linuxdebug/drivers/media/rc/rc-main.c

2096 lines
53 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
// rc-main.c - Remote Controller core module
//
// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <media/rc-core.h>
#include <linux/bsearch.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/leds.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/device.h>
#include <linux/module.h>
#include "rc-core-priv.h"
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE 256
#define IR_TAB_MAX_SIZE 8192
static const struct {
const char *name;
unsigned int repeat_period;
unsigned int scancode_bits;
} protocols[] = {
[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
[RC_PROTO_RC5] = { .name = "rc-5",
.scancode_bits = 0x1f7f, .repeat_period = 114 },
[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
.scancode_bits = 0x2fff, .repeat_period = 114 },
[RC_PROTO_JVC] = { .name = "jvc",
.scancode_bits = 0xffff, .repeat_period = 125 },
[RC_PROTO_SONY12] = { .name = "sony-12",
.scancode_bits = 0x1f007f, .repeat_period = 100 },
[RC_PROTO_SONY15] = { .name = "sony-15",
.scancode_bits = 0xff007f, .repeat_period = 100 },
[RC_PROTO_SONY20] = { .name = "sony-20",
.scancode_bits = 0x1fff7f, .repeat_period = 100 },
[RC_PROTO_NEC] = { .name = "nec",
.scancode_bits = 0xffff, .repeat_period = 110 },
[RC_PROTO_NECX] = { .name = "nec-x",
.scancode_bits = 0xffffff, .repeat_period = 110 },
[RC_PROTO_NEC32] = { .name = "nec-32",
.scancode_bits = 0xffffffff, .repeat_period = 110 },
[RC_PROTO_SANYO] = { .name = "sanyo",
.scancode_bits = 0x1fffff, .repeat_period = 125 },
[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
.scancode_bits = 0xffffff, .repeat_period = 100 },
[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
.scancode_bits = 0x1fffff, .repeat_period = 100 },
[RC_PROTO_RC6_0] = { .name = "rc-6-0",
.scancode_bits = 0xffff, .repeat_period = 114 },
[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
.scancode_bits = 0xfffff, .repeat_period = 114 },
[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
.scancode_bits = 0xffffff, .repeat_period = 114 },
[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
.scancode_bits = 0xffffffff, .repeat_period = 114 },
[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
.scancode_bits = 0xffff7fff, .repeat_period = 114 },
[RC_PROTO_SHARP] = { .name = "sharp",
.scancode_bits = 0x1fff, .repeat_period = 125 },
[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
[RC_PROTO_IMON] = { .name = "imon",
.scancode_bits = 0x7fffffff, .repeat_period = 114 },
[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
.scancode_bits = 0x00000fff, .repeat_period = 114 },
[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
.scancode_bits = 0x00ffffff, .repeat_period = 114 },
[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
.scancode_bits = 0xffffffff, .repeat_period = 114 },
[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
};
/* Used to keep track of known keymaps */
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
static struct led_trigger *led_feedback;
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);
static struct rc_map_list *seek_rc_map(const char *name)
{
struct rc_map_list *map = NULL;
spin_lock(&rc_map_lock);
list_for_each_entry(map, &rc_map_list, list) {
if (!strcmp(name, map->map.name)) {
spin_unlock(&rc_map_lock);
return map;
}
}
spin_unlock(&rc_map_lock);
return NULL;
}
struct rc_map *rc_map_get(const char *name)
{
struct rc_map_list *map;
map = seek_rc_map(name);
#ifdef CONFIG_MODULES
if (!map) {
int rc = request_module("%s", name);
if (rc < 0) {
pr_err("Couldn't load IR keymap %s\n", name);
return NULL;
}
msleep(20); /* Give some time for IR to register */
map = seek_rc_map(name);
}
#endif
if (!map) {
pr_err("IR keymap %s not found\n", name);
return NULL;
}
printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
return &map->map;
}
EXPORT_SYMBOL_GPL(rc_map_get);
int rc_map_register(struct rc_map_list *map)
{
spin_lock(&rc_map_lock);
list_add_tail(&map->list, &rc_map_list);
spin_unlock(&rc_map_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rc_map_register);
void rc_map_unregister(struct rc_map_list *map)
{
spin_lock(&rc_map_lock);
list_del(&map->list);
spin_unlock(&rc_map_lock);
}
EXPORT_SYMBOL_GPL(rc_map_unregister);
static struct rc_map_table empty[] = {
{ 0x2a, KEY_COFFEE },
};
static struct rc_map_list empty_map = {
.map = {
.scan = empty,
.size = ARRAY_SIZE(empty),
.rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
.name = RC_MAP_EMPTY,
}
};
/**
* scancode_to_u64() - converts scancode in &struct input_keymap_entry
* @ke: keymap entry containing scancode to be converted.
* @scancode: pointer to the location where converted scancode should
* be stored.
*
* This function is a version of input_scancode_to_scalar specialized for
* rc-core.
*/
static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
{
switch (ke->len) {
case 1:
*scancode = *((u8 *)ke->scancode);
break;
case 2:
*scancode = *((u16 *)ke->scancode);
break;
case 4:
*scancode = *((u32 *)ke->scancode);
break;
case 8:
*scancode = *((u64 *)ke->scancode);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* ir_create_table() - initializes a scancode table
* @dev: the rc_dev device
* @rc_map: the rc_map to initialize
* @name: name to assign to the table
* @rc_proto: ir type to assign to the new table
* @size: initial size of the table
*
* This routine will initialize the rc_map and will allocate
* memory to hold at least the specified number of elements.
*
* return: zero on success or a negative error code
*/
static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
const char *name, u64 rc_proto, size_t size)
{
rc_map->name = kstrdup(name, GFP_KERNEL);
if (!rc_map->name)
return -ENOMEM;
rc_map->rc_proto = rc_proto;
rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
if (!rc_map->scan) {
kfree(rc_map->name);
rc_map->name = NULL;
return -ENOMEM;
}
dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
rc_map->size, rc_map->alloc);
return 0;
}
/**
* ir_free_table() - frees memory allocated by a scancode table
* @rc_map: the table whose mappings need to be freed
*
* This routine will free memory alloctaed for key mappings used by given
* scancode table.
*/
static void ir_free_table(struct rc_map *rc_map)
{
rc_map->size = 0;
kfree(rc_map->name);
rc_map->name = NULL;
kfree(rc_map->scan);
rc_map->scan = NULL;
}
/**
* ir_resize_table() - resizes a scancode table if necessary
* @dev: the rc_dev device
* @rc_map: the rc_map to resize
* @gfp_flags: gfp flags to use when allocating memory
*
* This routine will shrink the rc_map if it has lots of
* unused entries and grow it if it is full.
*
* return: zero on success or a negative error code
*/
static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
gfp_t gfp_flags)
{
unsigned int oldalloc = rc_map->alloc;
unsigned int newalloc = oldalloc;
struct rc_map_table *oldscan = rc_map->scan;
struct rc_map_table *newscan;
if (rc_map->size == rc_map->len) {
/* All entries in use -> grow keytable */
if (rc_map->alloc >= IR_TAB_MAX_SIZE)
return -ENOMEM;
newalloc *= 2;
dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
}
if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
/* Less than 1/3 of entries in use -> shrink keytable */
newalloc /= 2;
dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
}
if (newalloc == oldalloc)
return 0;
newscan = kmalloc(newalloc, gfp_flags);
if (!newscan)
return -ENOMEM;
memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
rc_map->scan = newscan;
rc_map->alloc = newalloc;
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
kfree(oldscan);
return 0;
}
/**
* ir_update_mapping() - set a keycode in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @rc_map: scancode table to be adjusted
* @index: index of the mapping that needs to be updated
* @new_keycode: the desired keycode
*
* This routine is used to update scancode->keycode mapping at given
* position.
*
* return: previous keycode assigned to the mapping
*
*/
static unsigned int ir_update_mapping(struct rc_dev *dev,
struct rc_map *rc_map,
unsigned int index,
unsigned int new_keycode)
{
int old_keycode = rc_map->scan[index].keycode;
int i;
/* Did the user wish to remove the mapping? */
if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
index, rc_map->scan[index].scancode);
rc_map->len--;
memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
(rc_map->len - index) * sizeof(struct rc_map_table));
} else {
dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
index,
old_keycode == KEY_RESERVED ? "New" : "Replacing",
rc_map->scan[index].scancode, new_keycode);
rc_map->scan[index].keycode = new_keycode;
__set_bit(new_keycode, dev->input_dev->keybit);
}
if (old_keycode != KEY_RESERVED) {
/* A previous mapping was updated... */
__clear_bit(old_keycode, dev->input_dev->keybit);
/* ... but another scancode might use the same keycode */
for (i = 0; i < rc_map->len; i++) {
if (rc_map->scan[i].keycode == old_keycode) {
__set_bit(old_keycode, dev->input_dev->keybit);
break;
}
}
/* Possibly shrink the keytable, failure is not a problem */
ir_resize_table(dev, rc_map, GFP_ATOMIC);
}
return old_keycode;
}
/**
* ir_establish_scancode() - set a keycode in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @rc_map: scancode table to be searched
* @scancode: the desired scancode
* @resize: controls whether we allowed to resize the table to
* accommodate not yet present scancodes
*
* This routine is used to locate given scancode in rc_map.
* If scancode is not yet present the routine will allocate a new slot
* for it.
*
* return: index of the mapping containing scancode in question
* or -1U in case of failure.
*/
static unsigned int ir_establish_scancode(struct rc_dev *dev,
struct rc_map *rc_map,
u64 scancode, bool resize)
{
unsigned int i;
/*
* Unfortunately, some hardware-based IR decoders don't provide
* all bits for the complete IR code. In general, they provide only
* the command part of the IR code. Yet, as it is possible to replace
* the provided IR with another one, it is needed to allow loading
* IR tables from other remotes. So, we support specifying a mask to
* indicate the valid bits of the scancodes.
*/
if (dev->scancode_mask)
scancode &= dev->scancode_mask;
/* First check if we already have a mapping for this ir command */
for (i = 0; i < rc_map->len; i++) {
if (rc_map->scan[i].scancode == scancode)
return i;
/* Keytable is sorted from lowest to highest scancode */
if (rc_map->scan[i].scancode >= scancode)
break;
}
/* No previous mapping found, we might need to grow the table */
if (rc_map->size == rc_map->len) {
if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
return -1U;
}
/* i is the proper index to insert our new keycode */
if (i < rc_map->len)
memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
(rc_map->len - i) * sizeof(struct rc_map_table));
rc_map->scan[i].scancode = scancode;
rc_map->scan[i].keycode = KEY_RESERVED;
rc_map->len++;
return i;
}
/**
* ir_setkeycode() - set a keycode in the scancode->keycode table
* @idev: the struct input_dev device descriptor
* @ke: Input keymap entry
* @old_keycode: result
*
* This routine is used to handle evdev EVIOCSKEY ioctl.
*
* return: -EINVAL if the keycode could not be inserted, otherwise zero.
*/
static int ir_setkeycode(struct input_dev *idev,
const struct input_keymap_entry *ke,
unsigned int *old_keycode)
{
struct rc_dev *rdev = input_get_drvdata(idev);
struct rc_map *rc_map = &rdev->rc_map;
unsigned int index;
u64 scancode;
int retval = 0;
unsigned long flags;
spin_lock_irqsave(&rc_map->lock, flags);
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
index = ke->index;
if (index >= rc_map->len) {
retval = -EINVAL;
goto out;
}
} else {
retval = scancode_to_u64(ke, &scancode);
if (retval)
goto out;
index = ir_establish_scancode(rdev, rc_map, scancode, true);
if (index >= rc_map->len) {
retval = -ENOMEM;
goto out;
}
}
*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
out:
spin_unlock_irqrestore(&rc_map->lock, flags);
return retval;
}
/**
* ir_setkeytable() - sets several entries in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @from: the struct rc_map to copy entries from
*
* This routine is used to handle table initialization.
*
* return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
*/
static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
{
struct rc_map *rc_map = &dev->rc_map;
unsigned int i, index;
int rc;
rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
from->size);
if (rc)
return rc;
for (i = 0; i < from->size; i++) {
index = ir_establish_scancode(dev, rc_map,
from->scan[i].scancode, false);
if (index >= rc_map->len) {
rc = -ENOMEM;
break;
}
ir_update_mapping(dev, rc_map, index,
from->scan[i].keycode);
}
if (rc)
ir_free_table(rc_map);
return rc;
}
static int rc_map_cmp(const void *key, const void *elt)
{
const u64 *scancode = key;
const struct rc_map_table *e = elt;
if (*scancode < e->scancode)
return -1;
else if (*scancode > e->scancode)
return 1;
return 0;
}
/**
* ir_lookup_by_scancode() - locate mapping by scancode
* @rc_map: the struct rc_map to search
* @scancode: scancode to look for in the table
*
* This routine performs binary search in RC keykeymap table for
* given scancode.
*
* return: index in the table, -1U if not found
*/
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
u64 scancode)
{
struct rc_map_table *res;
res = bsearch(&scancode, rc_map->scan, rc_map->len,
sizeof(struct rc_map_table), rc_map_cmp);
if (!res)
return -1U;
else
return res - rc_map->scan;
}
/**
* ir_getkeycode() - get a keycode from the scancode->keycode table
* @idev: the struct input_dev device descriptor
* @ke: Input keymap entry
*
* This routine is used to handle evdev EVIOCGKEY ioctl.
*
* return: always returns zero.
*/
static int ir_getkeycode(struct input_dev *idev,
struct input_keymap_entry *ke)
{
struct rc_dev *rdev = input_get_drvdata(idev);
struct rc_map *rc_map = &rdev->rc_map;
struct rc_map_table *entry;
unsigned long flags;
unsigned int index;
u64 scancode;
int retval;
spin_lock_irqsave(&rc_map->lock, flags);
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
index = ke->index;
} else {
retval = scancode_to_u64(ke, &scancode);
if (retval)
goto out;
index = ir_lookup_by_scancode(rc_map, scancode);
}
if (index < rc_map->len) {
entry = &rc_map->scan[index];
ke->index = index;
ke->keycode = entry->keycode;
ke->len = sizeof(entry->scancode);
memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
/*
* We do not really know the valid range of scancodes
* so let's respond with KEY_RESERVED to anything we
* do not have mapping for [yet].
*/
ke->index = index;
ke->keycode = KEY_RESERVED;
} else {
retval = -EINVAL;
goto out;
}
retval = 0;
out:
spin_unlock_irqrestore(&rc_map->lock, flags);
return retval;
}
/**
* rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
* @dev: the struct rc_dev descriptor of the device
* @scancode: the scancode to look for
*
* This routine is used by drivers which need to convert a scancode to a
* keycode. Normally it should not be used since drivers should have no
* interest in keycodes.
*
* return: the corresponding keycode, or KEY_RESERVED
*/
u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
{
struct rc_map *rc_map = &dev->rc_map;
unsigned int keycode;
unsigned int index;
unsigned long flags;
spin_lock_irqsave(&rc_map->lock, flags);
index = ir_lookup_by_scancode(rc_map, scancode);
keycode = index < rc_map->len ?
rc_map->scan[index].keycode : KEY_RESERVED;
spin_unlock_irqrestore(&rc_map->lock, flags);
if (keycode != KEY_RESERVED)
dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
dev->device_name, scancode, keycode);
return keycode;
}
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
/**
* ir_do_keyup() - internal function to signal the release of a keypress
* @dev: the struct rc_dev descriptor of the device
* @sync: whether or not to call input_sync
*
* This function is used internally to release a keypress, it must be
* called with keylock held.
*/
static void ir_do_keyup(struct rc_dev *dev, bool sync)
{
if (!dev->keypressed)
return;
dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
del_timer(&dev->timer_repeat);
input_report_key(dev->input_dev, dev->last_keycode, 0);
led_trigger_event(led_feedback, LED_OFF);
if (sync)
input_sync(dev->input_dev);
dev->keypressed = false;
}
/**
* rc_keyup() - signals the release of a keypress
* @dev: the struct rc_dev descriptor of the device
*
* This routine is used to signal that a key has been released on the
* remote control.
*/
void rc_keyup(struct rc_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keyup(dev, true);
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keyup);
/**
* ir_timer_keyup() - generates a keyup event after a timeout
*
* @t: a pointer to the struct timer_list
*
* This routine will generate a keyup event some time after a keydown event
* is generated when no further activity has been detected.
*/
static void ir_timer_keyup(struct timer_list *t)
{
struct rc_dev *dev = from_timer(dev, t, timer_keyup);
unsigned long flags;
/*
* ir->keyup_jiffies is used to prevent a race condition if a
* hardware interrupt occurs at this point and the keyup timer
* event is moved further into the future as a result.
*
* The timer will then be reactivated and this function called
* again in the future. We need to exit gracefully in that case
* to allow the input subsystem to do its auto-repeat magic or
* a keyup event might follow immediately after the keydown.
*/
spin_lock_irqsave(&dev->keylock, flags);
if (time_is_before_eq_jiffies(dev->keyup_jiffies))
ir_do_keyup(dev, true);
spin_unlock_irqrestore(&dev->keylock, flags);
}
/**
* ir_timer_repeat() - generates a repeat event after a timeout
*
* @t: a pointer to the struct timer_list
*
* This routine will generate a soft repeat event every REP_PERIOD
* milliseconds.
*/
static void ir_timer_repeat(struct timer_list *t)
{
struct rc_dev *dev = from_timer(dev, t, timer_repeat);
struct input_dev *input = dev->input_dev;
unsigned long flags;
spin_lock_irqsave(&dev->keylock, flags);
if (dev->keypressed) {
input_event(input, EV_KEY, dev->last_keycode, 2);
input_sync(input);
if (input->rep[REP_PERIOD])
mod_timer(&dev->timer_repeat, jiffies +
msecs_to_jiffies(input->rep[REP_PERIOD]));
}
spin_unlock_irqrestore(&dev->keylock, flags);
}
static unsigned int repeat_period(int protocol)
{
if (protocol >= ARRAY_SIZE(protocols))
return 100;
return protocols[protocol].repeat_period;
}
/**
* rc_repeat() - signals that a key is still pressed
* @dev: the struct rc_dev descriptor of the device
*
* This routine is used by IR decoders when a repeat message which does
* not include the necessary bits to reproduce the scancode has been
* received.
*/
void rc_repeat(struct rc_dev *dev)
{
unsigned long flags;
unsigned int timeout = usecs_to_jiffies(dev->timeout) +
msecs_to_jiffies(repeat_period(dev->last_protocol));
struct lirc_scancode sc = {
.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
.flags = LIRC_SCANCODE_FLAG_REPEAT |
(dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
};
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
lirc_scancode_event(dev, &sc);
spin_lock_irqsave(&dev->keylock, flags);
if (dev->last_scancode <= U32_MAX) {
input_event(dev->input_dev, EV_MSC, MSC_SCAN,
dev->last_scancode);
input_sync(dev->input_dev);
}
if (dev->keypressed) {
dev->keyup_jiffies = jiffies + timeout;
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
}
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_repeat);
/**
* ir_do_keydown() - internal function to process a keypress
* @dev: the struct rc_dev descriptor of the device
* @protocol: the protocol of the keypress
* @scancode: the scancode of the keypress
* @keycode: the keycode of the keypress
* @toggle: the toggle value of the keypress
*
* This function is used internally to register a keypress, it must be
* called with keylock held.
*/
static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
u64 scancode, u32 keycode, u8 toggle)
{
bool new_event = (!dev->keypressed ||
dev->last_protocol != protocol ||
dev->last_scancode != scancode ||
dev->last_toggle != toggle);
struct lirc_scancode sc = {
.scancode = scancode, .rc_proto = protocol,
.flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
(!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
.keycode = keycode
};
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
lirc_scancode_event(dev, &sc);
if (new_event && dev->keypressed)
ir_do_keyup(dev, false);
if (scancode <= U32_MAX)
input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
dev->last_protocol = protocol;
dev->last_scancode = scancode;
dev->last_toggle = toggle;
dev->last_keycode = keycode;
if (new_event && keycode != KEY_RESERVED) {
/* Register a keypress */
dev->keypressed = true;
dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
dev->device_name, keycode, protocol, scancode);
input_report_key(dev->input_dev, keycode, 1);
led_trigger_event(led_feedback, LED_FULL);
}
/*
* For CEC, start sending repeat messages as soon as the first
* repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
* is non-zero. Otherwise, the input layer will generate repeat
* messages.
*/
if (!new_event && keycode != KEY_RESERVED &&
dev->allowed_protocols == RC_PROTO_BIT_CEC &&
!timer_pending(&dev->timer_repeat) &&
dev->input_dev->rep[REP_PERIOD] &&
!dev->input_dev->rep[REP_DELAY]) {
input_event(dev->input_dev, EV_KEY, keycode, 2);
mod_timer(&dev->timer_repeat, jiffies +
msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
}
input_sync(dev->input_dev);
}
/**
* rc_keydown() - generates input event for a key press
* @dev: the struct rc_dev descriptor of the device
* @protocol: the protocol for the keypress
* @scancode: the scancode for the keypress
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
* support toggle values, this should be set to zero)
*
* This routine is used to signal that a key has been pressed on the
* remote control.
*/
void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
u8 toggle)
{
unsigned long flags;
u32 keycode = rc_g_keycode_from_table(dev, scancode);
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
if (dev->keypressed) {
dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
msecs_to_jiffies(repeat_period(protocol));
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
}
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown);
/**
* rc_keydown_notimeout() - generates input event for a key press without
* an automatic keyup event at a later time
* @dev: the struct rc_dev descriptor of the device
* @protocol: the protocol for the keypress
* @scancode: the scancode for the keypress
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
* support toggle values, this should be set to zero)
*
* This routine is used to signal that a key has been pressed on the
* remote control. The driver must manually call rc_keyup() at a later stage.
*/
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
u64 scancode, u8 toggle)
{
unsigned long flags;
u32 keycode = rc_g_keycode_from_table(dev, scancode);
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
/**
* rc_validate_scancode() - checks that a scancode is valid for a protocol.
* For nec, it should do the opposite of ir_nec_bytes_to_scancode()
* @proto: protocol
* @scancode: scancode
*/
bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
{
switch (proto) {
/*
* NECX has a 16-bit address; if the lower 8 bits match the upper
* 8 bits inverted, then the address would match regular nec.
*/
case RC_PROTO_NECX:
if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
return false;
break;
/*
* NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
* of the command match the upper 8 bits inverted, then it would
* be either NEC or NECX.
*/
case RC_PROTO_NEC32:
if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
return false;
break;
/*
* If the customer code (top 32-bit) is 0x800f, it is MCE else it
* is regular mode-6a 32 bit
*/
case RC_PROTO_RC6_MCE:
if ((scancode & 0xffff0000) != 0x800f0000)
return false;
break;
case RC_PROTO_RC6_6A_32:
if ((scancode & 0xffff0000) == 0x800f0000)
return false;
break;
default:
break;
}
return true;
}
/**
* rc_validate_filter() - checks that the scancode and mask are valid and
* provides sensible defaults
* @dev: the struct rc_dev descriptor of the device
* @filter: the scancode and mask
*
* return: 0 or -EINVAL if the filter is not valid
*/
static int rc_validate_filter(struct rc_dev *dev,
struct rc_scancode_filter *filter)
{
u32 mask, s = filter->data;
enum rc_proto protocol = dev->wakeup_protocol;
if (protocol >= ARRAY_SIZE(protocols))
return -EINVAL;
mask = protocols[protocol].scancode_bits;
if (!rc_validate_scancode(protocol, s))
return -EINVAL;
filter->data &= mask;
filter->mask &= mask;
/*
* If we have to raw encode the IR for wakeup, we cannot have a mask
*/
if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
return -EINVAL;
return 0;
}
int rc_open(struct rc_dev *rdev)
{
int rval = 0;
if (!rdev)
return -EINVAL;
mutex_lock(&rdev->lock);
if (!rdev->registered) {
rval = -ENODEV;
} else {
if (!rdev->users++ && rdev->open)
rval = rdev->open(rdev);
if (rval)
rdev->users--;
}
mutex_unlock(&rdev->lock);
return rval;
}
static int ir_open(struct input_dev *idev)
{
struct rc_dev *rdev = input_get_drvdata(idev);
return rc_open(rdev);
}
void rc_close(struct rc_dev *rdev)
{
if (rdev) {
mutex_lock(&rdev->lock);
if (!--rdev->users && rdev->close && rdev->registered)
rdev->close(rdev);
mutex_unlock(&rdev->lock);
}
}
static void ir_close(struct input_dev *idev)
{
struct rc_dev *rdev = input_get_drvdata(idev);
rc_close(rdev);
}
/* class for /sys/class/rc */
static char *rc_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}
static struct class rc_class = {
.name = "rc",
.devnode = rc_devnode,
};
/*
* These are the protocol textual descriptions that are
* used by the sysfs protocols file. Note that the order
* of the entries is relevant.
*/
static const struct {
u64 type;
const char *name;
const char *module_name;
} proto_names[] = {
{ RC_PROTO_BIT_NONE, "none", NULL },
{ RC_PROTO_BIT_OTHER, "other", NULL },
{ RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
{ RC_PROTO_BIT_RC5 |
RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
{ RC_PROTO_BIT_NEC |
RC_PROTO_BIT_NECX |
RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
{ RC_PROTO_BIT_RC6_0 |
RC_PROTO_BIT_RC6_6A_20 |
RC_PROTO_BIT_RC6_6A_24 |
RC_PROTO_BIT_RC6_6A_32 |
RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
{ RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
{ RC_PROTO_BIT_SONY12 |
RC_PROTO_BIT_SONY15 |
RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
{ RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
{ RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
{ RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
{ RC_PROTO_BIT_MCIR2_KBD |
RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
{ RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
{ RC_PROTO_BIT_CEC, "cec", NULL },
{ RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
{ RC_PROTO_BIT_RCMM12 |
RC_PROTO_BIT_RCMM24 |
RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" },
{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL },
};
/**
* struct rc_filter_attribute - Device attribute relating to a filter type.
* @attr: Device attribute.
* @type: Filter type.
* @mask: false for filter value, true for filter mask.
*/
struct rc_filter_attribute {
struct device_attribute attr;
enum rc_filter_type type;
bool mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
struct rc_filter_attribute dev_attr_##_name = { \
.attr = __ATTR(_name, _mode, _show, _store), \
.type = (_type), \
.mask = (_mask), \
}
/**
* show_protocols() - shows the current IR protocol(s)
* @device: the device descriptor
* @mattr: the device attribute struct
* @buf: a pointer to the output buffer
*
* This routine is a callback routine for input read the IR protocol type(s).
* it is triggered by reading /sys/class/rc/rc?/protocols.
* It returns the protocol names of supported protocols.
* Enabled protocols are printed in brackets.
*
* dev->lock is taken to guard against races between
* store_protocols and show_protocols.
*/
static ssize_t show_protocols(struct device *device,
struct device_attribute *mattr, char *buf)
{
struct rc_dev *dev = to_rc_dev(device);
u64 allowed, enabled;
char *tmp = buf;
int i;
mutex_lock(&dev->lock);
enabled = dev->enabled_protocols;
allowed = dev->allowed_protocols;
if (dev->raw && !allowed)
allowed = ir_raw_get_allowed_protocols();
mutex_unlock(&dev->lock);
dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
__func__, (long long)allowed, (long long)enabled);
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
if (allowed & enabled & proto_names[i].type)
tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
else if (allowed & proto_names[i].type)
tmp += sprintf(tmp, "%s ", proto_names[i].name);
if (allowed & proto_names[i].type)
allowed &= ~proto_names[i].type;
}
#ifdef CONFIG_LIRC
if (dev->driver_type == RC_DRIVER_IR_RAW)
tmp += sprintf(tmp, "[lirc] ");
#endif
if (tmp != buf)
tmp--;
*tmp = '\n';
return tmp + 1 - buf;
}
/**
* parse_protocol_change() - parses a protocol change request
* @dev: rc_dev device
* @protocols: pointer to the bitmask of current protocols
* @buf: pointer to the buffer with a list of changes
*
* Writing "+proto" will add a protocol to the protocol mask.
* Writing "-proto" will remove a protocol from protocol mask.
* Writing "proto" will enable only "proto".
* Writing "none" will disable all protocols.
* Returns the number of changes performed or a negative error code.
*/
static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
const char *buf)
{
const char *tmp;
unsigned count = 0;
bool enable, disable;
u64 mask;
int i;
while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
if (!*tmp)
break;
if (*tmp == '+') {
enable = true;
disable = false;
tmp++;
} else if (*tmp == '-') {
enable = false;
disable = true;
tmp++;
} else {
enable = false;
disable = false;
}
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
if (!strcasecmp(tmp, proto_names[i].name)) {
mask = proto_names[i].type;
break;
}
}
if (i == ARRAY_SIZE(proto_names)) {
if (!strcasecmp(tmp, "lirc"))
mask = 0;
else {
dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
tmp);
return -EINVAL;
}
}
count++;
if (enable)
*protocols |= mask;
else if (disable)
*protocols &= ~mask;
else
*protocols = mask;
}
if (!count) {
dev_dbg(&dev->dev, "Protocol not specified\n");
return -EINVAL;
}
return count;
}
void ir_raw_load_modules(u64 *protocols)
{
u64 available;
int i, ret;
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
if (proto_names[i].type == RC_PROTO_BIT_NONE ||
proto_names[i].type & (RC_PROTO_BIT_OTHER |
RC_PROTO_BIT_UNKNOWN))
continue;
available = ir_raw_get_allowed_protocols();
if (!(*protocols & proto_names[i].type & ~available))
continue;
if (!proto_names[i].module_name) {
pr_err("Can't enable IR protocol %s\n",
proto_names[i].name);
*protocols &= ~proto_names[i].type;
continue;
}
ret = request_module("%s", proto_names[i].module_name);
if (ret < 0) {
pr_err("Couldn't load IR protocol module %s\n",
proto_names[i].module_name);
*protocols &= ~proto_names[i].type;
continue;
}
msleep(20);
available = ir_raw_get_allowed_protocols();
if (!(*protocols & proto_names[i].type & ~available))
continue;
pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
proto_names[i].module_name,
proto_names[i].name);
*protocols &= ~proto_names[i].type;
}
}
/**
* store_protocols() - changes the current/wakeup IR protocol(s)
* @device: the device descriptor
* @mattr: the device attribute struct
* @buf: a pointer to the input buffer
* @len: length of the input buffer
*
* This routine is for changing the IR protocol type.
* It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
* See parse_protocol_change() for the valid commands.
* Returns @len on success or a negative error code.
*
* dev->lock is taken to guard against races between
* store_protocols and show_protocols.
*/
static ssize_t store_protocols(struct device *device,
struct device_attribute *mattr,
const char *buf, size_t len)
{
struct rc_dev *dev = to_rc_dev(device);
u64 *current_protocols;
struct rc_scancode_filter *filter;
u64 old_protocols, new_protocols;
ssize_t rc;
dev_dbg(&dev->dev, "Normal protocol change requested\n");
current_protocols = &dev->enabled_protocols;
filter = &dev->scancode_filter;
if (!dev->change_protocol) {
dev_dbg(&dev->dev, "Protocol switching not supported\n");
return -EINVAL;
}
mutex_lock(&dev->lock);
if (!dev->registered) {
mutex_unlock(&dev->lock);
return -ENODEV;
}
old_protocols = *current_protocols;
new_protocols = old_protocols;
rc = parse_protocol_change(dev, &new_protocols, buf);
if (rc < 0)
goto out;
if (dev->driver_type == RC_DRIVER_IR_RAW)
ir_raw_load_modules(&new_protocols);
rc = dev->change_protocol(dev, &new_protocols);
if (rc < 0) {
dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
(long long)new_protocols);
goto out;
}
if (new_protocols != old_protocols) {
*current_protocols = new_protocols;
dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
(long long)new_protocols);
}
/*
* If a protocol change was attempted the filter may need updating, even
* if the actual protocol mask hasn't changed (since the driver may have
* cleared the filter).
* Try setting the same filter with the new protocol (if any).
* Fall back to clearing the filter.
*/
if (dev->s_filter && filter->mask) {
if (new_protocols)
rc = dev->s_filter(dev, filter);
else
rc = -1;
if (rc < 0) {
filter->data = 0;
filter->mask = 0;
dev->s_filter(dev, filter);
}
}
rc = len;
out:
mutex_unlock(&dev->lock);
return rc;
}
/**
* show_filter() - shows the current scancode filter value or mask
* @device: the device descriptor
* @attr: the device attribute struct
* @buf: a pointer to the output buffer
*
* This routine is a callback routine to read a scancode filter value or mask.
* It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
* It prints the current scancode filter value or mask of the appropriate filter
* type in hexadecimal into @buf and returns the size of the buffer.
*
* Bits of the filter value corresponding to set bits in the filter mask are
* compared against input scancodes and non-matching scancodes are discarded.
*
* dev->lock is taken to guard against races between
* store_filter and show_filter.
*/
static ssize_t show_filter(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
struct rc_scancode_filter *filter;
u32 val;
mutex_lock(&dev->lock);
if (fattr->type == RC_FILTER_NORMAL)
filter = &dev->scancode_filter;
else
filter = &dev->scancode_wakeup_filter;
if (fattr->mask)
val = filter->mask;
else
val = filter->data;
mutex_unlock(&dev->lock);
return sprintf(buf, "%#x\n", val);
}
/**
* store_filter() - changes the scancode filter value
* @device: the device descriptor
* @attr: the device attribute struct
* @buf: a pointer to the input buffer
* @len: length of the input buffer
*
* This routine is for changing a scancode filter value or mask.
* It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
* Returns -EINVAL if an invalid filter value for the current protocol was
* specified or if scancode filtering is not supported by the driver, otherwise
* returns @len.
*
* Bits of the filter value corresponding to set bits in the filter mask are
* compared against input scancodes and non-matching scancodes are discarded.
*
* dev->lock is taken to guard against races between
* store_filter and show_filter.
*/
static ssize_t store_filter(struct device *device,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
struct rc_scancode_filter new_filter, *filter;
int ret;
unsigned long val;
int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
if (fattr->type == RC_FILTER_NORMAL) {
set_filter = dev->s_filter;
filter = &dev->scancode_filter;
} else {
set_filter = dev->s_wakeup_filter;
filter = &dev->scancode_wakeup_filter;
}
if (!set_filter)
return -EINVAL;
mutex_lock(&dev->lock);
if (!dev->registered) {
mutex_unlock(&dev->lock);
return -ENODEV;
}
new_filter = *filter;
if (fattr->mask)
new_filter.mask = val;
else
new_filter.data = val;
if (fattr->type == RC_FILTER_WAKEUP) {
/*
* Refuse to set a filter unless a protocol is enabled
* and the filter is valid for that protocol
*/
if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
ret = rc_validate_filter(dev, &new_filter);
else
ret = -EINVAL;
if (ret != 0)
goto unlock;
}
if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
val) {
/* refuse to set a filter unless a protocol is enabled */
ret = -EINVAL;
goto unlock;
}
ret = set_filter(dev, &new_filter);
if (ret < 0)
goto unlock;
*filter = new_filter;
unlock:
mutex_unlock(&dev->lock);
return (ret < 0) ? ret : len;
}
/**
* show_wakeup_protocols() - shows the wakeup IR protocol
* @device: the device descriptor
* @mattr: the device attribute struct
* @buf: a pointer to the output buffer
*
* This routine is a callback routine for input read the IR protocol type(s).
* it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
* It returns the protocol names of supported protocols.
* The enabled protocols are printed in brackets.
*
* dev->lock is taken to guard against races between
* store_wakeup_protocols and show_wakeup_protocols.
*/
static ssize_t show_wakeup_protocols(struct device *device,
struct device_attribute *mattr,
char *buf)
{
struct rc_dev *dev = to_rc_dev(device);
u64 allowed;
enum rc_proto enabled;
char *tmp = buf;
int i;
mutex_lock(&dev->lock);
allowed = dev->allowed_wakeup_protocols;
enabled = dev->wakeup_protocol;
mutex_unlock(&dev->lock);
dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
__func__, (long long)allowed, enabled);
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
if (allowed & (1ULL << i)) {
if (i == enabled)
tmp += sprintf(tmp, "[%s] ", protocols[i].name);
else
tmp += sprintf(tmp, "%s ", protocols[i].name);
}
}
if (tmp != buf)
tmp--;
*tmp = '\n';
return tmp + 1 - buf;
}
/**
* store_wakeup_protocols() - changes the wakeup IR protocol(s)
* @device: the device descriptor
* @mattr: the device attribute struct
* @buf: a pointer to the input buffer
* @len: length of the input buffer
*
* This routine is for changing the IR protocol type.
* It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
* Returns @len on success or a negative error code.
*
* dev->lock is taken to guard against races between
* store_wakeup_protocols and show_wakeup_protocols.
*/
static ssize_t store_wakeup_protocols(struct device *device,
struct device_attribute *mattr,
const char *buf, size_t len)
{
struct rc_dev *dev = to_rc_dev(device);
enum rc_proto protocol = RC_PROTO_UNKNOWN;
ssize_t rc;
u64 allowed;
int i;
mutex_lock(&dev->lock);
if (!dev->registered) {
mutex_unlock(&dev->lock);
return -ENODEV;
}
allowed = dev->allowed_wakeup_protocols;
if (!sysfs_streq(buf, "none")) {
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
if ((allowed & (1ULL << i)) &&
sysfs_streq(buf, protocols[i].name)) {
protocol = i;
break;
}
}
if (i == ARRAY_SIZE(protocols)) {
rc = -EINVAL;
goto out;
}
if (dev->encode_wakeup) {
u64 mask = 1ULL << protocol;
ir_raw_load_modules(&mask);
if (!mask) {
rc = -EINVAL;
goto out;
}
}
}
if (dev->wakeup_protocol != protocol) {
dev->wakeup_protocol = protocol;
dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
if (protocol == RC_PROTO_RC6_MCE)
dev->scancode_wakeup_filter.data = 0x800f0000;
else
dev->scancode_wakeup_filter.data = 0;
dev->scancode_wakeup_filter.mask = 0;
rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
if (rc == 0)
rc = len;
} else {
rc = len;
}
out:
mutex_unlock(&dev->lock);
return rc;
}
static void rc_dev_release(struct device *device)
{
struct rc_dev *dev = to_rc_dev(device);
kfree(dev);
}
static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
struct rc_dev *dev = to_rc_dev(device);
int ret = 0;
mutex_lock(&dev->lock);
if (!dev->registered)
ret = -ENODEV;
if (ret == 0 && dev->rc_map.name)
ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
if (ret == 0 && dev->driver_name)
ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
if (ret == 0 && dev->device_name)
ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
mutex_unlock(&dev->lock);
return ret;
}
/*
* Static device attribute struct with the sysfs attributes for IR's
*/
static struct device_attribute dev_attr_ro_protocols =
__ATTR(protocols, 0444, show_protocols, NULL);
static struct device_attribute dev_attr_rw_protocols =
__ATTR(protocols, 0644, show_protocols, store_protocols);
static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
store_wakeup_protocols);
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_WAKEUP, true);
static struct attribute *rc_dev_rw_protocol_attrs[] = {
&dev_attr_rw_protocols.attr,
NULL,
};
static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
.attrs = rc_dev_rw_protocol_attrs,
};
static struct attribute *rc_dev_ro_protocol_attrs[] = {
&dev_attr_ro_protocols.attr,
NULL,
};
static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
.attrs = rc_dev_ro_protocol_attrs,
};
static struct attribute *rc_dev_filter_attrs[] = {
&dev_attr_filter.attr.attr,
&dev_attr_filter_mask.attr.attr,
NULL,
};
static const struct attribute_group rc_dev_filter_attr_grp = {
.attrs = rc_dev_filter_attrs,
};
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
&dev_attr_wakeup_filter.attr.attr,
&dev_attr_wakeup_filter_mask.attr.attr,
&dev_attr_wakeup_protocols.attr,
NULL,
};
static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
.attrs = rc_dev_wakeup_filter_attrs,
};
static const struct device_type rc_dev_type = {
.release = rc_dev_release,
.uevent = rc_dev_uevent,
};
struct rc_dev *rc_allocate_device(enum rc_driver_type type)
{
struct rc_dev *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
if (type != RC_DRIVER_IR_RAW_TX) {
dev->input_dev = input_allocate_device();
if (!dev->input_dev) {
kfree(dev);
return NULL;
}
dev->input_dev->getkeycode = ir_getkeycode;
dev->input_dev->setkeycode = ir_setkeycode;
input_set_drvdata(dev->input_dev, dev);
dev->timeout = IR_DEFAULT_TIMEOUT;
timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
spin_lock_init(&dev->rc_map.lock);
spin_lock_init(&dev->keylock);
}
mutex_init(&dev->lock);
dev->dev.type = &rc_dev_type;
dev->dev.class = &rc_class;
device_initialize(&dev->dev);
dev->driver_type = type;
__module_get(THIS_MODULE);
return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);
void rc_free_device(struct rc_dev *dev)
{
if (!dev)
return;
input_free_device(dev->input_dev);
put_device(&dev->dev);
/* kfree(dev) will be called by the callback function
rc_dev_release() */
module_put(THIS_MODULE);
}
EXPORT_SYMBOL_GPL(rc_free_device);
static void devm_rc_alloc_release(struct device *dev, void *res)
{
rc_free_device(*(struct rc_dev **)res);
}
struct rc_dev *devm_rc_allocate_device(struct device *dev,
enum rc_driver_type type)
{
struct rc_dev **dr, *rc;
dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
if (!dr)
return NULL;
rc = rc_allocate_device(type);
if (!rc) {
devres_free(dr);
return NULL;
}
rc->dev.parent = dev;
rc->managed_alloc = true;
*dr = rc;
devres_add(dev, dr);
return rc;
}
EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
static int rc_prepare_rx_device(struct rc_dev *dev)
{
int rc;
struct rc_map *rc_map;
u64 rc_proto;
if (!dev->map_name)
return -EINVAL;
rc_map = rc_map_get(dev->map_name);
if (!rc_map)
rc_map = rc_map_get(RC_MAP_EMPTY);
if (!rc_map || !rc_map->scan || rc_map->size == 0)
return -EINVAL;
rc = ir_setkeytable(dev, rc_map);
if (rc)
return rc;
rc_proto = BIT_ULL(rc_map->rc_proto);
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
dev->enabled_protocols = dev->allowed_protocols;
if (dev->driver_type == RC_DRIVER_IR_RAW)
ir_raw_load_modules(&rc_proto);
if (dev->change_protocol) {
rc = dev->change_protocol(dev, &rc_proto);
if (rc < 0)
goto out_table;
dev->enabled_protocols = rc_proto;
}
/* Keyboard events */
set_bit(EV_KEY, dev->input_dev->evbit);
set_bit(EV_REP, dev->input_dev->evbit);
set_bit(EV_MSC, dev->input_dev->evbit);
set_bit(MSC_SCAN, dev->input_dev->mscbit);
/* Pointer/mouse events */
set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
set_bit(EV_REL, dev->input_dev->evbit);
set_bit(REL_X, dev->input_dev->relbit);
set_bit(REL_Y, dev->input_dev->relbit);
if (dev->open)
dev->input_dev->open = ir_open;
if (dev->close)
dev->input_dev->close = ir_close;
dev->input_dev->dev.parent = &dev->dev;
memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
dev->input_dev->phys = dev->input_phys;
dev->input_dev->name = dev->device_name;
return 0;
out_table:
ir_free_table(&dev->rc_map);
return rc;
}
static int rc_setup_rx_device(struct rc_dev *dev)
{
int rc;
/* rc_open will be called here */
rc = input_register_device(dev->input_dev);
if (rc)
return rc;
/*
* Default delay of 250ms is too short for some protocols, especially
* since the timeout is currently set to 250ms. Increase it to 500ms,
* to avoid wrong repetition of the keycodes. Note that this must be
* set after the call to input_register_device().
*/
if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
dev->input_dev->rep[REP_DELAY] = 0;
else
dev->input_dev->rep[REP_DELAY] = 500;
/*
* As a repeat event on protocols like RC-5 and NEC take as long as
* 110/114ms, using 33ms as a repeat period is not the right thing
* to do.
*/
dev->input_dev->rep[REP_PERIOD] = 125;
return 0;
}
static void rc_free_rx_device(struct rc_dev *dev)
{
if (!dev)
return;
if (dev->input_dev) {
input_unregister_device(dev->input_dev);
dev->input_dev = NULL;
}
ir_free_table(&dev->rc_map);
}
int rc_register_device(struct rc_dev *dev)
{
const char *path;
int attr = 0;
int minor;
int rc;
if (!dev)
return -EINVAL;
minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
if (minor < 0)
return minor;
dev->minor = minor;
dev_set_name(&dev->dev, "rc%u", dev->minor);
dev_set_drvdata(&dev->dev, dev);
dev->dev.groups = dev->sysfs_groups;
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
if (dev->s_filter)
dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
if (dev->s_wakeup_filter)
dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
dev->sysfs_groups[attr++] = NULL;
if (dev->driver_type == RC_DRIVER_IR_RAW) {
rc = ir_raw_event_prepare(dev);
if (rc < 0)
goto out_minor;
}
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
rc = rc_prepare_rx_device(dev);
if (rc)
goto out_raw;
}
dev->registered = true;
rc = device_add(&dev->dev);
if (rc)
goto out_rx_free;
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
dev_info(&dev->dev, "%s as %s\n",
dev->device_name ?: "Unspecified device", path ?: "N/A");
kfree(path);
/*
* once the input device is registered in rc_setup_rx_device,
* userspace can open the input device and rc_open() will be called
* as a result. This results in driver code being allowed to submit
* keycodes with rc_keydown, so lirc must be registered first.
*/
if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
rc = lirc_register(dev);
if (rc < 0)
goto out_dev;
}
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
rc = rc_setup_rx_device(dev);
if (rc)
goto out_lirc;
}
if (dev->driver_type == RC_DRIVER_IR_RAW) {
rc = ir_raw_event_register(dev);
if (rc < 0)
goto out_rx;
}
dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
dev->driver_name ? dev->driver_name : "unknown");
return 0;
out_rx:
rc_free_rx_device(dev);
out_lirc:
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
lirc_unregister(dev);
out_dev:
device_del(&dev->dev);
out_rx_free:
ir_free_table(&dev->rc_map);
out_raw:
ir_raw_event_free(dev);
out_minor:
ida_free(&rc_ida, minor);
return rc;
}
EXPORT_SYMBOL_GPL(rc_register_device);
static void devm_rc_release(struct device *dev, void *res)
{
rc_unregister_device(*(struct rc_dev **)res);
}
int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
{
struct rc_dev **dr;
int ret;
dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
if (!dr)
return -ENOMEM;
ret = rc_register_device(dev);
if (ret) {
devres_free(dr);
return ret;
}
*dr = dev;
devres_add(parent, dr);
return 0;
}
EXPORT_SYMBOL_GPL(devm_rc_register_device);
void rc_unregister_device(struct rc_dev *dev)
{
if (!dev)
return;
if (dev->driver_type == RC_DRIVER_IR_RAW)
ir_raw_event_unregister(dev);
del_timer_sync(&dev->timer_keyup);
del_timer_sync(&dev->timer_repeat);
mutex_lock(&dev->lock);
if (dev->users && dev->close)
dev->close(dev);
dev->registered = false;
mutex_unlock(&dev->lock);
rc_free_rx_device(dev);
/*
* lirc device should be freed with dev->registered = false, so
* that userspace polling will get notified.
*/
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
lirc_unregister(dev);
device_del(&dev->dev);
ida_free(&rc_ida, dev->minor);
if (!dev->managed_alloc)
rc_free_device(dev);
}
EXPORT_SYMBOL_GPL(rc_unregister_device);
/*
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
*/
static int __init rc_core_init(void)
{
int rc = class_register(&rc_class);
if (rc) {
pr_err("rc_core: unable to register rc class\n");
return rc;
}
rc = lirc_dev_init();
if (rc) {
pr_err("rc_core: unable to init lirc\n");
class_unregister(&rc_class);
return rc;
}
led_trigger_register_simple("rc-feedback", &led_feedback);
rc_map_register(&empty_map);
#ifdef CONFIG_MEDIA_CEC_RC
rc_map_register(&cec_map);
#endif
return 0;
}
static void __exit rc_core_exit(void)
{
lirc_dev_exit();
class_unregister(&rc_class);
led_trigger_unregister_simple(led_feedback);
#ifdef CONFIG_MEDIA_CEC_RC
rc_map_unregister(&cec_map);
#endif
rc_map_unregister(&empty_map);
}
subsys_initcall(rc_core_init);
module_exit(rc_core_exit);
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_LICENSE("GPL v2");