_read_rix(ocelot, vcap->target,
VCAP_CACHE_ACTION_DAT,
i);
for (i = 0; i < vcap->counter_words; i++)
data->counter[i] = ocelot_target_read_rix(ocelot, vcap->target,
VCAP_CACHE_CNT_DAT,
i);
/* Extract action type */
width = vcap->action_type_width;
data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0);
}
/* Calculate offsets for entry */
static void vcap_data_offset_get(const struct vcap_props *vcap,
struct vcap_data *data, int ix)
{
int num_subwords_per_entry, num_subwords_per_action;
int i, col, offset, num_entries_per_row, base;
u32 width = vcap->tg_width;
switch (data->tg_sw) {
case VCAP_TG_FULL:
num_entries_per_row = 1;
break;
case VCAP_TG_HALF:
num_entries_per_row = 2;
break;
case VCAP_TG_QUARTER:
num_entries_per_row = 4;
break;
default:
return;
}
col = (ix % num_entries_per_row);
num_subwords_per_entry = (vcap->sw_count / num_entries_per_row);
base = (vcap->sw_count - col * num_subwords_per_entry -
num_subwords_per_entry);
data->tg_value = 0;
data->tg_mask = 0;
for (i = 0; i < num_subwords_per_entry; i++) {
offset = ((base + i) * width);
data->tg_value |= (data->tg_sw << offset);
data->tg_mask |= GENMASK(offset + width - 1, offset);
}
/* Calculate key/action/counter offsets */
col = (num_entries_per_row - col - 1);
data->key_offset = (base * vcap->entry_width) / vcap->sw_count;
data->counter_offset = (num_subwords_per_entry * col *
vcap->counter_width);
i = data->type;
width = vcap->action_table[i].width;
num_subwords_per_action = vcap->action_table[i].count;
data->action_offset = ((num_subwords_per_action * col * width) /
num_entries_per_row);
data->action_offset += vcap->action_type_width;
}
static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value)
{
u32 i, v, m;
for (i = 0; i < len; i++, offset++) {
v = data[offset / ENTRY_WIDTH];
m = (1 << (offset % ENTRY_WIDTH));
if (value & (1 << i))
v |= m;
else
v &= ~m;
data[offset / ENTRY_WIDTH] = v;
}
}
static u32 vcap_data_get(u32 *data, u32 offset, u32 len)
{
u32 i, v, m, value = 0;
for (i = 0; i < len; i++, offset++) {
v = data[offset / ENTRY_WIDTH];
m = (1 << (offset % ENTRY_WIDTH));
if (v & m)
value |= (1 << i);
}
return value;
}
static void vcap_key_field_set(struct vcap_data *data, u32 offset, u32 width,
u32 value, u32 mask)
{
vcap_data_set(data->entry, offset + data->key_offset, width, value);
vcap_data_set(data->mask, offset + data->key_offset, width, mask);
}
static void vcap_key_set(const struct vcap_props *vcap, struct vcap_data *data,
int field, u32 value, u32 mask)
{
u32 offset = vcap->keys[field].offset;
u32 length = vcap->keys[field].length;
vcap_key_field_set(data, offset, length, value, mask);
}
static void vcap_key_bytes_set(const struct vcap_props *vcap,
struct vcap_data *data, int field,
u8 *val, u8 *msk)
{
u32 offset = vcap->keys[field].offset;
u32 count = vcap->keys[field].length;
u32 i, j, n = 0, value = 0, mask = 0;
WARN_ON(count % 8);
/* Data wider than 32 bits are split up in chunks of maximum 32 bits.
* The 32 LSB of the data are written to the 32 MSB of the TCAM.
*/
offset += count;
count /= 8;
for (i = 0; i < count; i++) {
j = (count - i - 1);
value += (val[j] << n);
mask += (msk[j] << n);
n += 8;
if (n == ENTRY_WIDTH || (i + 1) == count) {
offset -= n;
vcap_key_field_set(data, offset, n, value, mask);
n = 0;
value = 0;
mask = 0;
}
}
}
static void vcap_key_l4_port_set(const struct vcap_props *vcap,
struct vcap_data *data, int field,
struct ocelot_vcap_udp_tcp *port)
{
u32 offset = vcap->keys[field].offset;
u32 length = vcap->keys[field].length;
WARN_ON(length != 16);
vcap_key_field_set(data, offset, length, port->value, port->mask);
}
static void vcap_key_bit_set(const struct vcap_props *vcap,
struct vcap_data *data, int field,
enum ocelot_vcap_bit val)
{
u32 value = (val == OCELOT_VCAP_BIT_1 ? 1 : 0);
u32 msk = (val == OCELOT_VCAP_BIT_ANY ? 0 : 1);
u32 offset = vcap->keys[field].offset;
u32 length = vcap->keys[field].length;
WARN_ON(length != 1);
vcap_key_field_set(data, offset, length, value, msk);
}
static void vcap_action_set(const struct vcap_props *vcap,
struct vcap_data *data, int field, u32 value)
{
int offset = vcap->actions[field].offset;
int length = vcap->actions[field].length;
vcap_data_set(data->action, offset + data->action_offset, length,
value);
}
static void is2_action_set(struct ocelot *ocelot, struct vcap_data *data,
struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2];
struct ocelot_vcap_action *a = &filter->action;
vcap_action_set(vcap, data, VCAP_IS2_ACT_MASK_MODE, a->mask_mode);
vcap_action_set(vcap, data, VCAP_IS2_ACT_PORT_MASK, a->port_mask);
vcap_action_set(vcap, data, VCAP_IS2_ACT_MIRROR_ENA, a->mirror_ena);
vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_ENA, a->police_ena);
vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_IDX, a->pol_ix);
vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_QU_NUM, a->cpu_qu_num);
vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_COPY_ENA, a->cpu_copy_ena);
}
static void is2_entry_set(struct ocelot *ocelot, int ix,
struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2];
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
u32 val, msk, type, type_mask = 0xf, i, count;
struct ocelot_vcap_u64 payload;
struct vcap_data data;
int row = (ix / 2);
memset(&payload, 0, sizeof(payload));
memset(&data, 0, sizeof(data));
/* Read row */
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
vcap_cache2entry(ocelot, vcap, &data);
vcap_cache2action(ocelot, vcap, &data);
data.tg_sw = VCAP_TG_HALF;
vcap_data_offset_get(vcap, &data, ix);
data.tg = (data.tg & ~data.tg_mask);
if (filter->prio != 0)
data.tg |= data.tg_value;
data.type = IS2_ACTION_TYPE_NORMAL;
vcap_key_set(vcap, &data, VCAP_IS2_HK_PAG, filter->pag, 0xff);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST,
(filter->lookup == 0) ? OCELOT_VCAP_BIT_1 :
OCELOT_VCAP_BIT_0);
vcap_key_set(vcap, &data, VCAP_IS2_HK_IGR_PORT_MASK, 0,
~filter->ingress_port_mask);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_HOST_MATCH,
OCELOT_VCAP_BIT_ANY);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_MC, filter->dmac_mc);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_BC, filter->dmac_bc);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_VLAN_TAGGED, tag->tagged);
vcap_key_set(vcap, &data, VCAP_IS2_HK_VID,
tag->vid.value, tag->vid.mask);
vcap_key_set(vcap, &data, VCAP_IS2_HK_PCP,
tag->pcp.value[0], tag->pcp.mask[0]);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DEI, tag->dei);
switch (filter->key_type) {
case OCELOT_VCAP_KEY_ETYPE: {
struct ocelot_vcap_key_etype *etype = &filter->key.etype;
type = IS2_TYPE_ETYPE;
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
etype->dmac.value, etype->dmac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
etype->smac.value, etype->smac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_ETYPE,
etype->etype.value, etype->etype.mask);
/* Clear unused bits */
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0,
0, 0);
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1,
0, 0);
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2,
0, 0);
vcap_key_bytes_set(vcap, &data,
VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0,
etype->data.value, etype->data.mask);
break;
}
case OCELOT_VCAP_KEY_LLC: {
struct ocelot_vcap_key_llc *llc = &filter->key.llc;
type = IS2_TYPE_LLC;
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
llc->dmac.value, llc->dmac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
llc->smac.value, llc->smac.mask);
for (i = 0; i < 4; i++) {
payload.value[i] = llc->llc.value[i];
payload.mask[i] = llc->llc.mask[i];
}
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_LLC_L2_LLC,
payload.value, payload.mask);
break;
}
case OCELOT_VCAP_KEY_SNAP: {
struct ocelot_vcap_key_snap *snap = &filter->key.snap;
type = IS2_TYPE_SNAP;
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
snap->dmac.value, snap->dmac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
snap->smac.value, snap->smac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_SNAP_L2_SNAP,
filter->key.snap.snap.value,
filter->key.snap.snap.mask);
break;
}
case OCELOT_VCAP_KEY_ARP: {
struct ocelot_vcap_key_arp *arp = &filter->key.arp;
type = IS2_TYPE_ARP;
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_SMAC,
arp->smac.value, arp->smac.mask);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK,
arp->ethernet);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK,
arp->ip);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_LEN_OK,
arp->length);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_TARGET_MATCH,
arp->dmac_match);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_SENDER_MATCH,
arp->smac_match);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN,
arp->unknown);
/* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */
val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) |
(arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0));
msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) |
(arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2));
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_OPCODE,
val, msk);
vcap_key_bytes_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP,
arp->dip.value.addr, arp->dip.mask.addr);
vcap_key_bytes_set(vcap, &data,
VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP,
arp->sip.value.addr, arp->sip.mask.addr);
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP,
0, 0);
break;
}
case OCELOT_VCAP_KEY_IPV4:
case OCELOT_VCAP_KEY_IPV6: {
enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp;
enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg;
enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh;
struct ocelot_vcap_key_ipv4 *ipv4 = NULL;
struct ocelot_vcap_key_ipv6 *ipv6 = NULL;
struct ocelot_vcap_udp_tcp *sport, *dport;
struct ocelot_vcap_ipv4 sip, dip;
struct ocelot_vcap_u8 proto, ds;
struct ocelot_vcap_u48 *ip_data;
if (filter->key_type == OCELOT_VCAP_KEY_IPV4) {
ipv4 = &filter->key.ipv4;
ttl = ipv4->ttl;
fragment = ipv4->fragment;
options = ipv4->options;
proto = ipv4->proto;
ds = ipv4->ds;
ip_data = &ipv4->data;
sip = ipv4->sip;
dip = ipv4->dip;
sport = &ipv4->sport;
dport = &ipv4->dport;
tcp_fin = ipv4->tcp_fin;
tcp_syn = ipv4->tcp_syn;
tcp_rst = ipv4->tcp_rst;
tcp_psh = ipv4->tcp_psh;
tcp_ack = ipv4->tcp_ack;
tcp_urg = ipv4->tcp_urg;
sip_eq_dip = ipv4->sip_eq_dip;
sport_eq_dport = ipv4->sport_eq_dport;
seq_zero = ipv4->seq_zero;
} else {
ipv6 = &filter->key.ipv6;
ttl = ipv6->ttl;
fragment = OCELOT_VCAP_BIT_ANY;
options = OCELOT_VCAP_BIT_ANY;
proto = ipv6->proto;
ds = ipv6->ds;
ip_data = &ipv6->data;
for (i = 0; i < 8; i++) {
val = ipv6->sip.value[i + 8];
msk = ipv6->sip.mask[i + 8];
if (i < 4) {
dip.value.addr[i] = val;
dip.mask.addr[i] = msk;
} else {
sip.value.addr[i - 4] = val;
sip.mask.addr[i - 4] = msk;
}
}
sport = &ipv6->sport;
dport = &ipv6->dport;
tcp_fin = ipv6->tcp_fin;
tcp_syn = ipv6->tcp_syn;
tcp_rst = ipv6->tcp_rst;
tcp_psh = ipv6->tcp_psh;
tcp_ack = ipv6->tcp_ack;
tcp_urg = ipv6->tcp_urg;
sip_eq_dip = ipv6->sip_eq_dip;
sport_eq_dport = ipv6->sport_eq_dport;
seq_zero = ipv6->seq_zero;
}
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4,
ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_FRAGMENT,
fragment);
vcap_key_set(vcap, &data, VCAP_IS2_HK_L3_FRAG_OFS_GT0, 0, 0);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_OPTIONS,
options);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4_L3_TTL_GT0,
ttl);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_TOS,
ds.value, ds.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_DIP,
dip.value.addr, dip.mask.addr);
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_SIP,
sip.value.addr, sip.mask.addr);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DIP_EQ_SIP,
sip_eq_dip);
val = proto.value[0];
msk = proto.mask[0];
type = IS2_TYPE_IP_UDP_TCP;
if (msk == 0xff && (val == IPPROTO_TCP || val == IPPROTO_UDP)) {
/* UDP/TCP protocol match */
tcp = (val == IPPROTO_TCP ?
OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_TCP, tcp);
vcap_key_l4_port_set(vcap, &data,
VCAP_IS2_HK_L4_DPORT, dport);
vcap_key_l4_port_set(vcap, &data,
VCAP_IS2_HK_L4_SPORT, sport);
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_RNG, 0, 0);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_L4_SPORT_EQ_DPORT,
sport_eq_dport);
vcap_key_bit_set(vcap, &data,
VCAP_IS2_HK_L4_SEQUENCE_EQ0,
seq_zero);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_FIN,
tcp_fin);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SYN,
tcp_syn);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_RST,
tcp_rst);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_PSH,
tcp_psh);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_ACK,
tcp_ack);
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_URG,
tcp_urg);
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_DOM,
0, 0);
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_VER,
0, 0);
} else {
if (msk == 0) {
/* Any IP protocol match */
type_mask = IS2_TYPE_MASK_IP_ANY;
} else {
/* Non-UDP/TCP protocol match */
type = IS2_TYPE_IP_OTHER;
for (i = 0; i < 6; i++) {
payload.value[i] = ip_data->value[i];
payload.mask[i] = ip_data->mask[i];
}
}
vcap_key_bytes_set(vcap, &data,
VCAP_IS2_HK_IP4_L3_PROTO,
proto.value, proto.mask);
vcap_key_bytes_set(vcap, &data,
VCAP_IS2_HK_L3_PAYLOAD,
payload.value, payload.mask);
}
break;
}
case OCELOT_VCAP_KEY_ANY:
default:
type = 0;
type_mask = 0;
count = vcap->entry_width / 2;
/* Iterate over the non-common part of the key and
* clear entry data
*/
for (i = vcap->keys[VCAP_IS2_HK_L2_DMAC].offset;
i < count; i += ENTRY_WIDTH) {
vcap_key_field_set(&data, i, min(32u, count - i), 0, 0);
}
break;
}
vcap_key_set(vcap, &data, VCAP_IS2_TYPE, type, type_mask);
is2_action_set(ocelot, &data, filter);
vcap_data_set(data.counter, data.counter_offset,
vcap->counter_width, filter->stats.pkts);
/* Write row */
vcap_entry2cache(ocelot, vcap, &data);
vcap_action2cache(ocelot, vcap, &data);
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
}
static void is1_action_set(struct ocelot *ocelot, struct vcap_data *data,
const struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1];
const struct ocelot_vcap_action *a = &filter->action;
vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_REPLACE_ENA,
a->vid_replace_ena);
vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_ADD_VAL, a->vid);
vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT_ENA,
a->vlan_pop_cnt_ena);
vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT,
a->vlan_pop_cnt);
vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_DEI_ENA, a->pcp_dei_ena);
vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_VAL, a->pcp);
vcap_action_set(vcap, data, VCAP_IS1_ACT_DEI_VAL, a->dei);
vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_ENA, a->qos_ena);
vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_VAL, a->qos_val);
vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_OVERRIDE_MASK,
a->pag_override_mask);
vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_VAL, a->pag_val);
}
static void is1_entry_set(struct ocelot *ocelot, int ix,
struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1];
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
struct vcap_data data;
int row = ix / 2;
u32 type;
memset(&data, 0, sizeof(data));
/* Read row */
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
vcap_cache2entry(ocelot, vcap, &data);
vcap_cache2action(ocelot, vcap, &data);
data.tg_sw = VCAP_TG_HALF;
data.type = IS1_ACTION_TYPE_NORMAL;
vcap_data_offset_get(vcap, &data, ix);
data.tg = (data.tg & ~data.tg_mask);
if (filter->prio != 0)
data.tg |= data.tg_value;
vcap_key_set(vcap, &data, VCAP_IS1_HK_LOOKUP, filter->lookup, 0x3);
vcap_key_set(vcap, &data, VCAP_IS1_HK_IGR_PORT_MASK, 0,
~filter->ingress_port_mask);
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_MC, filter->dmac_mc);
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_BC, filter->dmac_bc);
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_VLAN_TAGGED, tag->tagged);
vcap_key_set(vcap, &data, VCAP_IS1_HK_VID,
tag->vid.value, tag->vid.mask);
vcap_key_set(vcap, &data, VCAP_IS1_HK_PCP,
tag->pcp.value[0], tag->pcp.mask[0]);
type = IS1_TYPE_S1_NORMAL;
switch (filter->key_type) {
case OCELOT_VCAP_KEY_ETYPE: {
struct ocelot_vcap_key_etype *etype = &filter->key.etype;
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L2_SMAC,
etype->smac.value, etype->smac.mask);
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE,
etype->etype.value, etype->etype.mask);
break;
}
case OCELOT_VCAP_KEY_IPV4: {
struct ocelot_vcap_key_ipv4 *ipv4 = &filter->key.ipv4;
struct ocelot_vcap_udp_tcp *sport = &ipv4->sport;
struct ocelot_vcap_udp_tcp *dport = &ipv4->dport;
enum ocelot_vcap_bit tcp_udp = OCELOT_VCAP_BIT_0;
struct ocelot_vcap_u8 proto = ipv4->proto;
struct ocelot_vcap_ipv4 sip = ipv4->sip;
u32 val, msk;
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP_SNAP,
OCELOT_VCAP_BIT_1);
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP4,
OCELOT_VCAP_BIT_1);
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_ETYPE_LEN,
OCELOT_VCAP_BIT_1);
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L3_IP4_SIP,
sip.value.addr, sip.mask.addr);
val = proto.value[0];
msk = proto.mask[0];
if ((val == NEXTHDR_TCP || val == NEXTHDR_UDP) && msk == 0xff)
tcp_udp = OCELOT_VCAP_BIT_1;
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP_UDP, tcp_udp);
if (tcp_udp) {
enum ocelot_vcap_bit tcp = OCELOT_VCAP_BIT_0;
if (val == NEXTHDR_TCP)
tcp = OCELOT_VCAP_BIT_1;
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP, tcp);
vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_L4_SPORT,
sport);
/* Overloaded field */
vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_ETYPE,
dport);
} else {
/* IPv4 "other" frame */
struct ocelot_vcap_u16 etype = {0};
/* Overloaded field */
etype.value[0] = proto.value[0];
etype.mask[0] = proto.mask[0];
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE,
etype.value, etype.mask);
}
break;
}
default:
break;
}
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TYPE,
type ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
is1_action_set(ocelot, &data, filter);
vcap_data_set(data.counter, data.counter_offset,
vcap->counter_width, filter->stats.pkts);
/* Write row */
vcap_entry2cache(ocelot, vcap, &data);
vcap_action2cache(ocelot, vcap, &data);
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
}
static void es0_action_set(struct ocelot *ocelot, struct vcap_data *data,
const struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0];
const struct ocelot_vcap_action *a = &filter->action;
vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_OUTER_TAG,
a->push_outer_tag);
vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_INNER_TAG,
a->push_inner_tag);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_TPID_SEL,
a->tag_a_tpid_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_VID_SEL,
a->tag_a_vid_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_PCP_SEL,
a->tag_a_pcp_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_A_VAL, a->vid_a_val);
vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_A_VAL, a->pcp_a_val);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_TPID_SEL,
a->tag_b_tpid_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_VID_SEL,
a->tag_b_vid_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_PCP_SEL,
a->tag_b_pcp_sel);
vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_B_VAL, a->vid_b_val);
vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_B_VAL, a->pcp_b_val);
}
static void es0_entry_set(struct ocelot *ocelot, int ix,
struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0];
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
struct vcap_data data;
int row = ix;
memset(&data, 0, sizeof(data));
/* Read row */
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
vcap_cache2entry(ocelot, vcap, &data);
vcap_cache2action(ocelot, vcap, &data);
data.tg_sw = VCAP_TG_FULL;
data.type = ES0_ACTION_TYPE_NORMAL;
vcap_data_offset_get(vcap, &data, ix);
data.tg = (data.tg & ~data.tg_mask);
if (filter->prio != 0)
data.tg |= data.tg_value;
vcap_key_set(vcap, &data, VCAP_ES0_IGR_PORT, filter->ingress_port.value,
filter->ingress_port.mask);
vcap_key_set(vcap, &data, VCAP_ES0_EGR_PORT, filter->egress_port.value,
filter->egress_port.mask);
vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_MC, filter->dmac_mc);
vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_BC, filter->dmac_bc);
vcap_key_set(vcap, &data, VCAP_ES0_VID,
tag->vid.value, tag->vid.mask);
vcap_key_set(vcap, &data, VCAP_ES0_PCP,
tag->pcp.value[0], tag->pcp.mask[0]);
es0_action_set(ocelot, &data, filter);
vcap_data_set(data.counter, data.counter_offset,
vcap->counter_width, filter->stats.pkts);
/* Write row */
vcap_entry2cache(ocelot, vcap, &data);
vcap_action2cache(ocelot, vcap, &data);
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
}
static void vcap_entry_get(struct ocelot *ocelot, int ix,
struct ocelot_vcap_filter *filter)
{
const struct vcap_props *vcap = &ocelot->vcap[filter->block_id];
struct vcap_data data;
int row, count;
u32 cnt;
if (filter->block_id == VCAP_ES0)
data.tg_sw = VCAP_TG_FULL;
else
data.tg_sw = VCAP_TG_HALF;
count = (1 << (data.tg_sw - 1));
row = (ix / count);
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_COUNTER);
vcap_cache2action(ocelot, vcap, &data);
vcap_data_offset_get(vcap, &data, ix);
cnt = vcap_data_get(data.counter, data.counter_offset,
vcap->counter_width);
filter->stats.pkts = cnt;
}
static void vcap_entry_set(struct ocelot *ocelot, int ix,
struct ocelot_vcap_filter *filter)
{
if (filter->block_id == VCAP_IS1)
return is1_entry_set(ocelot, ix, filter);
if (filter->block_id == VCAP_IS2)
return is2_entry_set(ocelot, ix, filter);
if (filter->block_id == VCAP_ES0)
return es0_entry_set(ocelot, ix, filter);
}
struct vcap_policer_entry {
struct list_head list;
refcount_t refcount;
u32 pol_ix;
};
int ocelot_vcap_policer_add(struct ocelot *ocelot, u32 pol_ix,
struct ocelot_policer *pol)
{
struct qos_policer_conf pp = { 0 };
struct vcap_policer_entry *tmp;
int ret;
if (!pol)
return -EINVAL;
pp.mode = MSCC_QOS_RATE_MODE_DATA;
pp.pir = pol->rate;
pp.pbs = pol->burst;
list_for_each_entry(tmp, &ocelot->vcap_pol.pol_list, list)
if (tmp->pol_ix == pol_ix) {
refcount_inc(&tmp->refcount);
return 0;
}
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = qos_policer_conf_set(ocelot, pol_ix, &pp);
if (ret) {
kfree(tmp);
return ret;
}
tmp->pol_ix = pol_ix;
refcount_set(&tmp->refcount, 1);
list_add_tail(&tmp->list, &ocelot->vcap_pol.pol_list);
return 0;
}
EXPORT_SYMBOL(ocelot_vcap_policer_add);
int ocelot_vcap_policer_del(struct ocelot *ocelot, u32 pol_ix)
{
struct qos_policer_conf pp = {0};
struct vcap_policer_entry *tmp, *n;
u8 z = 0;
list_for_each_entry_safe(tmp, n, &ocelot->vcap_pol.pol_list, list)
if (tmp->pol_ix == pol_ix) {
z = refcount_dec_and_test(&tmp->refcount);
if (z) {
list_del(&tmp->list);
kfree(tmp);
}
}
if (z) {
pp.mode = MSCC_QOS_RATE_MODE_DISABLED;
return qos_policer_conf_set(ocelot, pol_ix, &pp);
}
return 0;
}
EXPORT_SYMBOL(ocelot_vcap_policer_del);
static int
ocelot_vcap_filter_add_aux_resources(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter,
struct netlink_ext_ack *extack)
{
struct ocelot_mirror *m;
int ret;
if (filter->block_id == VCAP_IS2 && filter->action.mirror_ena) {
m = ocelot_mirror_get(ocelot, filter->egress_port.value,
extack);
if (IS_ERR(m))
return PTR_ERR(m);
}
if (filter->block_id == VCAP_IS2 && filter->action.police_ena) {
ret = ocelot_vcap_policer_add(ocelot, filter->action.pol_ix,
&filter->action.pol);
if (ret)
return ret;
}
return 0;
}
static void
ocelot_vcap_filter_del_aux_resources(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter)
{
if (filter->block_id == VCAP_IS2 && filter->action.police_ena)
ocelot_vcap_policer_del(ocelot, filter->action.pol_ix);
if (filter->block_id == VCAP_IS2 && filter->action.mirror_ena)
ocelot_mirror_put(ocelot);
}
static int ocelot_vcap_filter_add_to_block(struct ocelot *ocelot,
struct ocelot_vcap_block *block,
struct ocelot_vcap_filter *filter,
struct netlink_ext_ack *extack)
{
struct list_head *pos = &block->rules;
struct ocelot_vcap_filter *tmp;
int ret;
ret = ocelot_vcap_filter_add_aux_resources(ocelot, filter, extack);
if (ret)
return ret;
block->count++;
list_for_each_entry(tmp, &block->rules, list) {
if (filter->prio < tmp->prio) {
pos = &tmp->list;
break;
}
}
list_add_tail(&filter->list, pos);
return 0;
}
static bool ocelot_vcap_filter_equal(const struct ocelot_vcap_filter *a,
const struct ocelot_vcap_filter *b)
{
return !memcmp(&a->id, &b->id, sizeof(struct ocelot_vcap_id));
}
static int ocelot_vcap_block_get_filter_index(struct ocelot_vcap_block *block,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_filter *tmp;
int index = 0;
list_for_each_entry(tmp, &block->rules, list) {
if (ocelot_vcap_filter_equal(filter, tmp))
return index;
index++;
}
return -ENOENT;
}
static struct ocelot_vcap_filter*
ocelot_vcap_block_find_filter_by_index(struct ocelot_vcap_block *block,
int index)
{
struct ocelot_vcap_filter *tmp;
int i = 0;
list_for_each_entry(tmp, &block->rules, list) {
if (i == index)
return tmp;
++i;
}
return NULL;
}
struct ocelot_vcap_filter *
ocelot_vcap_block_find_filter_by_id(struct ocelot_vcap_block *block,
unsigned long cookie, bool tc_offload)
{
struct ocelot_vcap_filter *filter;
list_for_each_entry(filter, &block->rules, list)
if (filter->id.tc_offload == tc_offload &&
filter->id.cookie == cookie)
return filter;
return NULL;
}
EXPORT_SYMBOL(ocelot_vcap_block_find_filter_by_id);
/* If @on=false, then SNAP, ARP, IP and OAM frames will not match on keys based
* on destination and source MAC addresses, but only on higher-level protocol
* information. The only frame types to match on keys containing MAC addresses
* in this case are non-SNAP, non-ARP, non-IP and non-OAM frames.
*
* If @on=true, then the above frame types (SNAP, ARP, IP and OAM) will match
* on MAC_ETYPE keys such as destination and source MAC on this ingress port.
* However the setting has the side effect of making these frames not matching
* on any _other_ keys than MAC_ETYPE ones.
*/
static void ocelot_match_all_as_mac_etype(struct ocelot *ocelot, int port,
int lookup, bool on)
{
u32 val = 0;
if (on)
val = ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup));
ocelot_rmw_gix(ocelot, val,
ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) |
ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup)),
ANA_PORT_VCAP_S2_CFG, port);
}
static bool
ocelot_vcap_is_problematic_mac_etype(struct ocelot_vcap_filter *filter)
{
u16 proto, mask;
if (filter->key_type != OCELOT_VCAP_KEY_ETYPE)
return false;
proto = ntohs(*(__be16 *)filter->key.etype.etype.value);
mask = ntohs(*(__be16 *)filter->key.etype.etype.mask);
/* ETH_P_ALL match, so all protocols below are included */
if (mask == 0)
return true;
if (proto == ETH_P_ARP)
return true;
if (proto == ETH_P_IP)
return true;
if (proto == ETH_P_IPV6)
return true;
return false;
}
static bool
ocelot_vcap_is_problematic_non_mac_etype(struct ocelot_vcap_filter *filter)
{
if (filter->key_type == OCELOT_VCAP_KEY_SNAP)
return true;
if (filter->key_type == OCELOT_VCAP_KEY_ARP)
return true;
if (filter->key_type == OCELOT_VCAP_KEY_IPV4)
return true;
if (filter->key_type == OCELOT_VCAP_KEY_IPV6)
return true;
return false;
}
static bool
ocelot_exclusive_mac_etype_filter_rules(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
struct ocelot_vcap_filter *tmp;
unsigned long port;
int i;
/* We only have the S2_IP_TCPUDP_DIS set of knobs for VCAP IS2 */
if (filter->block_id != VCAP_IS2)
return true;
if (ocelot_vcap_is_problematic_mac_etype(filter)) {
/* Search for any non-MAC_ETYPE rules on the port */
for (i = 0; i < block->count; i++) {
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
if (tmp->ingress_port_mask & filter->ingress_port_mask &&
tmp->lookup == filter->lookup &&
ocelot_vcap_is_problematic_non_mac_etype(tmp))
return false;
}
for_each_set_bit(port, &filter->ingress_port_mask,
ocelot->num_phys_ports)
ocelot_match_all_as_mac_etype(ocelot, port,
filter->lookup, true);
} else if (ocelot_vcap_is_problematic_non_mac_etype(filter)) {
/* Search for any MAC_ETYPE rules on the port */
for (i = 0; i < block->count; i++) {
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
if (tmp->ingress_port_mask & filter->ingress_port_mask &&
tmp->lookup == filter->lookup &&
ocelot_vcap_is_problematic_mac_etype(tmp))
return false;
}
for_each_set_bit(port, &filter->ingress_port_mask,
ocelot->num_phys_ports)
ocelot_match_all_as_mac_etype(ocelot, port,
filter->lookup, false);
}
return true;
}
int ocelot_vcap_filter_add(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter,
struct netlink_ext_ack *extack)
{
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
int i, index, ret;
if (!ocelot_exclusive_mac_etype_filter_rules(ocelot, filter)) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot mix MAC_ETYPE with non-MAC_ETYPE rules, use the other IS2 lookup");
return -EBUSY;
}
/* Add filter to the linked list */
ret = ocelot_vcap_filter_add_to_block(ocelot, block, filter, extack);
if (ret)
return ret;
/* Get the index of the inserted filter */
index = ocelot_vcap_block_get_filter_index(block, filter);
if (index < 0)
return index;
/* Move down the rules to make place for the new filter */
for (i = block->count - 1; i > index; i--) {
struct ocelot_vcap_filter *tmp;
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
/* Read back the filter's counters before moving it */
vcap_entry_get(ocelot, i - 1, tmp);
vcap_entry_set(ocelot, i, tmp);
}
/* Now insert the new filter */
vcap_entry_set(ocelot, index, filter);
return 0;
}
EXPORT_SYMBOL(ocelot_vcap_filter_add);
static void ocelot_vcap_block_remove_filter(struct ocelot *ocelot,
struct ocelot_vcap_block *block,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_filter *tmp, *n;
list_for_each_entry_safe(tmp, n, &block->rules, list) {
if (ocelot_vcap_filter_equal(filter, tmp)) {
ocelot_vcap_filter_del_aux_resources(ocelot, tmp);
list_del(&tmp->list);
kfree(tmp);
}
}
block->count--;
}
int ocelot_vcap_filter_del(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
struct ocelot_vcap_filter del_filter;
int i, index;
/* Need to inherit the block_id so that vcap_entry_set()
* does not get confused and knows where to install it.
*/
memset(&del_filter, 0, sizeof(del_filter));
del_filter.block_id = filter->block_id;
/* Gets index of the filter */
index = ocelot_vcap_block_get_filter_index(block, filter);
if (index < 0)
return index;
/* Delete filter */
ocelot_vcap_block_remove_filter(ocelot, block, filter);
/* Move up all the blocks over the deleted filter */
for (i = index; i < block->count; i++) {
struct ocelot_vcap_filter *tmp;
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
/* Read back the filter's counters before moving it */
vcap_entry_get(ocelot, i + 1, tmp);
vcap_entry_set(ocelot, i, tmp);
}
/* Now delete the last filter, because it is duplicated */
vcap_entry_set(ocelot, block->count, &del_filter);
return 0;
}
EXPORT_SYMBOL(ocelot_vcap_filter_del);
int ocelot_vcap_filter_replace(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
int index;
index = ocelot_vcap_block_get_filter_index(block, filter);
if (index < 0)
return index;
vcap_entry_set(ocelot, index, filter);
return 0;
}
EXPORT_SYMBOL(ocelot_vcap_filter_replace);
int ocelot_vcap_filter_stats_update(struct ocelot *ocelot,
struct ocelot_vcap_filter *filter)
{
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
struct ocelot_vcap_filter tmp;
int index;
index = ocelot_vcap_block_get_filter_index(block, filter);
if (index < 0)
return index;
vcap_entry_get(ocelot, index, filter);
/* After we get the result we need to clear the counters */
tmp = *filter;
tmp.stats.pkts = 0;
vcap_entry_set(ocelot, index, &tmp);
return 0;
}
static void ocelot_vcap_init_one(struct ocelot *ocelot,
const struct vcap_props *vcap)
{
struct vcap_data data;
memset(&data, 0, sizeof(data));
vcap_entry2cache(ocelot, vcap, &data);
ocelot_target_write(ocelot, vcap->target, vcap->entry_count,
VCAP_CORE_MV_CFG);
vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY);
vcap_action2cache(ocelot, vcap, &data);
ocelot_target_write(ocelot, vcap->target, vcap->action_count,
VCAP_CORE_MV_CFG);
vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE,
VCAP_SEL_ACTION | VCAP_SEL_COUNTER);
}
static void ocelot_vcap_detect_constants(struct ocelot *ocelot,
struct vcap_props *vcap)
{
int counter_memory_width;
int num_default_actions;
int version;
version = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_VCAP_VER);
/* Only version 0 VCAP supported for now */
if (WARN_ON(version != 0))
return;
/* Width in bits of type-group field */
vcap->tg_width = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ENTRY_TG_WIDTH);
/* Number of subwords per TCAM row */
vcap->sw_count = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ENTRY_SWCNT);
/* Number of rows in TCAM. There can be this many full keys, or double
* this number half keys, or 4 times this number quarter keys.
*/
vcap->entry_count = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ENTRY_CNT);
/* Assuming there are 4 subwords per TCAM row, their layout in the
* actual TCAM (not in the cache) would be:
*
* | SW 3 | TG 3 | SW 2 | TG 2 | SW 1 | TG 1 | SW 0 | TG 0 |
*
* (where SW=subword and TG=Type-Group).
*
* What VCAP_CONST_ENTRY_CNT is giving us is the width of one full TCAM
* row. But when software accesses the TCAM through the cache
* registers, the Type-Group values are written through another set of
* registers VCAP_TG_DAT, and therefore, it appears as though the 4
* subwords are contiguous in the cache memory.
* Important mention: regardless of the number of key entries per row
* (and therefore of key size: 1 full key or 2 half keys or 4 quarter
* keys), software always has to configure 4 Type-Group values. For
* example, in the case of 1 full key, the driver needs to set all 4
* Type-Group to be full key.
*
* For this reason, we need to fix up the value that the hardware is
* giving us. We don't actually care about the width of the entry in
* the TCAM. What we care about is the width of the entry in the cache
* registers, which is how we get to interact with it. And since the
* VCAP_ENTRY_DAT cache registers access only the subwords and not the
* Type-Groups, this means we need to subtract the width of the
* Type-Groups when packing and unpacking key entry data in a TCAM row.
*/
vcap->entry_width = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ENTRY_WIDTH);
vcap->entry_width -= vcap->tg_width * vcap->sw_count;
num_default_actions = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ACTION_DEF_CNT);
vcap->action_count = vcap->entry_count + num_default_actions;
vcap->action_width = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_ACTION_WIDTH);
/* The width of the counter memory, this is the complete width of all
* counter-fields associated with one full-word entry. There is one
* counter per entry sub-word (see CAP_CORE::ENTRY_SWCNT for number of
* subwords.)
*/
vcap->counter_words = vcap->sw_count;
counter_memory_width = ocelot_target_read(ocelot, vcap->target,
VCAP_CONST_CNT_WIDTH);
vcap->counter_width = counter_memory_width / vcap->counter_words;
}
int ocelot_vcap_init(struct ocelot *ocelot)
{
struct qos_policer_conf cpu_drop = {
.mode = MSCC_QOS_RATE_MODE_DATA,
};
int ret, i;
/* Create a policer that will drop the frames for the cpu.
* This policer will be used as action in the acl rules to drop
* frames.
*/
ret = qos_policer_conf_set(ocelot, OCELOT_POLICER_DISCARD, &cpu_drop);
if (ret)
return ret;
for (i = 0; i < OCELOT_NUM_VCAP_BLOCKS; i++) {
struct ocelot_vcap_block *block = &ocelot->block[i];
struct vcap_props *vcap = &ocelot->vcap[i];
INIT_LIST_HEAD(&block->rules);
ocelot_vcap_detect_constants(ocelot, vcap);
ocelot_vcap_init_one(ocelot, vcap);
}
INIT_LIST_HEAD(&ocelot->dummy_rules);
INIT_LIST_HEAD(&ocelot->traps);
INIT_LIST_HEAD(&ocelot->vcap_pol.pol_list);
return 0;
}