linuxdebug/drivers/mmc/core/block.c

3156 lines
78 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Block driver for media (i.e., flash cards)
*
* Copyright 2002 Hewlett-Packard Company
* Copyright 2005-2008 Pierre Ossman
*
* Use consistent with the GNU GPL is permitted,
* provided that this copyright notice is
* preserved in its entirety in all copies and derived works.
*
* HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
* AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
* FITNESS FOR ANY PARTICULAR PURPOSE.
*
* Many thanks to Alessandro Rubini and Jonathan Corbet!
*
* Author: Andrew Christian
* 28 May 2002
*/
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kdev_t.h>
#include <linux/kref.h>
#include <linux/blkdev.h>
#include <linux/cdev.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/string_helpers.h>
#include <linux/delay.h>
#include <linux/capability.h>
#include <linux/compat.h>
#include <linux/pm_runtime.h>
#include <linux/idr.h>
#include <linux/debugfs.h>
#include <linux/mmc/ioctl.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/uaccess.h>
#include "queue.h"
#include "block.h"
#include "core.h"
#include "card.h"
#include "crypto.h"
#include "host.h"
#include "bus.h"
#include "mmc_ops.h"
#include "quirks.h"
#include "sd_ops.h"
MODULE_ALIAS("mmc:block");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "mmcblk."
/*
* Set a 10 second timeout for polling write request busy state. Note, mmc core
* is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
* second software timer to timeout the whole request, so 10 seconds should be
* ample.
*/
#define MMC_BLK_TIMEOUT_MS (10 * 1000)
#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
(rq_data_dir(req) == WRITE))
static DEFINE_MUTEX(block_mutex);
/*
* The defaults come from config options but can be overriden by module
* or bootarg options.
*/
static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
/*
* We've only got one major, so number of mmcblk devices is
* limited to (1 << 20) / number of minors per device. It is also
* limited by the MAX_DEVICES below.
*/
static int max_devices;
#define MAX_DEVICES 256
static DEFINE_IDA(mmc_blk_ida);
static DEFINE_IDA(mmc_rpmb_ida);
struct mmc_blk_busy_data {
struct mmc_card *card;
u32 status;
};
/*
* There is one mmc_blk_data per slot.
*/
struct mmc_blk_data {
struct device *parent;
struct gendisk *disk;
struct mmc_queue queue;
struct list_head part;
struct list_head rpmbs;
unsigned int flags;
#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
struct kref kref;
unsigned int read_only;
unsigned int part_type;
unsigned int reset_done;
#define MMC_BLK_READ BIT(0)
#define MMC_BLK_WRITE BIT(1)
#define MMC_BLK_DISCARD BIT(2)
#define MMC_BLK_SECDISCARD BIT(3)
#define MMC_BLK_CQE_RECOVERY BIT(4)
#define MMC_BLK_TRIM BIT(5)
/*
* Only set in main mmc_blk_data associated
* with mmc_card with dev_set_drvdata, and keeps
* track of the current selected device partition.
*/
unsigned int part_curr;
#define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
int area_type;
/* debugfs files (only in main mmc_blk_data) */
struct dentry *status_dentry;
struct dentry *ext_csd_dentry;
};
/* Device type for RPMB character devices */
static dev_t mmc_rpmb_devt;
/* Bus type for RPMB character devices */
static struct bus_type mmc_rpmb_bus_type = {
.name = "mmc_rpmb",
};
/**
* struct mmc_rpmb_data - special RPMB device type for these areas
* @dev: the device for the RPMB area
* @chrdev: character device for the RPMB area
* @id: unique device ID number
* @part_index: partition index (0 on first)
* @md: parent MMC block device
* @node: list item, so we can put this device on a list
*/
struct mmc_rpmb_data {
struct device dev;
struct cdev chrdev;
int id;
unsigned int part_index;
struct mmc_blk_data *md;
struct list_head node;
};
static DEFINE_MUTEX(open_lock);
module_param(perdev_minors, int, 0444);
MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
static inline int mmc_blk_part_switch(struct mmc_card *card,
unsigned int part_type);
static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
struct mmc_card *card,
int recovery_mode,
struct mmc_queue *mq);
static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
{
struct mmc_blk_data *md;
mutex_lock(&open_lock);
md = disk->private_data;
if (md && !kref_get_unless_zero(&md->kref))
md = NULL;
mutex_unlock(&open_lock);
return md;
}
static inline int mmc_get_devidx(struct gendisk *disk)
{
int devidx = disk->first_minor / perdev_minors;
return devidx;
}
static void mmc_blk_kref_release(struct kref *ref)
{
struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
int devidx;
devidx = mmc_get_devidx(md->disk);
ida_simple_remove(&mmc_blk_ida, devidx);
mutex_lock(&open_lock);
md->disk->private_data = NULL;
mutex_unlock(&open_lock);
put_disk(md->disk);
kfree(md);
}
static void mmc_blk_put(struct mmc_blk_data *md)
{
kref_put(&md->kref, mmc_blk_kref_release);
}
static ssize_t power_ro_lock_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
struct mmc_card *card = md->queue.card;
int locked = 0;
if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
locked = 2;
else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
locked = 1;
ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
mmc_blk_put(md);
return ret;
}
static ssize_t power_ro_lock_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret;
struct mmc_blk_data *md, *part_md;
struct mmc_queue *mq;
struct request *req;
unsigned long set;
if (kstrtoul(buf, 0, &set))
return -EINVAL;
if (set != 1)
return count;
md = mmc_blk_get(dev_to_disk(dev));
mq = &md->queue;
/* Dispatch locking to the block layer */
req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
if (IS_ERR(req)) {
count = PTR_ERR(req);
goto out_put;
}
req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
req_to_mmc_queue_req(req)->drv_op_result = -EIO;
blk_execute_rq(req, false);
ret = req_to_mmc_queue_req(req)->drv_op_result;
blk_mq_free_request(req);
if (!ret) {
pr_info("%s: Locking boot partition ro until next power on\n",
md->disk->disk_name);
set_disk_ro(md->disk, 1);
list_for_each_entry(part_md, &md->part, part)
if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
set_disk_ro(part_md->disk, 1);
}
}
out_put:
mmc_blk_put(md);
return count;
}
static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
power_ro_lock_show, power_ro_lock_store);
static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
ret = snprintf(buf, PAGE_SIZE, "%d\n",
get_disk_ro(dev_to_disk(dev)) ^
md->read_only);
mmc_blk_put(md);
return ret;
}
static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
char *end;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
unsigned long set = simple_strtoul(buf, &end, 0);
if (end == buf) {
ret = -EINVAL;
goto out;
}
set_disk_ro(dev_to_disk(dev), set || md->read_only);
ret = count;
out:
mmc_blk_put(md);
return ret;
}
static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
static struct attribute *mmc_disk_attrs[] = {
&dev_attr_force_ro.attr,
&dev_attr_ro_lock_until_next_power_on.attr,
NULL,
};
static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
umode_t mode = a->mode;
if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
(md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
md->queue.card->ext_csd.boot_ro_lockable) {
mode = S_IRUGO;
if (!(md->queue.card->ext_csd.boot_ro_lock &
EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
mode |= S_IWUSR;
}
mmc_blk_put(md);
return mode;
}
static const struct attribute_group mmc_disk_attr_group = {
.is_visible = mmc_disk_attrs_is_visible,
.attrs = mmc_disk_attrs,
};
static const struct attribute_group *mmc_disk_attr_groups[] = {
&mmc_disk_attr_group,
NULL,
};
static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
{
struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
int ret = -ENXIO;
mutex_lock(&block_mutex);
if (md) {
ret = 0;
if ((mode & FMODE_WRITE) && md->read_only) {
mmc_blk_put(md);
ret = -EROFS;
}
}
mutex_unlock(&block_mutex);
return ret;
}
static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
{
struct mmc_blk_data *md = disk->private_data;
mutex_lock(&block_mutex);
mmc_blk_put(md);
mutex_unlock(&block_mutex);
}
static int
mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
geo->heads = 4;
geo->sectors = 16;
return 0;
}
struct mmc_blk_ioc_data {
struct mmc_ioc_cmd ic;
unsigned char *buf;
u64 buf_bytes;
struct mmc_rpmb_data *rpmb;
};
static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
struct mmc_ioc_cmd __user *user)
{
struct mmc_blk_ioc_data *idata;
int err;
idata = kmalloc(sizeof(*idata), GFP_KERNEL);
if (!idata) {
err = -ENOMEM;
goto out;
}
if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
err = -EFAULT;
goto idata_err;
}
idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
err = -EOVERFLOW;
goto idata_err;
}
if (!idata->buf_bytes) {
idata->buf = NULL;
return idata;
}
idata->buf = memdup_user((void __user *)(unsigned long)
idata->ic.data_ptr, idata->buf_bytes);
if (IS_ERR(idata->buf)) {
err = PTR_ERR(idata->buf);
goto idata_err;
}
return idata;
idata_err:
kfree(idata);
out:
return ERR_PTR(err);
}
static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
struct mmc_blk_ioc_data *idata)
{
struct mmc_ioc_cmd *ic = &idata->ic;
if (copy_to_user(&(ic_ptr->response), ic->response,
sizeof(ic->response)))
return -EFAULT;
if (!idata->ic.write_flag) {
if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
idata->buf, idata->buf_bytes))
return -EFAULT;
}
return 0;
}
static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
struct mmc_blk_ioc_data *idata)
{
struct mmc_command cmd = {}, sbc = {};
struct mmc_data data = {};
struct mmc_request mrq = {};
struct scatterlist sg;
int err;
unsigned int target_part;
if (!card || !md || !idata)
return -EINVAL;
/*
* The RPMB accesses comes in from the character device, so we
* need to target these explicitly. Else we just target the
* partition type for the block device the ioctl() was issued
* on.
*/
if (idata->rpmb) {
/* Support multiple RPMB partitions */
target_part = idata->rpmb->part_index;
target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
} else {
target_part = md->part_type;
}
cmd.opcode = idata->ic.opcode;
cmd.arg = idata->ic.arg;
cmd.flags = idata->ic.flags;
if (idata->buf_bytes) {
data.sg = &sg;
data.sg_len = 1;
data.blksz = idata->ic.blksz;
data.blocks = idata->ic.blocks;
sg_init_one(data.sg, idata->buf, idata->buf_bytes);
if (idata->ic.write_flag)
data.flags = MMC_DATA_WRITE;
else
data.flags = MMC_DATA_READ;
/* data.flags must already be set before doing this. */
mmc_set_data_timeout(&data, card);
/* Allow overriding the timeout_ns for empirical tuning. */
if (idata->ic.data_timeout_ns)
data.timeout_ns = idata->ic.data_timeout_ns;
if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
/*
* Pretend this is a data transfer and rely on the
* host driver to compute timeout. When all host
* drivers support cmd.cmd_timeout for R1B, this
* can be changed to:
*
* mrq.data = NULL;
* cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
*/
data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
}
mrq.data = &data;
}
mrq.cmd = &cmd;
err = mmc_blk_part_switch(card, target_part);
if (err)
return err;
if (idata->ic.is_acmd) {
err = mmc_app_cmd(card->host, card);
if (err)
return err;
}
if (idata->rpmb) {
sbc.opcode = MMC_SET_BLOCK_COUNT;
/*
* We don't do any blockcount validation because the max size
* may be increased by a future standard. We just copy the
* 'Reliable Write' bit here.
*/
sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
mrq.sbc = &sbc;
}
if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
(cmd.opcode == MMC_SWITCH))
return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
mmc_wait_for_req(card->host, &mrq);
memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
if (cmd.error) {
dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
__func__, cmd.error);
return cmd.error;
}
if (data.error) {
dev_err(mmc_dev(card->host), "%s: data error %d\n",
__func__, data.error);
return data.error;
}
/*
* Make sure the cache of the PARTITION_CONFIG register and
* PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
* changed it successfully.
*/
if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
(cmd.opcode == MMC_SWITCH)) {
struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
/*
* Update cache so the next mmc_blk_part_switch call operates
* on up-to-date data.
*/
card->ext_csd.part_config = value;
main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
}
/*
* Make sure to update CACHE_CTRL in case it was changed. The cache
* will get turned back on if the card is re-initialized, e.g.
* suspend/resume or hw reset in recovery.
*/
if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
(cmd.opcode == MMC_SWITCH)) {
u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
card->ext_csd.cache_ctrl = value;
}
/*
* According to the SD specs, some commands require a delay after
* issuing the command.
*/
if (idata->ic.postsleep_min_us)
usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
/*
* Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
* allow to override the default timeout value if a custom timeout is specified.
*/
err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
false, MMC_BUSY_IO);
}
return err;
}
static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
struct mmc_ioc_cmd __user *ic_ptr,
struct mmc_rpmb_data *rpmb)
{
struct mmc_blk_ioc_data *idata;
struct mmc_blk_ioc_data *idatas[1];
struct mmc_queue *mq;
struct mmc_card *card;
int err = 0, ioc_err = 0;
struct request *req;
idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
if (IS_ERR(idata))
return PTR_ERR(idata);
/* This will be NULL on non-RPMB ioctl():s */
idata->rpmb = rpmb;
card = md->queue.card;
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto cmd_done;
}
/*
* Dispatch the ioctl() into the block request queue.
*/
mq = &md->queue;
req = blk_mq_alloc_request(mq->queue,
idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto cmd_done;
}
idatas[0] = idata;
req_to_mmc_queue_req(req)->drv_op =
rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
req_to_mmc_queue_req(req)->drv_op_result = -EIO;
req_to_mmc_queue_req(req)->drv_op_data = idatas;
req_to_mmc_queue_req(req)->ioc_count = 1;
blk_execute_rq(req, false);
ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
blk_mq_free_request(req);
cmd_done:
kfree(idata->buf);
kfree(idata);
return ioc_err ? ioc_err : err;
}
static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
struct mmc_ioc_multi_cmd __user *user,
struct mmc_rpmb_data *rpmb)
{
struct mmc_blk_ioc_data **idata = NULL;
struct mmc_ioc_cmd __user *cmds = user->cmds;
struct mmc_card *card;
struct mmc_queue *mq;
int err = 0, ioc_err = 0;
__u64 num_of_cmds;
unsigned int i, n;
struct request *req;
if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
sizeof(num_of_cmds)))
return -EFAULT;
if (!num_of_cmds)
return 0;
if (num_of_cmds > MMC_IOC_MAX_CMDS)
return -EINVAL;
n = num_of_cmds;
idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
if (!idata)
return -ENOMEM;
for (i = 0; i < n; i++) {
idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
if (IS_ERR(idata[i])) {
err = PTR_ERR(idata[i]);
n = i;
goto cmd_err;
}
/* This will be NULL on non-RPMB ioctl():s */
idata[i]->rpmb = rpmb;
}
card = md->queue.card;
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto cmd_err;
}
/*
* Dispatch the ioctl()s into the block request queue.
*/
mq = &md->queue;
req = blk_mq_alloc_request(mq->queue,
idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto cmd_err;
}
req_to_mmc_queue_req(req)->drv_op =
rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
req_to_mmc_queue_req(req)->drv_op_result = -EIO;
req_to_mmc_queue_req(req)->drv_op_data = idata;
req_to_mmc_queue_req(req)->ioc_count = n;
blk_execute_rq(req, false);
ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
/* copy to user if data and response */
for (i = 0; i < n && !err; i++)
err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
blk_mq_free_request(req);
cmd_err:
for (i = 0; i < n; i++) {
kfree(idata[i]->buf);
kfree(idata[i]);
}
kfree(idata);
return ioc_err ? ioc_err : err;
}
static int mmc_blk_check_blkdev(struct block_device *bdev)
{
/*
* The caller must have CAP_SYS_RAWIO, and must be calling this on the
* whole block device, not on a partition. This prevents overspray
* between sibling partitions.
*/
if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
return -EPERM;
return 0;
}
static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct mmc_blk_data *md;
int ret;
switch (cmd) {
case MMC_IOC_CMD:
ret = mmc_blk_check_blkdev(bdev);
if (ret)
return ret;
md = mmc_blk_get(bdev->bd_disk);
if (!md)
return -EINVAL;
ret = mmc_blk_ioctl_cmd(md,
(struct mmc_ioc_cmd __user *)arg,
NULL);
mmc_blk_put(md);
return ret;
case MMC_IOC_MULTI_CMD:
ret = mmc_blk_check_blkdev(bdev);
if (ret)
return ret;
md = mmc_blk_get(bdev->bd_disk);
if (!md)
return -EINVAL;
ret = mmc_blk_ioctl_multi_cmd(md,
(struct mmc_ioc_multi_cmd __user *)arg,
NULL);
mmc_blk_put(md);
return ret;
default:
return -EINVAL;
}
}
#ifdef CONFIG_COMPAT
static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
}
#endif
static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
sector_t *sector)
{
struct mmc_blk_data *md;
int ret;
md = mmc_blk_get(disk);
if (!md)
return -EINVAL;
if (md->queue.card)
ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
else
ret = -ENODEV;
mmc_blk_put(md);
return ret;
}
static const struct block_device_operations mmc_bdops = {
.open = mmc_blk_open,
.release = mmc_blk_release,
.getgeo = mmc_blk_getgeo,
.owner = THIS_MODULE,
.ioctl = mmc_blk_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mmc_blk_compat_ioctl,
#endif
.alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
};
static int mmc_blk_part_switch_pre(struct mmc_card *card,
unsigned int part_type)
{
int ret = 0;
if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
if (card->ext_csd.cmdq_en) {
ret = mmc_cmdq_disable(card);
if (ret)
return ret;
}
mmc_retune_pause(card->host);
}
return ret;
}
static int mmc_blk_part_switch_post(struct mmc_card *card,
unsigned int part_type)
{
int ret = 0;
if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
mmc_retune_unpause(card->host);
if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
ret = mmc_cmdq_enable(card);
}
return ret;
}
static inline int mmc_blk_part_switch(struct mmc_card *card,
unsigned int part_type)
{
int ret = 0;
struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
if (main_md->part_curr == part_type)
return 0;
if (mmc_card_mmc(card)) {
u8 part_config = card->ext_csd.part_config;
ret = mmc_blk_part_switch_pre(card, part_type);
if (ret)
return ret;
part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
part_config |= part_type;
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG, part_config,
card->ext_csd.part_time);
if (ret) {
mmc_blk_part_switch_post(card, part_type);
return ret;
}
card->ext_csd.part_config = part_config;
ret = mmc_blk_part_switch_post(card, main_md->part_curr);
}
main_md->part_curr = part_type;
return ret;
}
static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
{
int err;
u32 result;
__be32 *blocks;
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
cmd.opcode = MMC_APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err)
return err;
if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return -EIO;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = 4;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.sg = &sg;
data.sg_len = 1;
mmc_set_data_timeout(&data, card);
mrq.cmd = &cmd;
mrq.data = &data;
blocks = kmalloc(4, GFP_KERNEL);
if (!blocks)
return -ENOMEM;
sg_init_one(&sg, blocks, 4);
mmc_wait_for_req(card->host, &mrq);
result = ntohl(*blocks);
kfree(blocks);
if (cmd.error || data.error)
return -EIO;
*written_blocks = result;
return 0;
}
static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
{
if (host->actual_clock)
return host->actual_clock / 1000;
/* Clock may be subject to a divisor, fudge it by a factor of 2. */
if (host->ios.clock)
return host->ios.clock / 2000;
/* How can there be no clock */
WARN_ON_ONCE(1);
return 100; /* 100 kHz is minimum possible value */
}
static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
struct mmc_data *data)
{
unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
unsigned int khz;
if (data->timeout_clks) {
khz = mmc_blk_clock_khz(host);
ms += DIV_ROUND_UP(data->timeout_clks, khz);
}
return ms;
}
/*
* Attempts to reset the card and get back to the requested partition.
* Therefore any error here must result in cancelling the block layer
* request, it must not be reattempted without going through the mmc_blk
* partition sanity checks.
*/
static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
int type)
{
int err;
struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
if (md->reset_done & type)
return -EEXIST;
md->reset_done |= type;
err = mmc_hw_reset(host->card);
/*
* A successful reset will leave the card in the main partition, but
* upon failure it might not be, so set it to MMC_BLK_PART_INVALID
* in that case.
*/
main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
if (err)
return err;
/* Ensure we switch back to the correct partition */
if (mmc_blk_part_switch(host->card, md->part_type))
/*
* We have failed to get back into the correct
* partition, so we need to abort the whole request.
*/
return -ENODEV;
return 0;
}
static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
{
md->reset_done &= ~type;
}
/*
* The non-block commands come back from the block layer after it queued it and
* processed it with all other requests and then they get issued in this
* function.
*/
static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mq_rq;
struct mmc_card *card = mq->card;
struct mmc_blk_data *md = mq->blkdata;
struct mmc_blk_ioc_data **idata;
bool rpmb_ioctl;
u8 **ext_csd;
u32 status;
int ret;
int i;
mq_rq = req_to_mmc_queue_req(req);
rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
switch (mq_rq->drv_op) {
case MMC_DRV_OP_IOCTL:
if (card->ext_csd.cmdq_en) {
ret = mmc_cmdq_disable(card);
if (ret)
break;
}
fallthrough;
case MMC_DRV_OP_IOCTL_RPMB:
idata = mq_rq->drv_op_data;
for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
if (ret)
break;
}
/* Always switch back to main area after RPMB access */
if (rpmb_ioctl)
mmc_blk_part_switch(card, 0);
else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
mmc_cmdq_enable(card);
break;
case MMC_DRV_OP_BOOT_WP:
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
card->ext_csd.boot_ro_lock |
EXT_CSD_BOOT_WP_B_PWR_WP_EN,
card->ext_csd.part_time);
if (ret)
pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
md->disk->disk_name, ret);
else
card->ext_csd.boot_ro_lock |=
EXT_CSD_BOOT_WP_B_PWR_WP_EN;
break;
case MMC_DRV_OP_GET_CARD_STATUS:
ret = mmc_send_status(card, &status);
if (!ret)
ret = status;
break;
case MMC_DRV_OP_GET_EXT_CSD:
ext_csd = mq_rq->drv_op_data;
ret = mmc_get_ext_csd(card, ext_csd);
break;
default:
pr_err("%s: unknown driver specific operation\n",
md->disk->disk_name);
ret = -EINVAL;
break;
}
mq_rq->drv_op_result = ret;
blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
}
static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
int type, unsigned int erase_arg)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
unsigned int from, nr;
int err = 0;
blk_status_t status = BLK_STS_OK;
if (!mmc_can_erase(card)) {
status = BLK_STS_NOTSUPP;
goto fail;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
do {
err = 0;
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
erase_arg == MMC_TRIM_ARG ?
INAND_CMD38_ARG_TRIM :
INAND_CMD38_ARG_ERASE,
card->ext_csd.generic_cmd6_time);
}
if (!err)
err = mmc_erase(card, from, nr, erase_arg);
} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
if (err)
status = BLK_STS_IOERR;
else
mmc_blk_reset_success(md, type);
fail:
blk_mq_end_request(req, status);
}
static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
{
mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
}
static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
unsigned int arg = card->erase_arg;
if (mmc_card_broken_sd_discard(card))
arg = SD_ERASE_ARG;
mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
}
static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
unsigned int from, nr, arg;
int err = 0, type = MMC_BLK_SECDISCARD;
blk_status_t status = BLK_STS_OK;
if (!(mmc_can_secure_erase_trim(card))) {
status = BLK_STS_NOTSUPP;
goto out;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
arg = MMC_SECURE_TRIM1_ARG;
else
arg = MMC_SECURE_ERASE_ARG;
retry:
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
arg == MMC_SECURE_TRIM1_ARG ?
INAND_CMD38_ARG_SECTRIM1 :
INAND_CMD38_ARG_SECERASE,
card->ext_csd.generic_cmd6_time);
if (err)
goto out_retry;
}
err = mmc_erase(card, from, nr, arg);
if (err == -EIO)
goto out_retry;
if (err) {
status = BLK_STS_IOERR;
goto out;
}
if (arg == MMC_SECURE_TRIM1_ARG) {
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
INAND_CMD38_ARG_SECTRIM2,
card->ext_csd.generic_cmd6_time);
if (err)
goto out_retry;
}
err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
if (err == -EIO)
goto out_retry;
if (err) {
status = BLK_STS_IOERR;
goto out;
}
}
out_retry:
if (err && !mmc_blk_reset(md, card->host, type))
goto retry;
if (!err)
mmc_blk_reset_success(md, type);
out:
blk_mq_end_request(req, status);
}
static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
int ret = 0;
ret = mmc_flush_cache(card->host);
blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
}
/*
* Reformat current write as a reliable write, supporting
* both legacy and the enhanced reliable write MMC cards.
* In each transfer we'll handle only as much as a single
* reliable write can handle, thus finish the request in
* partial completions.
*/
static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
struct mmc_card *card,
struct request *req)
{
if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
/* Legacy mode imposes restrictions on transfers. */
if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
brq->data.blocks = 1;
if (brq->data.blocks > card->ext_csd.rel_sectors)
brq->data.blocks = card->ext_csd.rel_sectors;
else if (brq->data.blocks < card->ext_csd.rel_sectors)
brq->data.blocks = 1;
}
}
#define CMD_ERRORS_EXCL_OOR \
(R1_ADDRESS_ERROR | /* Misaligned address */ \
R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
R1_WP_VIOLATION | /* Tried to write to protected block */ \
R1_CARD_ECC_FAILED | /* Card ECC failed */ \
R1_CC_ERROR | /* Card controller error */ \
R1_ERROR) /* General/unknown error */
#define CMD_ERRORS \
(CMD_ERRORS_EXCL_OOR | \
R1_OUT_OF_RANGE) /* Command argument out of range */ \
static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
{
u32 val;
/*
* Per the SD specification(physical layer version 4.10)[1],
* section 4.3.3, it explicitly states that "When the last
* block of user area is read using CMD18, the host should
* ignore OUT_OF_RANGE error that may occur even the sequence
* is correct". And JESD84-B51 for eMMC also has a similar
* statement on section 6.8.3.
*
* Multiple block read/write could be done by either predefined
* method, namely CMD23, or open-ending mode. For open-ending mode,
* we should ignore the OUT_OF_RANGE error as it's normal behaviour.
*
* However the spec[1] doesn't tell us whether we should also
* ignore that for predefined method. But per the spec[1], section
* 4.15 Set Block Count Command, it says"If illegal block count
* is set, out of range error will be indicated during read/write
* operation (For example, data transfer is stopped at user area
* boundary)." In another word, we could expect a out of range error
* in the response for the following CMD18/25. And if argument of
* CMD23 + the argument of CMD18/25 exceed the max number of blocks,
* we could also expect to get a -ETIMEDOUT or any error number from
* the host drivers due to missing data response(for write)/data(for
* read), as the cards will stop the data transfer by itself per the
* spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
*/
if (!brq->stop.error) {
bool oor_with_open_end;
/* If there is no error yet, check R1 response */
val = brq->stop.resp[0] & CMD_ERRORS;
oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
if (val && !oor_with_open_end)
brq->stop.error = -EIO;
}
}
static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
int recovery_mode, bool *do_rel_wr_p,
bool *do_data_tag_p)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
struct mmc_blk_request *brq = &mqrq->brq;
struct request *req = mmc_queue_req_to_req(mqrq);
bool do_rel_wr, do_data_tag;
/*
* Reliable writes are used to implement Forced Unit Access and
* are supported only on MMCs.
*/
do_rel_wr = (req->cmd_flags & REQ_FUA) &&
rq_data_dir(req) == WRITE &&
(md->flags & MMC_BLK_REL_WR);
memset(brq, 0, sizeof(struct mmc_blk_request));
mmc_crypto_prepare_req(mqrq);
brq->mrq.data = &brq->data;
brq->mrq.tag = req->tag;
brq->stop.opcode = MMC_STOP_TRANSMISSION;
brq->stop.arg = 0;
if (rq_data_dir(req) == READ) {
brq->data.flags = MMC_DATA_READ;
brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
} else {
brq->data.flags = MMC_DATA_WRITE;
brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
}
brq->data.blksz = 512;
brq->data.blocks = blk_rq_sectors(req);
brq->data.blk_addr = blk_rq_pos(req);
/*
* The command queue supports 2 priorities: "high" (1) and "simple" (0).
* The eMMC will give "high" priority tasks priority over "simple"
* priority tasks. Here we always set "simple" priority by not setting
* MMC_DATA_PRIO.
*/
/*
* The block layer doesn't support all sector count
* restrictions, so we need to be prepared for too big
* requests.
*/
if (brq->data.blocks > card->host->max_blk_count)
brq->data.blocks = card->host->max_blk_count;
if (brq->data.blocks > 1) {
/*
* Some SD cards in SPI mode return a CRC error or even lock up
* completely when trying to read the last block using a
* multiblock read command.
*/
if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
(blk_rq_pos(req) + blk_rq_sectors(req) ==
get_capacity(md->disk)))
brq->data.blocks--;
/*
* After a read error, we redo the request one (native) sector
* at a time in order to accurately determine which
* sectors can be read successfully.
*/
if (recovery_mode)
brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
/*
* Some controllers have HW issues while operating
* in multiple I/O mode
*/
if (card->host->ops->multi_io_quirk)
brq->data.blocks = card->host->ops->multi_io_quirk(card,
(rq_data_dir(req) == READ) ?
MMC_DATA_READ : MMC_DATA_WRITE,
brq->data.blocks);
}
if (do_rel_wr) {
mmc_apply_rel_rw(brq, card, req);
brq->data.flags |= MMC_DATA_REL_WR;
}
/*
* Data tag is used only during writing meta data to speed
* up write and any subsequent read of this meta data
*/
do_data_tag = card->ext_csd.data_tag_unit_size &&
(req->cmd_flags & REQ_META) &&
(rq_data_dir(req) == WRITE) &&
((brq->data.blocks * brq->data.blksz) >=
card->ext_csd.data_tag_unit_size);
if (do_data_tag)
brq->data.flags |= MMC_DATA_DAT_TAG;
mmc_set_data_timeout(&brq->data, card);
brq->data.sg = mqrq->sg;
brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
/*
* Adjust the sg list so it is the same size as the
* request.
*/
if (brq->data.blocks != blk_rq_sectors(req)) {
int i, data_size = brq->data.blocks << 9;
struct scatterlist *sg;
for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
data_size -= sg->length;
if (data_size <= 0) {
sg->length += data_size;
i++;
break;
}
}
brq->data.sg_len = i;
}
if (do_rel_wr_p)
*do_rel_wr_p = do_rel_wr;
if (do_data_tag_p)
*do_data_tag_p = do_data_tag;
}
#define MMC_CQE_RETRIES 2
static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_request *mrq = &mqrq->brq.mrq;
struct request_queue *q = req->q;
struct mmc_host *host = mq->card->host;
enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
unsigned long flags;
bool put_card;
int err;
mmc_cqe_post_req(host, mrq);
if (mrq->cmd && mrq->cmd->error)
err = mrq->cmd->error;
else if (mrq->data && mrq->data->error)
err = mrq->data->error;
else
err = 0;
if (err) {
if (mqrq->retries++ < MMC_CQE_RETRIES)
blk_mq_requeue_request(req, true);
else
blk_mq_end_request(req, BLK_STS_IOERR);
} else if (mrq->data) {
if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
blk_mq_requeue_request(req, true);
else
__blk_mq_end_request(req, BLK_STS_OK);
} else {
blk_mq_end_request(req, BLK_STS_OK);
}
spin_lock_irqsave(&mq->lock, flags);
mq->in_flight[issue_type] -= 1;
put_card = (mmc_tot_in_flight(mq) == 0);
mmc_cqe_check_busy(mq);
spin_unlock_irqrestore(&mq->lock, flags);
if (!mq->cqe_busy)
blk_mq_run_hw_queues(q, true);
if (put_card)
mmc_put_card(mq->card, &mq->ctx);
}
void mmc_blk_cqe_recovery(struct mmc_queue *mq)
{
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
int err;
pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
err = mmc_cqe_recovery(host);
if (err)
mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
}
static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
{
struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
brq.mrq);
struct request *req = mmc_queue_req_to_req(mqrq);
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
/*
* Block layer timeouts race with completions which means the normal
* completion path cannot be used during recovery.
*/
if (mq->in_recovery)
mmc_blk_cqe_complete_rq(mq, req);
else if (likely(!blk_should_fake_timeout(req->q)))
blk_mq_complete_request(req);
}
static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
mrq->done = mmc_blk_cqe_req_done;
mrq->recovery_notifier = mmc_cqe_recovery_notifier;
return mmc_cqe_start_req(host, mrq);
}
static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
struct request *req)
{
struct mmc_blk_request *brq = &mqrq->brq;
memset(brq, 0, sizeof(*brq));
brq->mrq.cmd = &brq->cmd;
brq->mrq.tag = req->tag;
return &brq->mrq;
}
static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
mrq->cmd->opcode = MMC_SWITCH;
mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(EXT_CSD_FLUSH_CACHE << 16) |
(1 << 8) |
EXT_CSD_CMD_SET_NORMAL;
mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
return mmc_blk_cqe_start_req(mq->card->host, mrq);
}
static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_host *host = mq->card->host;
int err;
mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
mmc_pre_req(host, &mqrq->brq.mrq);
err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
if (err)
mmc_post_req(host, &mqrq->brq.mrq, err);
return err;
}
static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_host *host = mq->card->host;
if (host->hsq_enabled)
return mmc_blk_hsq_issue_rw_rq(mq, req);
mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
}
static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
struct mmc_card *card,
int recovery_mode,
struct mmc_queue *mq)
{
u32 readcmd, writecmd;
struct mmc_blk_request *brq = &mqrq->brq;
struct request *req = mmc_queue_req_to_req(mqrq);
struct mmc_blk_data *md = mq->blkdata;
bool do_rel_wr, do_data_tag;
mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
brq->mrq.cmd = &brq->cmd;
brq->cmd.arg = blk_rq_pos(req);
if (!mmc_card_blockaddr(card))
brq->cmd.arg <<= 9;
brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
if (brq->data.blocks > 1 || do_rel_wr) {
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(card->host) ||
rq_data_dir(req) == READ)
brq->mrq.stop = &brq->stop;
readcmd = MMC_READ_MULTIPLE_BLOCK;
writecmd = MMC_WRITE_MULTIPLE_BLOCK;
} else {
brq->mrq.stop = NULL;
readcmd = MMC_READ_SINGLE_BLOCK;
writecmd = MMC_WRITE_BLOCK;
}
brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
/*
* Pre-defined multi-block transfers are preferable to
* open ended-ones (and necessary for reliable writes).
* However, it is not sufficient to just send CMD23,
* and avoid the final CMD12, as on an error condition
* CMD12 (stop) needs to be sent anyway. This, coupled
* with Auto-CMD23 enhancements provided by some
* hosts, means that the complexity of dealing
* with this is best left to the host. If CMD23 is
* supported by card and host, we'll fill sbc in and let
* the host deal with handling it correctly. This means
* that for hosts that don't expose MMC_CAP_CMD23, no
* change of behavior will be observed.
*
* N.B: Some MMC cards experience perf degradation.
* We'll avoid using CMD23-bounded multiblock writes for
* these, while retaining features like reliable writes.
*/
if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
(do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
do_data_tag)) {
brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
brq->sbc.arg = brq->data.blocks |
(do_rel_wr ? (1 << 31) : 0) |
(do_data_tag ? (1 << 29) : 0);
brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
brq->mrq.sbc = &brq->sbc;
}
}
#define MMC_MAX_RETRIES 5
#define MMC_DATA_RETRIES 2
#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
{
struct mmc_command cmd = {
.opcode = MMC_STOP_TRANSMISSION,
.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
/* Some hosts wait for busy anyway, so provide a busy timeout */
.busy_timeout = timeout,
};
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_blk_request *brq = &mqrq->brq;
unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
int err;
mmc_retune_hold_now(card->host);
mmc_blk_send_stop(card, timeout);
err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
mmc_retune_release(card->host);
return err;
}
#define MMC_READ_SINGLE_RETRIES 2
/* Single (native) sector read during recovery */
static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_request *mrq = &mqrq->brq.mrq;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
blk_status_t error = BLK_STS_OK;
size_t bytes_per_read = queue_physical_block_size(mq->queue);
do {
u32 status;
int err;
int retries = 0;
while (retries++ <= MMC_READ_SINGLE_RETRIES) {
mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
mmc_wait_for_req(host, mrq);
err = mmc_send_status(card, &status);
if (err)
goto error_exit;
if (!mmc_host_is_spi(host) &&
!mmc_ready_for_data(status)) {
err = mmc_blk_fix_state(card, req);
if (err)
goto error_exit;
}
if (!mrq->cmd->error)
break;
}
if (mrq->cmd->error ||
mrq->data->error ||
(!mmc_host_is_spi(host) &&
(mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
error = BLK_STS_IOERR;
else
error = BLK_STS_OK;
} while (blk_update_request(req, error, bytes_per_read));
return;
error_exit:
mrq->data->bytes_xfered = 0;
blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
/* Let it try the remaining request again */
if (mqrq->retries > MMC_MAX_RETRIES - 1)
mqrq->retries = MMC_MAX_RETRIES - 1;
}
static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
{
return !!brq->mrq.sbc;
}
static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
{
return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
}
/*
* Check for errors the host controller driver might not have seen such as
* response mode errors or invalid card state.
*/
static bool mmc_blk_status_error(struct request *req, u32 status)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_blk_request *brq = &mqrq->brq;
struct mmc_queue *mq = req->q->queuedata;
u32 stop_err_bits;
if (mmc_host_is_spi(mq->card->host))
return false;
stop_err_bits = mmc_blk_stop_err_bits(brq);
return brq->cmd.resp[0] & CMD_ERRORS ||
brq->stop.resp[0] & stop_err_bits ||
status & stop_err_bits ||
(rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
}
static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
{
return !brq->sbc.error && !brq->cmd.error &&
!(brq->cmd.resp[0] & CMD_ERRORS);
}
/*
* Requests are completed by mmc_blk_mq_complete_rq() which sets simple
* policy:
* 1. A request that has transferred at least some data is considered
* successful and will be requeued if there is remaining data to
* transfer.
* 2. Otherwise the number of retries is incremented and the request
* will be requeued if there are remaining retries.
* 3. Otherwise the request will be errored out.
* That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
* mqrq->retries. So there are only 4 possible actions here:
* 1. do not accept the bytes_xfered value i.e. set it to zero
* 2. change mqrq->retries to determine the number of retries
* 3. try to reset the card
* 4. read one sector at a time
*/
static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
{
int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_blk_request *brq = &mqrq->brq;
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = mq->card;
u32 status;
u32 blocks;
int err;
/*
* Some errors the host driver might not have seen. Set the number of
* bytes transferred to zero in that case.
*/
err = __mmc_send_status(card, &status, 0);
if (err || mmc_blk_status_error(req, status))
brq->data.bytes_xfered = 0;
mmc_retune_release(card->host);
/*
* Try again to get the status. This also provides an opportunity for
* re-tuning.
*/
if (err)
err = __mmc_send_status(card, &status, 0);
/*
* Nothing more to do after the number of bytes transferred has been
* updated and there is no card.
*/
if (err && mmc_detect_card_removed(card->host))
return;
/* Try to get back to "tran" state */
if (!mmc_host_is_spi(mq->card->host) &&
(err || !mmc_ready_for_data(status)))
err = mmc_blk_fix_state(mq->card, req);
/*
* Special case for SD cards where the card might record the number of
* blocks written.
*/
if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
rq_data_dir(req) == WRITE) {
if (mmc_sd_num_wr_blocks(card, &blocks))
brq->data.bytes_xfered = 0;
else
brq->data.bytes_xfered = blocks << 9;
}
/* Reset if the card is in a bad state */
if (!mmc_host_is_spi(mq->card->host) &&
err && mmc_blk_reset(md, card->host, type)) {
pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
mqrq->retries = MMC_NO_RETRIES;
return;
}
/*
* If anything was done, just return and if there is anything remaining
* on the request it will get requeued.
*/
if (brq->data.bytes_xfered)
return;
/* Reset before last retry */
if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
mmc_blk_reset(md, card->host, type))
return;
/* Command errors fail fast, so use all MMC_MAX_RETRIES */
if (brq->sbc.error || brq->cmd.error)
return;
/* Reduce the remaining retries for data errors */
if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
return;
}
if (rq_data_dir(req) == READ && brq->data.blocks >
queue_physical_block_size(mq->queue) >> 9) {
/* Read one (native) sector at a time */
mmc_blk_read_single(mq, req);
return;
}
}
static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
{
mmc_blk_eval_resp_error(brq);
return brq->sbc.error || brq->cmd.error || brq->stop.error ||
brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
}
static int mmc_spi_err_check(struct mmc_card *card)
{
u32 status = 0;
int err;
/*
* SPI does not have a TRAN state we have to wait on, instead the
* card is ready again when it no longer holds the line LOW.
* We still have to ensure two things here before we know the write
* was successful:
* 1. The card has not disconnected during busy and we actually read our
* own pull-up, thinking it was still connected, so ensure it
* still responds.
* 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
* just reconnected card after being disconnected during busy.
*/
err = __mmc_send_status(card, &status, 0);
if (err)
return err;
/* All R1 and R2 bits of SPI are errors in our case */
if (status)
return -EIO;
return 0;
}
static int mmc_blk_busy_cb(void *cb_data, bool *busy)
{
struct mmc_blk_busy_data *data = cb_data;
u32 status = 0;
int err;
err = mmc_send_status(data->card, &status);
if (err)
return err;
/* Accumulate response error bits. */
data->status |= status;
*busy = !mmc_ready_for_data(status);
return 0;
}
static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_blk_busy_data cb_data;
int err;
if (rq_data_dir(req) == READ)
return 0;
if (mmc_host_is_spi(card->host)) {
err = mmc_spi_err_check(card);
if (err)
mqrq->brq.data.bytes_xfered = 0;
return err;
}
cb_data.card = card;
cb_data.status = 0;
err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
&mmc_blk_busy_cb, &cb_data);
/*
* Do not assume data transferred correctly if there are any error bits
* set.
*/
if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
mqrq->brq.data.bytes_xfered = 0;
err = err ? err : -EIO;
}
/* Copy the exception bit so it will be seen later on */
if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
return err;
}
static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
struct request *req)
{
int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
mmc_blk_reset_success(mq->blkdata, type);
}
static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
if (nr_bytes) {
if (blk_update_request(req, BLK_STS_OK, nr_bytes))
blk_mq_requeue_request(req, true);
else
__blk_mq_end_request(req, BLK_STS_OK);
} else if (!blk_rq_bytes(req)) {
__blk_mq_end_request(req, BLK_STS_IOERR);
} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
blk_mq_requeue_request(req, true);
} else {
if (mmc_card_removed(mq->card))
req->rq_flags |= RQF_QUIET;
blk_mq_end_request(req, BLK_STS_IOERR);
}
}
static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
struct mmc_queue_req *mqrq)
{
return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
(mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
}
static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
struct mmc_queue_req *mqrq)
{
if (mmc_blk_urgent_bkops_needed(mq, mqrq))
mmc_run_bkops(mq->card);
}
static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
{
struct mmc_queue_req *mqrq =
container_of(mrq, struct mmc_queue_req, brq.mrq);
struct request *req = mmc_queue_req_to_req(mqrq);
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
struct mmc_host *host = mq->card->host;
unsigned long flags;
if (mmc_blk_rq_error(&mqrq->brq) ||
mmc_blk_urgent_bkops_needed(mq, mqrq)) {
spin_lock_irqsave(&mq->lock, flags);
mq->recovery_needed = true;
mq->recovery_req = req;
spin_unlock_irqrestore(&mq->lock, flags);
host->cqe_ops->cqe_recovery_start(host);
schedule_work(&mq->recovery_work);
return;
}
mmc_blk_rw_reset_success(mq, req);
/*
* Block layer timeouts race with completions which means the normal
* completion path cannot be used during recovery.
*/
if (mq->in_recovery)
mmc_blk_cqe_complete_rq(mq, req);
else if (likely(!blk_should_fake_timeout(req->q)))
blk_mq_complete_request(req);
}
void mmc_blk_mq_complete(struct request *req)
{
struct mmc_queue *mq = req->q->queuedata;
struct mmc_host *host = mq->card->host;
if (host->cqe_enabled)
mmc_blk_cqe_complete_rq(mq, req);
else if (likely(!blk_should_fake_timeout(req->q)))
mmc_blk_mq_complete_rq(mq, req);
}
static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_host *host = mq->card->host;
if (mmc_blk_rq_error(&mqrq->brq) ||
mmc_blk_card_busy(mq->card, req)) {
mmc_blk_mq_rw_recovery(mq, req);
} else {
mmc_blk_rw_reset_success(mq, req);
mmc_retune_release(host);
}
mmc_blk_urgent_bkops(mq, mqrq);
}
static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
{
unsigned long flags;
bool put_card;
spin_lock_irqsave(&mq->lock, flags);
mq->in_flight[issue_type] -= 1;
put_card = (mmc_tot_in_flight(mq) == 0);
spin_unlock_irqrestore(&mq->lock, flags);
if (put_card)
mmc_put_card(mq->card, &mq->ctx);
}
static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
bool can_sleep)
{
enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_request *mrq = &mqrq->brq.mrq;
struct mmc_host *host = mq->card->host;
mmc_post_req(host, mrq, 0);
/*
* Block layer timeouts race with completions which means the normal
* completion path cannot be used during recovery.
*/
if (mq->in_recovery) {
mmc_blk_mq_complete_rq(mq, req);
} else if (likely(!blk_should_fake_timeout(req->q))) {
if (can_sleep)
blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
else
blk_mq_complete_request(req);
}
mmc_blk_mq_dec_in_flight(mq, issue_type);
}
void mmc_blk_mq_recovery(struct mmc_queue *mq)
{
struct request *req = mq->recovery_req;
struct mmc_host *host = mq->card->host;
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
mq->recovery_req = NULL;
mq->rw_wait = false;
if (mmc_blk_rq_error(&mqrq->brq)) {
mmc_retune_hold_now(host);
mmc_blk_mq_rw_recovery(mq, req);
}
mmc_blk_urgent_bkops(mq, mqrq);
mmc_blk_mq_post_req(mq, req, true);
}
static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
struct request **prev_req)
{
if (mmc_host_done_complete(mq->card->host))
return;
mutex_lock(&mq->complete_lock);
if (!mq->complete_req)
goto out_unlock;
mmc_blk_mq_poll_completion(mq, mq->complete_req);
if (prev_req)
*prev_req = mq->complete_req;
else
mmc_blk_mq_post_req(mq, mq->complete_req, true);
mq->complete_req = NULL;
out_unlock:
mutex_unlock(&mq->complete_lock);
}
void mmc_blk_mq_complete_work(struct work_struct *work)
{
struct mmc_queue *mq = container_of(work, struct mmc_queue,
complete_work);
mmc_blk_mq_complete_prev_req(mq, NULL);
}
static void mmc_blk_mq_req_done(struct mmc_request *mrq)
{
struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
brq.mrq);
struct request *req = mmc_queue_req_to_req(mqrq);
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
struct mmc_host *host = mq->card->host;
unsigned long flags;
if (!mmc_host_done_complete(host)) {
bool waiting;
/*
* We cannot complete the request in this context, so record
* that there is a request to complete, and that a following
* request does not need to wait (although it does need to
* complete complete_req first).
*/
spin_lock_irqsave(&mq->lock, flags);
mq->complete_req = req;
mq->rw_wait = false;
waiting = mq->waiting;
spin_unlock_irqrestore(&mq->lock, flags);
/*
* If 'waiting' then the waiting task will complete this
* request, otherwise queue a work to do it. Note that
* complete_work may still race with the dispatch of a following
* request.
*/
if (waiting)
wake_up(&mq->wait);
else
queue_work(mq->card->complete_wq, &mq->complete_work);
return;
}
/* Take the recovery path for errors or urgent background operations */
if (mmc_blk_rq_error(&mqrq->brq) ||
mmc_blk_urgent_bkops_needed(mq, mqrq)) {
spin_lock_irqsave(&mq->lock, flags);
mq->recovery_needed = true;
mq->recovery_req = req;
spin_unlock_irqrestore(&mq->lock, flags);
wake_up(&mq->wait);
schedule_work(&mq->recovery_work);
return;
}
mmc_blk_rw_reset_success(mq, req);
mq->rw_wait = false;
wake_up(&mq->wait);
/* context unknown */
mmc_blk_mq_post_req(mq, req, false);
}
static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
{
unsigned long flags;
bool done;
/*
* Wait while there is another request in progress, but not if recovery
* is needed. Also indicate whether there is a request waiting to start.
*/
spin_lock_irqsave(&mq->lock, flags);
if (mq->recovery_needed) {
*err = -EBUSY;
done = true;
} else {
done = !mq->rw_wait;
}
mq->waiting = !done;
spin_unlock_irqrestore(&mq->lock, flags);
return done;
}
static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
{
int err = 0;
wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
/* Always complete the previous request if there is one */
mmc_blk_mq_complete_prev_req(mq, prev_req);
return err;
}
static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_host *host = mq->card->host;
struct request *prev_req = NULL;
int err = 0;
mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
mqrq->brq.mrq.done = mmc_blk_mq_req_done;
mmc_pre_req(host, &mqrq->brq.mrq);
err = mmc_blk_rw_wait(mq, &prev_req);
if (err)
goto out_post_req;
mq->rw_wait = true;
err = mmc_start_request(host, &mqrq->brq.mrq);
if (prev_req)
mmc_blk_mq_post_req(mq, prev_req, true);
if (err)
mq->rw_wait = false;
/* Release re-tuning here where there is no synchronization required */
if (err || mmc_host_done_complete(host))
mmc_retune_release(host);
out_post_req:
if (err)
mmc_post_req(host, &mqrq->brq.mrq, err);
return err;
}
static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
{
if (host->cqe_enabled)
return host->cqe_ops->cqe_wait_for_idle(host);
return mmc_blk_rw_wait(mq, NULL);
}
enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->blkdata;
struct mmc_card *card = md->queue.card;
struct mmc_host *host = card->host;
int ret;
ret = mmc_blk_part_switch(card, md->part_type);
if (ret)
return MMC_REQ_FAILED_TO_START;
switch (mmc_issue_type(mq, req)) {
case MMC_ISSUE_SYNC:
ret = mmc_blk_wait_for_idle(mq, host);
if (ret)
return MMC_REQ_BUSY;
switch (req_op(req)) {
case REQ_OP_DRV_IN:
case REQ_OP_DRV_OUT:
mmc_blk_issue_drv_op(mq, req);
break;
case REQ_OP_DISCARD:
mmc_blk_issue_discard_rq(mq, req);
break;
case REQ_OP_SECURE_ERASE:
mmc_blk_issue_secdiscard_rq(mq, req);
break;
case REQ_OP_WRITE_ZEROES:
mmc_blk_issue_trim_rq(mq, req);
break;
case REQ_OP_FLUSH:
mmc_blk_issue_flush(mq, req);
break;
default:
WARN_ON_ONCE(1);
return MMC_REQ_FAILED_TO_START;
}
return MMC_REQ_FINISHED;
case MMC_ISSUE_DCMD:
case MMC_ISSUE_ASYNC:
switch (req_op(req)) {
case REQ_OP_FLUSH:
if (!mmc_cache_enabled(host)) {
blk_mq_end_request(req, BLK_STS_OK);
return MMC_REQ_FINISHED;
}
ret = mmc_blk_cqe_issue_flush(mq, req);
break;
case REQ_OP_READ:
case REQ_OP_WRITE:
if (host->cqe_enabled)
ret = mmc_blk_cqe_issue_rw_rq(mq, req);
else
ret = mmc_blk_mq_issue_rw_rq(mq, req);
break;
default:
WARN_ON_ONCE(1);
ret = -EINVAL;
}
if (!ret)
return MMC_REQ_STARTED;
return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
default:
WARN_ON_ONCE(1);
return MMC_REQ_FAILED_TO_START;
}
}
static inline int mmc_blk_readonly(struct mmc_card *card)
{
return mmc_card_readonly(card) ||
!(card->csd.cmdclass & CCC_BLOCK_WRITE);
}
static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
struct device *parent,
sector_t size,
bool default_ro,
const char *subname,
int area_type,
unsigned int part_type)
{
struct mmc_blk_data *md;
int devidx, ret;
char cap_str[10];
bool cache_enabled = false;
bool fua_enabled = false;
devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
if (devidx < 0) {
/*
* We get -ENOSPC because there are no more any available
* devidx. The reason may be that, either userspace haven't yet
* unmounted the partitions, which postpones mmc_blk_release()
* from being called, or the device has more partitions than
* what we support.
*/
if (devidx == -ENOSPC)
dev_err(mmc_dev(card->host),
"no more device IDs available\n");
return ERR_PTR(devidx);
}
md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
if (!md) {
ret = -ENOMEM;
goto out;
}
md->area_type = area_type;
/*
* Set the read-only status based on the supported commands
* and the write protect switch.
*/
md->read_only = mmc_blk_readonly(card);
md->disk = mmc_init_queue(&md->queue, card);
if (IS_ERR(md->disk)) {
ret = PTR_ERR(md->disk);
goto err_kfree;
}
INIT_LIST_HEAD(&md->part);
INIT_LIST_HEAD(&md->rpmbs);
kref_init(&md->kref);
md->queue.blkdata = md;
md->part_type = part_type;
md->disk->major = MMC_BLOCK_MAJOR;
md->disk->minors = perdev_minors;
md->disk->first_minor = devidx * perdev_minors;
md->disk->fops = &mmc_bdops;
md->disk->private_data = md;
md->parent = parent;
set_disk_ro(md->disk, md->read_only || default_ro);
if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
md->disk->flags |= GENHD_FL_NO_PART;
/*
* As discussed on lkml, GENHD_FL_REMOVABLE should:
*
* - be set for removable media with permanent block devices
* - be unset for removable block devices with permanent media
*
* Since MMC block devices clearly fall under the second
* case, we do not set GENHD_FL_REMOVABLE. Userspace
* should use the block device creation/destruction hotplug
* messages to tell when the card is present.
*/
snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
"mmcblk%u%s", card->host->index, subname ? subname : "");
set_capacity(md->disk, size);
if (mmc_host_cmd23(card->host)) {
if ((mmc_card_mmc(card) &&
card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
(mmc_card_sd(card) &&
card->scr.cmds & SD_SCR_CMD23_SUPPORT))
md->flags |= MMC_BLK_CMD23;
}
if (md->flags & MMC_BLK_CMD23 &&
((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
card->ext_csd.rel_sectors)) {
md->flags |= MMC_BLK_REL_WR;
fua_enabled = true;
cache_enabled = true;
}
if (mmc_cache_enabled(card->host))
cache_enabled = true;
blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
string_get_size((u64)size, 512, STRING_UNITS_2,
cap_str, sizeof(cap_str));
pr_info("%s: %s %s %s %s\n",
md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
cap_str, md->read_only ? "(ro)" : "");
/* used in ->open, must be set before add_disk: */
if (area_type == MMC_BLK_DATA_AREA_MAIN)
dev_set_drvdata(&card->dev, md);
ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
if (ret)
goto err_put_disk;
return md;
err_put_disk:
put_disk(md->disk);
blk_mq_free_tag_set(&md->queue.tag_set);
err_kfree:
kfree(md);
out:
ida_simple_remove(&mmc_blk_ida, devidx);
return ERR_PTR(ret);
}
static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
{
sector_t size;
if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
/*
* The EXT_CSD sector count is in number or 512 byte
* sectors.
*/
size = card->ext_csd.sectors;
} else {
/*
* The CSD capacity field is in units of read_blkbits.
* set_capacity takes units of 512 bytes.
*/
size = (typeof(sector_t))card->csd.capacity
<< (card->csd.read_blkbits - 9);
}
return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
MMC_BLK_DATA_AREA_MAIN, 0);
}
static int mmc_blk_alloc_part(struct mmc_card *card,
struct mmc_blk_data *md,
unsigned int part_type,
sector_t size,
bool default_ro,
const char *subname,
int area_type)
{
struct mmc_blk_data *part_md;
part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
subname, area_type, part_type);
if (IS_ERR(part_md))
return PTR_ERR(part_md);
list_add(&part_md->part, &md->part);
return 0;
}
/**
* mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
* @filp: the character device file
* @cmd: the ioctl() command
* @arg: the argument from userspace
*
* This will essentially just redirect the ioctl()s coming in over to
* the main block device spawning the RPMB character device.
*/
static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct mmc_rpmb_data *rpmb = filp->private_data;
int ret;
switch (cmd) {
case MMC_IOC_CMD:
ret = mmc_blk_ioctl_cmd(rpmb->md,
(struct mmc_ioc_cmd __user *)arg,
rpmb);
break;
case MMC_IOC_MULTI_CMD:
ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
(struct mmc_ioc_multi_cmd __user *)arg,
rpmb);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
unsigned long arg)
{
return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#endif
static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
{
struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
struct mmc_rpmb_data, chrdev);
get_device(&rpmb->dev);
filp->private_data = rpmb;
mmc_blk_get(rpmb->md->disk);
return nonseekable_open(inode, filp);
}
static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
{
struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
struct mmc_rpmb_data, chrdev);
mmc_blk_put(rpmb->md);
put_device(&rpmb->dev);
return 0;
}
static const struct file_operations mmc_rpmb_fileops = {
.release = mmc_rpmb_chrdev_release,
.open = mmc_rpmb_chrdev_open,
.owner = THIS_MODULE,
.llseek = no_llseek,
.unlocked_ioctl = mmc_rpmb_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mmc_rpmb_ioctl_compat,
#endif
};
static void mmc_blk_rpmb_device_release(struct device *dev)
{
struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
kfree(rpmb);
}
static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
struct mmc_blk_data *md,
unsigned int part_index,
sector_t size,
const char *subname)
{
int devidx, ret;
char rpmb_name[DISK_NAME_LEN];
char cap_str[10];
struct mmc_rpmb_data *rpmb;
/* This creates the minor number for the RPMB char device */
devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
if (devidx < 0)
return devidx;
rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
if (!rpmb) {
ida_simple_remove(&mmc_rpmb_ida, devidx);
return -ENOMEM;
}
snprintf(rpmb_name, sizeof(rpmb_name),
"mmcblk%u%s", card->host->index, subname ? subname : "");
rpmb->id = devidx;
rpmb->part_index = part_index;
rpmb->dev.init_name = rpmb_name;
rpmb->dev.bus = &mmc_rpmb_bus_type;
rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
rpmb->dev.parent = &card->dev;
rpmb->dev.release = mmc_blk_rpmb_device_release;
device_initialize(&rpmb->dev);
dev_set_drvdata(&rpmb->dev, rpmb);
rpmb->md = md;
cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
rpmb->chrdev.owner = THIS_MODULE;
ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
if (ret) {
pr_err("%s: could not add character device\n", rpmb_name);
goto out_put_device;
}
list_add(&rpmb->node, &md->rpmbs);
string_get_size((u64)size, 512, STRING_UNITS_2,
cap_str, sizeof(cap_str));
pr_info("%s: %s %s %s, chardev (%d:%d)\n",
rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
MAJOR(mmc_rpmb_devt), rpmb->id);
return 0;
out_put_device:
put_device(&rpmb->dev);
return ret;
}
static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
{
cdev_device_del(&rpmb->chrdev, &rpmb->dev);
put_device(&rpmb->dev);
}
/* MMC Physical partitions consist of two boot partitions and
* up to four general purpose partitions.
* For each partition enabled in EXT_CSD a block device will be allocatedi
* to provide access to the partition.
*/
static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
{
int idx, ret;
if (!mmc_card_mmc(card))
return 0;
for (idx = 0; idx < card->nr_parts; idx++) {
if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
/*
* RPMB partitions does not provide block access, they
* are only accessed using ioctl():s. Thus create
* special RPMB block devices that do not have a
* backing block queue for these.
*/
ret = mmc_blk_alloc_rpmb_part(card, md,
card->part[idx].part_cfg,
card->part[idx].size >> 9,
card->part[idx].name);
if (ret)
return ret;
} else if (card->part[idx].size) {
ret = mmc_blk_alloc_part(card, md,
card->part[idx].part_cfg,
card->part[idx].size >> 9,
card->part[idx].force_ro,
card->part[idx].name,
card->part[idx].area_type);
if (ret)
return ret;
}
}
return 0;
}
static void mmc_blk_remove_req(struct mmc_blk_data *md)
{
/*
* Flush remaining requests and free queues. It is freeing the queue
* that stops new requests from being accepted.
*/
del_gendisk(md->disk);
mmc_cleanup_queue(&md->queue);
mmc_blk_put(md);
}
static void mmc_blk_remove_parts(struct mmc_card *card,
struct mmc_blk_data *md)
{
struct list_head *pos, *q;
struct mmc_blk_data *part_md;
struct mmc_rpmb_data *rpmb;
/* Remove RPMB partitions */
list_for_each_safe(pos, q, &md->rpmbs) {
rpmb = list_entry(pos, struct mmc_rpmb_data, node);
list_del(pos);
mmc_blk_remove_rpmb_part(rpmb);
}
/* Remove block partitions */
list_for_each_safe(pos, q, &md->part) {
part_md = list_entry(pos, struct mmc_blk_data, part);
list_del(pos);
mmc_blk_remove_req(part_md);
}
}
#ifdef CONFIG_DEBUG_FS
static int mmc_dbg_card_status_get(void *data, u64 *val)
{
struct mmc_card *card = data;
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
struct mmc_queue *mq = &md->queue;
struct request *req;
int ret;
/* Ask the block layer about the card status */
req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
req_to_mmc_queue_req(req)->drv_op_result = -EIO;
blk_execute_rq(req, false);
ret = req_to_mmc_queue_req(req)->drv_op_result;
if (ret >= 0) {
*val = ret;
ret = 0;
}
blk_mq_free_request(req);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
NULL, "%08llx\n");
/* That is two digits * 512 + 1 for newline */
#define EXT_CSD_STR_LEN 1025
static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
{
struct mmc_card *card = inode->i_private;
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
struct mmc_queue *mq = &md->queue;
struct request *req;
char *buf;
ssize_t n = 0;
u8 *ext_csd;
int err, i;
buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Ask the block layer for the EXT CSD */
req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out_free;
}
req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
req_to_mmc_queue_req(req)->drv_op_result = -EIO;
req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
blk_execute_rq(req, false);
err = req_to_mmc_queue_req(req)->drv_op_result;
blk_mq_free_request(req);
if (err) {
pr_err("FAILED %d\n", err);
goto out_free;
}
for (i = 0; i < 512; i++)
n += sprintf(buf + n, "%02x", ext_csd[i]);
n += sprintf(buf + n, "\n");
if (n != EXT_CSD_STR_LEN) {
err = -EINVAL;
kfree(ext_csd);
goto out_free;
}
filp->private_data = buf;
kfree(ext_csd);
return 0;
out_free:
kfree(buf);
return err;
}
static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char *buf = filp->private_data;
return simple_read_from_buffer(ubuf, cnt, ppos,
buf, EXT_CSD_STR_LEN);
}
static int mmc_ext_csd_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static const struct file_operations mmc_dbg_ext_csd_fops = {
.open = mmc_ext_csd_open,
.read = mmc_ext_csd_read,
.release = mmc_ext_csd_release,
.llseek = default_llseek,
};
static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
{
struct dentry *root;
if (!card->debugfs_root)
return 0;
root = card->debugfs_root;
if (mmc_card_mmc(card) || mmc_card_sd(card)) {
md->status_dentry =
debugfs_create_file_unsafe("status", 0400, root,
card,
&mmc_dbg_card_status_fops);
if (!md->status_dentry)
return -EIO;
}
if (mmc_card_mmc(card)) {
md->ext_csd_dentry =
debugfs_create_file("ext_csd", S_IRUSR, root, card,
&mmc_dbg_ext_csd_fops);
if (!md->ext_csd_dentry)
return -EIO;
}
return 0;
}
static void mmc_blk_remove_debugfs(struct mmc_card *card,
struct mmc_blk_data *md)
{
if (!card->debugfs_root)
return;
if (!IS_ERR_OR_NULL(md->status_dentry)) {
debugfs_remove(md->status_dentry);
md->status_dentry = NULL;
}
if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
debugfs_remove(md->ext_csd_dentry);
md->ext_csd_dentry = NULL;
}
}
#else
static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
{
return 0;
}
static void mmc_blk_remove_debugfs(struct mmc_card *card,
struct mmc_blk_data *md)
{
}
#endif /* CONFIG_DEBUG_FS */
static int mmc_blk_probe(struct mmc_card *card)
{
struct mmc_blk_data *md;
int ret = 0;
/*
* Check that the card supports the command class(es) we need.
*/
if (!(card->csd.cmdclass & CCC_BLOCK_READ))
return -ENODEV;
mmc_fixup_device(card, mmc_blk_fixups);
card->complete_wq = alloc_workqueue("mmc_complete",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
if (!card->complete_wq) {
pr_err("Failed to create mmc completion workqueue");
return -ENOMEM;
}
md = mmc_blk_alloc(card);
if (IS_ERR(md)) {
ret = PTR_ERR(md);
goto out_free;
}
ret = mmc_blk_alloc_parts(card, md);
if (ret)
goto out;
/* Add two debugfs entries */
mmc_blk_add_debugfs(card, md);
pm_runtime_set_autosuspend_delay(&card->dev, 3000);
pm_runtime_use_autosuspend(&card->dev);
/*
* Don't enable runtime PM for SD-combo cards here. Leave that
* decision to be taken during the SDIO init sequence instead.
*/
if (!mmc_card_sd_combo(card)) {
pm_runtime_set_active(&card->dev);
pm_runtime_enable(&card->dev);
}
return 0;
out:
mmc_blk_remove_parts(card, md);
mmc_blk_remove_req(md);
out_free:
destroy_workqueue(card->complete_wq);
return ret;
}
static void mmc_blk_remove(struct mmc_card *card)
{
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
mmc_blk_remove_debugfs(card, md);
mmc_blk_remove_parts(card, md);
pm_runtime_get_sync(&card->dev);
if (md->part_curr != md->part_type) {
mmc_claim_host(card->host);
mmc_blk_part_switch(card, md->part_type);
mmc_release_host(card->host);
}
if (!mmc_card_sd_combo(card))
pm_runtime_disable(&card->dev);
pm_runtime_put_noidle(&card->dev);
mmc_blk_remove_req(md);
dev_set_drvdata(&card->dev, NULL);
destroy_workqueue(card->complete_wq);
}
static int _mmc_blk_suspend(struct mmc_card *card)
{
struct mmc_blk_data *part_md;
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
if (md) {
mmc_queue_suspend(&md->queue);
list_for_each_entry(part_md, &md->part, part) {
mmc_queue_suspend(&part_md->queue);
}
}
return 0;
}
static void mmc_blk_shutdown(struct mmc_card *card)
{
_mmc_blk_suspend(card);
}
#ifdef CONFIG_PM_SLEEP
static int mmc_blk_suspend(struct device *dev)
{
struct mmc_card *card = mmc_dev_to_card(dev);
return _mmc_blk_suspend(card);
}
static int mmc_blk_resume(struct device *dev)
{
struct mmc_blk_data *part_md;
struct mmc_blk_data *md = dev_get_drvdata(dev);
if (md) {
/*
* Resume involves the card going into idle state,
* so current partition is always the main one.
*/
md->part_curr = md->part_type;
mmc_queue_resume(&md->queue);
list_for_each_entry(part_md, &md->part, part) {
mmc_queue_resume(&part_md->queue);
}
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmcblk",
.pm = &mmc_blk_pm_ops,
},
.probe = mmc_blk_probe,
.remove = mmc_blk_remove,
.shutdown = mmc_blk_shutdown,
};
static int __init mmc_blk_init(void)
{
int res;
res = bus_register(&mmc_rpmb_bus_type);
if (res < 0) {
pr_err("mmcblk: could not register RPMB bus type\n");
return res;
}
res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
if (res < 0) {
pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
goto out_bus_unreg;
}
if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
pr_info("mmcblk: using %d minors per device\n", perdev_minors);
max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
if (res)
goto out_chrdev_unreg;
res = mmc_register_driver(&mmc_driver);
if (res)
goto out_blkdev_unreg;
return 0;
out_blkdev_unreg:
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
out_chrdev_unreg:
unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
out_bus_unreg:
bus_unregister(&mmc_rpmb_bus_type);
return res;
}
static void __exit mmc_blk_exit(void)
{
mmc_unregister_driver(&mmc_driver);
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
bus_unregister(&mmc_rpmb_bus_type);
}
module_init(mmc_blk_init);
module_exit(mmc_blk_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");