1311 lines
36 KiB
C
1311 lines
36 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Copyright (C) 2014 Emilio López
|
||
|
* Emilio López <emilio@elopez.com.ar>
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitmap.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/dmapool.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of_dma.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
#include "virt-dma.h"
|
||
|
|
||
|
/** Common macros to normal and dedicated DMA registers **/
|
||
|
|
||
|
#define SUN4I_DMA_CFG_LOADING BIT(31)
|
||
|
#define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
|
||
|
#define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
|
||
|
#define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
|
||
|
#define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
|
||
|
#define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
|
||
|
#define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
|
||
|
#define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
|
||
|
#define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
|
||
|
|
||
|
/** Normal DMA register values **/
|
||
|
|
||
|
/* Normal DMA source/destination data request type values */
|
||
|
#define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
|
||
|
#define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
|
||
|
|
||
|
/** Normal DMA register layout **/
|
||
|
|
||
|
/* Dedicated DMA source/destination address mode values */
|
||
|
#define SUN4I_NDMA_ADDR_MODE_LINEAR 0
|
||
|
#define SUN4I_NDMA_ADDR_MODE_IO 1
|
||
|
|
||
|
/* Normal DMA configuration register layout */
|
||
|
#define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
|
||
|
#define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
|
||
|
#define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
|
||
|
#define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
|
||
|
#define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
|
||
|
|
||
|
/** Dedicated DMA register values **/
|
||
|
|
||
|
/* Dedicated DMA source/destination address mode values */
|
||
|
#define SUN4I_DDMA_ADDR_MODE_LINEAR 0
|
||
|
#define SUN4I_DDMA_ADDR_MODE_IO 1
|
||
|
#define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
|
||
|
#define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
|
||
|
|
||
|
/* Dedicated DMA source/destination data request type values */
|
||
|
#define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
|
||
|
#define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
|
||
|
|
||
|
/** Dedicated DMA register layout **/
|
||
|
|
||
|
/* Dedicated DMA configuration register layout */
|
||
|
#define SUN4I_DDMA_CFG_BUSY BIT(30)
|
||
|
#define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
|
||
|
#define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
|
||
|
#define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
|
||
|
#define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
|
||
|
|
||
|
/* Dedicated DMA parameter register layout */
|
||
|
#define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
|
||
|
#define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
|
||
|
#define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
|
||
|
#define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
|
||
|
|
||
|
/** DMA register offsets **/
|
||
|
|
||
|
/* General register offsets */
|
||
|
#define SUN4I_DMA_IRQ_ENABLE_REG 0x0
|
||
|
#define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
|
||
|
|
||
|
/* Normal DMA register offsets */
|
||
|
#define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
|
||
|
#define SUN4I_NDMA_CFG_REG 0x0
|
||
|
#define SUN4I_NDMA_SRC_ADDR_REG 0x4
|
||
|
#define SUN4I_NDMA_DST_ADDR_REG 0x8
|
||
|
#define SUN4I_NDMA_BYTE_COUNT_REG 0xC
|
||
|
|
||
|
/* Dedicated DMA register offsets */
|
||
|
#define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
|
||
|
#define SUN4I_DDMA_CFG_REG 0x0
|
||
|
#define SUN4I_DDMA_SRC_ADDR_REG 0x4
|
||
|
#define SUN4I_DDMA_DST_ADDR_REG 0x8
|
||
|
#define SUN4I_DDMA_BYTE_COUNT_REG 0xC
|
||
|
#define SUN4I_DDMA_PARA_REG 0x18
|
||
|
|
||
|
/** DMA Driver **/
|
||
|
|
||
|
/*
|
||
|
* Normal DMA has 8 channels, and Dedicated DMA has another 8, so
|
||
|
* that's 16 channels. As for endpoints, there's 29 and 21
|
||
|
* respectively. Given that the Normal DMA endpoints (other than
|
||
|
* SDRAM) can be used as tx/rx, we need 78 vchans in total
|
||
|
*/
|
||
|
#define SUN4I_NDMA_NR_MAX_CHANNELS 8
|
||
|
#define SUN4I_DDMA_NR_MAX_CHANNELS 8
|
||
|
#define SUN4I_DMA_NR_MAX_CHANNELS \
|
||
|
(SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
|
||
|
#define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
|
||
|
#define SUN4I_DDMA_NR_MAX_VCHANS 21
|
||
|
#define SUN4I_DMA_NR_MAX_VCHANS \
|
||
|
(SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
|
||
|
|
||
|
/* This set of SUN4I_DDMA timing parameters were found experimentally while
|
||
|
* working with the SPI driver and seem to make it behave correctly */
|
||
|
#define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
|
||
|
(SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
|
||
|
SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
|
||
|
SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
|
||
|
SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
|
||
|
|
||
|
/*
|
||
|
* Normal DMA supports individual transfers (segments) up to 128k.
|
||
|
* Dedicated DMA supports transfers up to 16M. We can only report
|
||
|
* one size limit, so we have to use the smaller value.
|
||
|
*/
|
||
|
#define SUN4I_NDMA_MAX_SEG_SIZE SZ_128K
|
||
|
#define SUN4I_DDMA_MAX_SEG_SIZE SZ_16M
|
||
|
#define SUN4I_DMA_MAX_SEG_SIZE SUN4I_NDMA_MAX_SEG_SIZE
|
||
|
|
||
|
struct sun4i_dma_pchan {
|
||
|
/* Register base of channel */
|
||
|
void __iomem *base;
|
||
|
/* vchan currently being serviced */
|
||
|
struct sun4i_dma_vchan *vchan;
|
||
|
/* Is this a dedicated pchan? */
|
||
|
int is_dedicated;
|
||
|
};
|
||
|
|
||
|
struct sun4i_dma_vchan {
|
||
|
struct virt_dma_chan vc;
|
||
|
struct dma_slave_config cfg;
|
||
|
struct sun4i_dma_pchan *pchan;
|
||
|
struct sun4i_dma_promise *processing;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
u8 endpoint;
|
||
|
int is_dedicated;
|
||
|
};
|
||
|
|
||
|
struct sun4i_dma_promise {
|
||
|
u32 cfg;
|
||
|
u32 para;
|
||
|
dma_addr_t src;
|
||
|
dma_addr_t dst;
|
||
|
size_t len;
|
||
|
struct list_head list;
|
||
|
};
|
||
|
|
||
|
/* A contract is a set of promises */
|
||
|
struct sun4i_dma_contract {
|
||
|
struct virt_dma_desc vd;
|
||
|
struct list_head demands;
|
||
|
struct list_head completed_demands;
|
||
|
bool is_cyclic : 1;
|
||
|
bool use_half_int : 1;
|
||
|
};
|
||
|
|
||
|
struct sun4i_dma_dev {
|
||
|
DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
|
||
|
struct dma_device slave;
|
||
|
struct sun4i_dma_pchan *pchans;
|
||
|
struct sun4i_dma_vchan *vchans;
|
||
|
void __iomem *base;
|
||
|
struct clk *clk;
|
||
|
int irq;
|
||
|
spinlock_t lock;
|
||
|
};
|
||
|
|
||
|
static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
|
||
|
{
|
||
|
return container_of(dev, struct sun4i_dma_dev, slave);
|
||
|
}
|
||
|
|
||
|
static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
|
||
|
{
|
||
|
return container_of(chan, struct sun4i_dma_vchan, vc.chan);
|
||
|
}
|
||
|
|
||
|
static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
|
||
|
{
|
||
|
return container_of(vd, struct sun4i_dma_contract, vd);
|
||
|
}
|
||
|
|
||
|
static struct device *chan2dev(struct dma_chan *chan)
|
||
|
{
|
||
|
return &chan->dev->device;
|
||
|
}
|
||
|
|
||
|
static int convert_burst(u32 maxburst)
|
||
|
{
|
||
|
if (maxburst > 8)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* 1 -> 0, 4 -> 1, 8 -> 2 */
|
||
|
return (maxburst >> 2);
|
||
|
}
|
||
|
|
||
|
static int convert_buswidth(enum dma_slave_buswidth addr_width)
|
||
|
{
|
||
|
if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
|
||
|
return (addr_width >> 1);
|
||
|
}
|
||
|
|
||
|
static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
|
||
|
vchan_free_chan_resources(&vchan->vc);
|
||
|
}
|
||
|
|
||
|
static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
|
||
|
struct sun4i_dma_vchan *vchan)
|
||
|
{
|
||
|
struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
|
||
|
unsigned long flags;
|
||
|
int i, max;
|
||
|
|
||
|
/*
|
||
|
* pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
|
||
|
* SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
|
||
|
*/
|
||
|
if (vchan->is_dedicated) {
|
||
|
i = SUN4I_NDMA_NR_MAX_CHANNELS;
|
||
|
max = SUN4I_DMA_NR_MAX_CHANNELS;
|
||
|
} else {
|
||
|
i = 0;
|
||
|
max = SUN4I_NDMA_NR_MAX_CHANNELS;
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&priv->lock, flags);
|
||
|
for_each_clear_bit_from(i, priv->pchans_used, max) {
|
||
|
pchan = &pchans[i];
|
||
|
pchan->vchan = vchan;
|
||
|
set_bit(i, priv->pchans_used);
|
||
|
break;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&priv->lock, flags);
|
||
|
|
||
|
return pchan;
|
||
|
}
|
||
|
|
||
|
static void release_pchan(struct sun4i_dma_dev *priv,
|
||
|
struct sun4i_dma_pchan *pchan)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
int nr = pchan - priv->pchans;
|
||
|
|
||
|
spin_lock_irqsave(&priv->lock, flags);
|
||
|
|
||
|
pchan->vchan = NULL;
|
||
|
clear_bit(nr, priv->pchans_used);
|
||
|
|
||
|
spin_unlock_irqrestore(&priv->lock, flags);
|
||
|
}
|
||
|
|
||
|
static void configure_pchan(struct sun4i_dma_pchan *pchan,
|
||
|
struct sun4i_dma_promise *d)
|
||
|
{
|
||
|
/*
|
||
|
* Configure addresses and misc parameters depending on type
|
||
|
* SUN4I_DDMA has an extra field with timing parameters
|
||
|
*/
|
||
|
if (pchan->is_dedicated) {
|
||
|
writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
|
||
|
writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
|
||
|
writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
|
||
|
writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
|
||
|
writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
|
||
|
} else {
|
||
|
writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
|
||
|
writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
|
||
|
writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
|
||
|
writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
|
||
|
struct sun4i_dma_pchan *pchan,
|
||
|
int half, int end)
|
||
|
{
|
||
|
u32 reg;
|
||
|
int pchan_number = pchan - priv->pchans;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&priv->lock, flags);
|
||
|
|
||
|
reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
|
||
|
|
||
|
if (half)
|
||
|
reg |= BIT(pchan_number * 2);
|
||
|
else
|
||
|
reg &= ~BIT(pchan_number * 2);
|
||
|
|
||
|
if (end)
|
||
|
reg |= BIT(pchan_number * 2 + 1);
|
||
|
else
|
||
|
reg &= ~BIT(pchan_number * 2 + 1);
|
||
|
|
||
|
writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
|
||
|
|
||
|
spin_unlock_irqrestore(&priv->lock, flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Execute pending operations on a vchan
|
||
|
*
|
||
|
* When given a vchan, this function will try to acquire a suitable
|
||
|
* pchan and, if successful, will configure it to fulfill a promise
|
||
|
* from the next pending contract.
|
||
|
*
|
||
|
* This function must be called with &vchan->vc.lock held.
|
||
|
*/
|
||
|
static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
|
||
|
struct sun4i_dma_vchan *vchan)
|
||
|
{
|
||
|
struct sun4i_dma_promise *promise = NULL;
|
||
|
struct sun4i_dma_contract *contract = NULL;
|
||
|
struct sun4i_dma_pchan *pchan;
|
||
|
struct virt_dma_desc *vd;
|
||
|
int ret;
|
||
|
|
||
|
lockdep_assert_held(&vchan->vc.lock);
|
||
|
|
||
|
/* We need a pchan to do anything, so secure one if available */
|
||
|
pchan = find_and_use_pchan(priv, vchan);
|
||
|
if (!pchan)
|
||
|
return -EBUSY;
|
||
|
|
||
|
/*
|
||
|
* Channel endpoints must not be repeated, so if this vchan
|
||
|
* has already submitted some work, we can't do anything else
|
||
|
*/
|
||
|
if (vchan->processing) {
|
||
|
dev_dbg(chan2dev(&vchan->vc.chan),
|
||
|
"processing something to this endpoint already\n");
|
||
|
ret = -EBUSY;
|
||
|
goto release_pchan;
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
/* Figure out which contract we're working with today */
|
||
|
vd = vchan_next_desc(&vchan->vc);
|
||
|
if (!vd) {
|
||
|
dev_dbg(chan2dev(&vchan->vc.chan),
|
||
|
"No pending contract found");
|
||
|
ret = 0;
|
||
|
goto release_pchan;
|
||
|
}
|
||
|
|
||
|
contract = to_sun4i_dma_contract(vd);
|
||
|
if (list_empty(&contract->demands)) {
|
||
|
/* The contract has been completed so mark it as such */
|
||
|
list_del(&contract->vd.node);
|
||
|
vchan_cookie_complete(&contract->vd);
|
||
|
dev_dbg(chan2dev(&vchan->vc.chan),
|
||
|
"Empty contract found and marked complete");
|
||
|
}
|
||
|
} while (list_empty(&contract->demands));
|
||
|
|
||
|
/* Now find out what we need to do */
|
||
|
promise = list_first_entry(&contract->demands,
|
||
|
struct sun4i_dma_promise, list);
|
||
|
vchan->processing = promise;
|
||
|
|
||
|
/* ... and make it reality */
|
||
|
if (promise) {
|
||
|
vchan->contract = contract;
|
||
|
vchan->pchan = pchan;
|
||
|
set_pchan_interrupt(priv, pchan, contract->use_half_int, 1);
|
||
|
configure_pchan(pchan, promise);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
release_pchan:
|
||
|
release_pchan(priv, pchan);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sanitize_config(struct dma_slave_config *sconfig,
|
||
|
enum dma_transfer_direction direction)
|
||
|
{
|
||
|
switch (direction) {
|
||
|
case DMA_MEM_TO_DEV:
|
||
|
if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
|
||
|
!sconfig->dst_maxburst)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
||
|
sconfig->src_addr_width = sconfig->dst_addr_width;
|
||
|
|
||
|
if (!sconfig->src_maxburst)
|
||
|
sconfig->src_maxburst = sconfig->dst_maxburst;
|
||
|
|
||
|
break;
|
||
|
|
||
|
case DMA_DEV_TO_MEM:
|
||
|
if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
|
||
|
!sconfig->src_maxburst)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
||
|
sconfig->dst_addr_width = sconfig->src_addr_width;
|
||
|
|
||
|
if (!sconfig->dst_maxburst)
|
||
|
sconfig->dst_maxburst = sconfig->src_maxburst;
|
||
|
|
||
|
break;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate a promise, to be used in a normal DMA contract.
|
||
|
*
|
||
|
* A NDMA promise contains all the information required to program the
|
||
|
* normal part of the DMA Engine and get data copied. A non-executed
|
||
|
* promise will live in the demands list on a contract. Once it has been
|
||
|
* completed, it will be moved to the completed demands list for later freeing.
|
||
|
* All linked promises will be freed when the corresponding contract is freed
|
||
|
*/
|
||
|
static struct sun4i_dma_promise *
|
||
|
generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
|
||
|
size_t len, struct dma_slave_config *sconfig,
|
||
|
enum dma_transfer_direction direction)
|
||
|
{
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
int ret;
|
||
|
|
||
|
ret = sanitize_config(sconfig, direction);
|
||
|
if (ret)
|
||
|
return NULL;
|
||
|
|
||
|
promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
|
||
|
if (!promise)
|
||
|
return NULL;
|
||
|
|
||
|
promise->src = src;
|
||
|
promise->dst = dest;
|
||
|
promise->len = len;
|
||
|
promise->cfg = SUN4I_DMA_CFG_LOADING |
|
||
|
SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
|
||
|
|
||
|
dev_dbg(chan2dev(chan),
|
||
|
"src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
|
||
|
sconfig->src_maxburst, sconfig->dst_maxburst,
|
||
|
sconfig->src_addr_width, sconfig->dst_addr_width);
|
||
|
|
||
|
/* Source burst */
|
||
|
ret = convert_burst(sconfig->src_maxburst);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
|
||
|
|
||
|
/* Destination burst */
|
||
|
ret = convert_burst(sconfig->dst_maxburst);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
|
||
|
|
||
|
/* Source bus width */
|
||
|
ret = convert_buswidth(sconfig->src_addr_width);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
|
||
|
|
||
|
/* Destination bus width */
|
||
|
ret = convert_buswidth(sconfig->dst_addr_width);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
|
||
|
|
||
|
return promise;
|
||
|
|
||
|
fail:
|
||
|
kfree(promise);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate a promise, to be used in a dedicated DMA contract.
|
||
|
*
|
||
|
* A DDMA promise contains all the information required to program the
|
||
|
* Dedicated part of the DMA Engine and get data copied. A non-executed
|
||
|
* promise will live in the demands list on a contract. Once it has been
|
||
|
* completed, it will be moved to the completed demands list for later freeing.
|
||
|
* All linked promises will be freed when the corresponding contract is freed
|
||
|
*/
|
||
|
static struct sun4i_dma_promise *
|
||
|
generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
|
||
|
size_t len, struct dma_slave_config *sconfig)
|
||
|
{
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
int ret;
|
||
|
|
||
|
promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
|
||
|
if (!promise)
|
||
|
return NULL;
|
||
|
|
||
|
promise->src = src;
|
||
|
promise->dst = dest;
|
||
|
promise->len = len;
|
||
|
promise->cfg = SUN4I_DMA_CFG_LOADING |
|
||
|
SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
|
||
|
|
||
|
/* Source burst */
|
||
|
ret = convert_burst(sconfig->src_maxburst);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
|
||
|
|
||
|
/* Destination burst */
|
||
|
ret = convert_burst(sconfig->dst_maxburst);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
|
||
|
|
||
|
/* Source bus width */
|
||
|
ret = convert_buswidth(sconfig->src_addr_width);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
|
||
|
|
||
|
/* Destination bus width */
|
||
|
ret = convert_buswidth(sconfig->dst_addr_width);
|
||
|
if (ret < 0)
|
||
|
goto fail;
|
||
|
promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
|
||
|
|
||
|
return promise;
|
||
|
|
||
|
fail:
|
||
|
kfree(promise);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate a contract
|
||
|
*
|
||
|
* Contracts function as DMA descriptors. As our hardware does not support
|
||
|
* linked lists, we need to implement SG via software. We use a contract
|
||
|
* to hold all the pieces of the request and process them serially one
|
||
|
* after another. Each piece is represented as a promise.
|
||
|
*/
|
||
|
static struct sun4i_dma_contract *generate_dma_contract(void)
|
||
|
{
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
|
||
|
contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
|
||
|
if (!contract)
|
||
|
return NULL;
|
||
|
|
||
|
INIT_LIST_HEAD(&contract->demands);
|
||
|
INIT_LIST_HEAD(&contract->completed_demands);
|
||
|
|
||
|
return contract;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get next promise on a cyclic transfer
|
||
|
*
|
||
|
* Cyclic contracts contain a series of promises which are executed on a
|
||
|
* loop. This function returns the next promise from a cyclic contract,
|
||
|
* so it can be programmed into the hardware.
|
||
|
*/
|
||
|
static struct sun4i_dma_promise *
|
||
|
get_next_cyclic_promise(struct sun4i_dma_contract *contract)
|
||
|
{
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
|
||
|
promise = list_first_entry_or_null(&contract->demands,
|
||
|
struct sun4i_dma_promise, list);
|
||
|
if (!promise) {
|
||
|
list_splice_init(&contract->completed_demands,
|
||
|
&contract->demands);
|
||
|
promise = list_first_entry(&contract->demands,
|
||
|
struct sun4i_dma_promise, list);
|
||
|
}
|
||
|
|
||
|
return promise;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free a contract and all its associated promises
|
||
|
*/
|
||
|
static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
|
||
|
{
|
||
|
struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
|
||
|
struct sun4i_dma_promise *promise, *tmp;
|
||
|
|
||
|
/* Free all the demands and completed demands */
|
||
|
list_for_each_entry_safe(promise, tmp, &contract->demands, list)
|
||
|
kfree(promise);
|
||
|
|
||
|
list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
|
||
|
kfree(promise);
|
||
|
|
||
|
kfree(contract);
|
||
|
}
|
||
|
|
||
|
static struct dma_async_tx_descriptor *
|
||
|
sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
|
||
|
dma_addr_t src, size_t len, unsigned long flags)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
struct dma_slave_config *sconfig = &vchan->cfg;
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
|
||
|
contract = generate_dma_contract();
|
||
|
if (!contract)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* We can only do the copy to bus aligned addresses, so
|
||
|
* choose the best one so we get decent performance. We also
|
||
|
* maximize the burst size for this same reason.
|
||
|
*/
|
||
|
sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
sconfig->src_maxburst = 8;
|
||
|
sconfig->dst_maxburst = 8;
|
||
|
|
||
|
if (vchan->is_dedicated)
|
||
|
promise = generate_ddma_promise(chan, src, dest, len, sconfig);
|
||
|
else
|
||
|
promise = generate_ndma_promise(chan, src, dest, len, sconfig,
|
||
|
DMA_MEM_TO_MEM);
|
||
|
|
||
|
if (!promise) {
|
||
|
kfree(contract);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Configure memcpy mode */
|
||
|
if (vchan->is_dedicated) {
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
|
||
|
SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
|
||
|
} else {
|
||
|
promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
|
||
|
SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
|
||
|
}
|
||
|
|
||
|
/* Fill the contract with our only promise */
|
||
|
list_add_tail(&promise->list, &contract->demands);
|
||
|
|
||
|
/* And add it to the vchan */
|
||
|
return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
|
||
|
}
|
||
|
|
||
|
static struct dma_async_tx_descriptor *
|
||
|
sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
|
||
|
size_t period_len, enum dma_transfer_direction dir,
|
||
|
unsigned long flags)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
struct dma_slave_config *sconfig = &vchan->cfg;
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
dma_addr_t src, dest;
|
||
|
u32 endpoints;
|
||
|
int nr_periods, offset, plength, i;
|
||
|
u8 ram_type, io_mode, linear_mode;
|
||
|
|
||
|
if (!is_slave_direction(dir)) {
|
||
|
dev_err(chan2dev(chan), "Invalid DMA direction\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
contract = generate_dma_contract();
|
||
|
if (!contract)
|
||
|
return NULL;
|
||
|
|
||
|
contract->is_cyclic = 1;
|
||
|
|
||
|
if (vchan->is_dedicated) {
|
||
|
io_mode = SUN4I_DDMA_ADDR_MODE_IO;
|
||
|
linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
|
||
|
ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
|
||
|
} else {
|
||
|
io_mode = SUN4I_NDMA_ADDR_MODE_IO;
|
||
|
linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
|
||
|
ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
|
||
|
}
|
||
|
|
||
|
if (dir == DMA_MEM_TO_DEV) {
|
||
|
src = buf;
|
||
|
dest = sconfig->dst_addr;
|
||
|
endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
|
||
|
SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
|
||
|
SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
|
||
|
SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
|
||
|
} else {
|
||
|
src = sconfig->src_addr;
|
||
|
dest = buf;
|
||
|
endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
|
||
|
SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
|
||
|
SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
|
||
|
SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We will be using half done interrupts to make two periods
|
||
|
* out of a promise, so we need to program the DMA engine less
|
||
|
* often
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The engine can interrupt on half-transfer, so we can use
|
||
|
* this feature to program the engine half as often as if we
|
||
|
* didn't use it (keep in mind the hardware doesn't support
|
||
|
* linked lists).
|
||
|
*
|
||
|
* Say you have a set of periods (| marks the start/end, I for
|
||
|
* interrupt, P for programming the engine to do a new
|
||
|
* transfer), the easy but slow way would be to do
|
||
|
*
|
||
|
* |---|---|---|---| (periods / promises)
|
||
|
* P I,P I,P I,P I
|
||
|
*
|
||
|
* Using half transfer interrupts you can do
|
||
|
*
|
||
|
* |-------|-------| (promises as configured on hw)
|
||
|
* |---|---|---|---| (periods)
|
||
|
* P I I,P I I
|
||
|
*
|
||
|
* Which requires half the engine programming for the same
|
||
|
* functionality.
|
||
|
*
|
||
|
* This only works if two periods fit in a single promise. That will
|
||
|
* always be the case for dedicated DMA, where the hardware has a much
|
||
|
* larger maximum transfer size than advertised to clients.
|
||
|
*/
|
||
|
if (vchan->is_dedicated || period_len <= SUN4I_NDMA_MAX_SEG_SIZE / 2) {
|
||
|
period_len *= 2;
|
||
|
contract->use_half_int = 1;
|
||
|
}
|
||
|
|
||
|
nr_periods = DIV_ROUND_UP(len, period_len);
|
||
|
for (i = 0; i < nr_periods; i++) {
|
||
|
/* Calculate the offset in the buffer and the length needed */
|
||
|
offset = i * period_len;
|
||
|
plength = min((len - offset), period_len);
|
||
|
if (dir == DMA_MEM_TO_DEV)
|
||
|
src = buf + offset;
|
||
|
else
|
||
|
dest = buf + offset;
|
||
|
|
||
|
/* Make the promise */
|
||
|
if (vchan->is_dedicated)
|
||
|
promise = generate_ddma_promise(chan, src, dest,
|
||
|
plength, sconfig);
|
||
|
else
|
||
|
promise = generate_ndma_promise(chan, src, dest,
|
||
|
plength, sconfig, dir);
|
||
|
|
||
|
if (!promise) {
|
||
|
/* TODO: should we free everything? */
|
||
|
return NULL;
|
||
|
}
|
||
|
promise->cfg |= endpoints;
|
||
|
|
||
|
/* Then add it to the contract */
|
||
|
list_add_tail(&promise->list, &contract->demands);
|
||
|
}
|
||
|
|
||
|
/* And add it to the vchan */
|
||
|
return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
|
||
|
}
|
||
|
|
||
|
static struct dma_async_tx_descriptor *
|
||
|
sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
||
|
unsigned int sg_len, enum dma_transfer_direction dir,
|
||
|
unsigned long flags, void *context)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
struct dma_slave_config *sconfig = &vchan->cfg;
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
u8 ram_type, io_mode, linear_mode;
|
||
|
struct scatterlist *sg;
|
||
|
dma_addr_t srcaddr, dstaddr;
|
||
|
u32 endpoints, para;
|
||
|
int i;
|
||
|
|
||
|
if (!sgl)
|
||
|
return NULL;
|
||
|
|
||
|
if (!is_slave_direction(dir)) {
|
||
|
dev_err(chan2dev(chan), "Invalid DMA direction\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
contract = generate_dma_contract();
|
||
|
if (!contract)
|
||
|
return NULL;
|
||
|
|
||
|
if (vchan->is_dedicated) {
|
||
|
io_mode = SUN4I_DDMA_ADDR_MODE_IO;
|
||
|
linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
|
||
|
ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
|
||
|
} else {
|
||
|
io_mode = SUN4I_NDMA_ADDR_MODE_IO;
|
||
|
linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
|
||
|
ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
|
||
|
}
|
||
|
|
||
|
if (dir == DMA_MEM_TO_DEV)
|
||
|
endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
|
||
|
SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
|
||
|
SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
|
||
|
SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
|
||
|
else
|
||
|
endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
|
||
|
SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
|
||
|
SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
|
||
|
SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
|
||
|
|
||
|
for_each_sg(sgl, sg, sg_len, i) {
|
||
|
/* Figure out addresses */
|
||
|
if (dir == DMA_MEM_TO_DEV) {
|
||
|
srcaddr = sg_dma_address(sg);
|
||
|
dstaddr = sconfig->dst_addr;
|
||
|
} else {
|
||
|
srcaddr = sconfig->src_addr;
|
||
|
dstaddr = sg_dma_address(sg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These are the magic DMA engine timings that keep SPI going.
|
||
|
* I haven't seen any interface on DMAEngine to configure
|
||
|
* timings, and so far they seem to work for everything we
|
||
|
* support, so I've kept them here. I don't know if other
|
||
|
* devices need different timings because, as usual, we only
|
||
|
* have the "para" bitfield meanings, but no comment on what
|
||
|
* the values should be when doing a certain operation :|
|
||
|
*/
|
||
|
para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
|
||
|
|
||
|
/* And make a suitable promise */
|
||
|
if (vchan->is_dedicated)
|
||
|
promise = generate_ddma_promise(chan, srcaddr, dstaddr,
|
||
|
sg_dma_len(sg),
|
||
|
sconfig);
|
||
|
else
|
||
|
promise = generate_ndma_promise(chan, srcaddr, dstaddr,
|
||
|
sg_dma_len(sg),
|
||
|
sconfig, dir);
|
||
|
|
||
|
if (!promise)
|
||
|
return NULL; /* TODO: should we free everything? */
|
||
|
|
||
|
promise->cfg |= endpoints;
|
||
|
promise->para = para;
|
||
|
|
||
|
/* Then add it to the contract */
|
||
|
list_add_tail(&promise->list, &contract->demands);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Once we've got all the promises ready, add the contract
|
||
|
* to the pending list on the vchan
|
||
|
*/
|
||
|
return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
|
||
|
}
|
||
|
|
||
|
static int sun4i_dma_terminate_all(struct dma_chan *chan)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
struct sun4i_dma_pchan *pchan = vchan->pchan;
|
||
|
LIST_HEAD(head);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&vchan->vc.lock, flags);
|
||
|
vchan_get_all_descriptors(&vchan->vc, &head);
|
||
|
spin_unlock_irqrestore(&vchan->vc.lock, flags);
|
||
|
|
||
|
/*
|
||
|
* Clearing the configuration register will halt the pchan. Interrupts
|
||
|
* may still trigger, so don't forget to disable them.
|
||
|
*/
|
||
|
if (pchan) {
|
||
|
if (pchan->is_dedicated)
|
||
|
writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
|
||
|
else
|
||
|
writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
|
||
|
set_pchan_interrupt(priv, pchan, 0, 0);
|
||
|
release_pchan(priv, pchan);
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&vchan->vc.lock, flags);
|
||
|
/* Clear these so the vchan is usable again */
|
||
|
vchan->processing = NULL;
|
||
|
vchan->pchan = NULL;
|
||
|
spin_unlock_irqrestore(&vchan->vc.lock, flags);
|
||
|
|
||
|
vchan_dma_desc_free_list(&vchan->vc, &head);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sun4i_dma_config(struct dma_chan *chan,
|
||
|
struct dma_slave_config *config)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
|
||
|
memcpy(&vchan->cfg, config, sizeof(*config));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
|
||
|
struct of_dma *ofdma)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv = ofdma->of_dma_data;
|
||
|
struct sun4i_dma_vchan *vchan;
|
||
|
struct dma_chan *chan;
|
||
|
u8 is_dedicated = dma_spec->args[0];
|
||
|
u8 endpoint = dma_spec->args[1];
|
||
|
|
||
|
/* Check if type is Normal or Dedicated */
|
||
|
if (is_dedicated != 0 && is_dedicated != 1)
|
||
|
return NULL;
|
||
|
|
||
|
/* Make sure the endpoint looks sane */
|
||
|
if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
|
||
|
(!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
|
||
|
return NULL;
|
||
|
|
||
|
chan = dma_get_any_slave_channel(&priv->slave);
|
||
|
if (!chan)
|
||
|
return NULL;
|
||
|
|
||
|
/* Assign the endpoint to the vchan */
|
||
|
vchan = to_sun4i_dma_vchan(chan);
|
||
|
vchan->is_dedicated = is_dedicated;
|
||
|
vchan->endpoint = endpoint;
|
||
|
|
||
|
return chan;
|
||
|
}
|
||
|
|
||
|
static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
|
||
|
dma_cookie_t cookie,
|
||
|
struct dma_tx_state *state)
|
||
|
{
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
struct sun4i_dma_pchan *pchan = vchan->pchan;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
struct virt_dma_desc *vd;
|
||
|
unsigned long flags;
|
||
|
enum dma_status ret;
|
||
|
size_t bytes = 0;
|
||
|
|
||
|
ret = dma_cookie_status(chan, cookie, state);
|
||
|
if (!state || (ret == DMA_COMPLETE))
|
||
|
return ret;
|
||
|
|
||
|
spin_lock_irqsave(&vchan->vc.lock, flags);
|
||
|
vd = vchan_find_desc(&vchan->vc, cookie);
|
||
|
if (!vd)
|
||
|
goto exit;
|
||
|
contract = to_sun4i_dma_contract(vd);
|
||
|
|
||
|
list_for_each_entry(promise, &contract->demands, list)
|
||
|
bytes += promise->len;
|
||
|
|
||
|
/*
|
||
|
* The hardware is configured to return the remaining byte
|
||
|
* quantity. If possible, replace the first listed element's
|
||
|
* full size with the actual remaining amount
|
||
|
*/
|
||
|
promise = list_first_entry_or_null(&contract->demands,
|
||
|
struct sun4i_dma_promise, list);
|
||
|
if (promise && pchan) {
|
||
|
bytes -= promise->len;
|
||
|
if (pchan->is_dedicated)
|
||
|
bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
|
||
|
else
|
||
|
bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
|
||
|
}
|
||
|
|
||
|
exit:
|
||
|
|
||
|
dma_set_residue(state, bytes);
|
||
|
spin_unlock_irqrestore(&vchan->vc.lock, flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void sun4i_dma_issue_pending(struct dma_chan *chan)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
|
||
|
struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&vchan->vc.lock, flags);
|
||
|
|
||
|
/*
|
||
|
* If there are pending transactions for this vchan, push one of
|
||
|
* them into the engine to get the ball rolling.
|
||
|
*/
|
||
|
if (vchan_issue_pending(&vchan->vc))
|
||
|
__execute_vchan_pending(priv, vchan);
|
||
|
|
||
|
spin_unlock_irqrestore(&vchan->vc.lock, flags);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv = dev_id;
|
||
|
struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
|
||
|
struct sun4i_dma_vchan *vchan;
|
||
|
struct sun4i_dma_contract *contract;
|
||
|
struct sun4i_dma_promise *promise;
|
||
|
unsigned long pendirq, irqs, disableirqs;
|
||
|
int bit, i, free_room, allow_mitigation = 1;
|
||
|
|
||
|
pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
|
||
|
|
||
|
handle_pending:
|
||
|
|
||
|
disableirqs = 0;
|
||
|
free_room = 0;
|
||
|
|
||
|
for_each_set_bit(bit, &pendirq, 32) {
|
||
|
pchan = &pchans[bit >> 1];
|
||
|
vchan = pchan->vchan;
|
||
|
if (!vchan) /* a terminated channel may still interrupt */
|
||
|
continue;
|
||
|
contract = vchan->contract;
|
||
|
|
||
|
/*
|
||
|
* Disable the IRQ and free the pchan if it's an end
|
||
|
* interrupt (odd bit)
|
||
|
*/
|
||
|
if (bit & 1) {
|
||
|
spin_lock(&vchan->vc.lock);
|
||
|
|
||
|
/*
|
||
|
* Move the promise into the completed list now that
|
||
|
* we're done with it
|
||
|
*/
|
||
|
list_move_tail(&vchan->processing->list,
|
||
|
&contract->completed_demands);
|
||
|
|
||
|
/*
|
||
|
* Cyclic DMA transfers are special:
|
||
|
* - There's always something we can dispatch
|
||
|
* - We need to run the callback
|
||
|
* - Latency is very important, as this is used by audio
|
||
|
* We therefore just cycle through the list and dispatch
|
||
|
* whatever we have here, reusing the pchan. There's
|
||
|
* no need to run the thread after this.
|
||
|
*
|
||
|
* For non-cyclic transfers we need to look around,
|
||
|
* so we can program some more work, or notify the
|
||
|
* client that their transfers have been completed.
|
||
|
*/
|
||
|
if (contract->is_cyclic) {
|
||
|
promise = get_next_cyclic_promise(contract);
|
||
|
vchan->processing = promise;
|
||
|
configure_pchan(pchan, promise);
|
||
|
vchan_cyclic_callback(&contract->vd);
|
||
|
} else {
|
||
|
vchan->processing = NULL;
|
||
|
vchan->pchan = NULL;
|
||
|
|
||
|
free_room = 1;
|
||
|
disableirqs |= BIT(bit);
|
||
|
release_pchan(priv, pchan);
|
||
|
}
|
||
|
|
||
|
spin_unlock(&vchan->vc.lock);
|
||
|
} else {
|
||
|
/* Half done interrupt */
|
||
|
if (contract->is_cyclic)
|
||
|
vchan_cyclic_callback(&contract->vd);
|
||
|
else
|
||
|
disableirqs |= BIT(bit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Disable the IRQs for events we handled */
|
||
|
spin_lock(&priv->lock);
|
||
|
irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
|
||
|
writel_relaxed(irqs & ~disableirqs,
|
||
|
priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
|
||
|
spin_unlock(&priv->lock);
|
||
|
|
||
|
/* Writing 1 to the pending field will clear the pending interrupt */
|
||
|
writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
|
||
|
|
||
|
/*
|
||
|
* If a pchan was freed, we may be able to schedule something else,
|
||
|
* so have a look around
|
||
|
*/
|
||
|
if (free_room) {
|
||
|
for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
|
||
|
vchan = &priv->vchans[i];
|
||
|
spin_lock(&vchan->vc.lock);
|
||
|
__execute_vchan_pending(priv, vchan);
|
||
|
spin_unlock(&vchan->vc.lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle newer interrupts if some showed up, but only do it once
|
||
|
* to avoid a too long a loop
|
||
|
*/
|
||
|
if (allow_mitigation) {
|
||
|
pendirq = readl_relaxed(priv->base +
|
||
|
SUN4I_DMA_IRQ_PENDING_STATUS_REG);
|
||
|
if (pendirq) {
|
||
|
allow_mitigation = 0;
|
||
|
goto handle_pending;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static int sun4i_dma_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv;
|
||
|
struct resource *res;
|
||
|
int i, j, ret;
|
||
|
|
||
|
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
|
||
|
if (!priv)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
priv->base = devm_ioremap_resource(&pdev->dev, res);
|
||
|
if (IS_ERR(priv->base))
|
||
|
return PTR_ERR(priv->base);
|
||
|
|
||
|
priv->irq = platform_get_irq(pdev, 0);
|
||
|
if (priv->irq < 0)
|
||
|
return priv->irq;
|
||
|
|
||
|
priv->clk = devm_clk_get(&pdev->dev, NULL);
|
||
|
if (IS_ERR(priv->clk)) {
|
||
|
dev_err(&pdev->dev, "No clock specified\n");
|
||
|
return PTR_ERR(priv->clk);
|
||
|
}
|
||
|
|
||
|
platform_set_drvdata(pdev, priv);
|
||
|
spin_lock_init(&priv->lock);
|
||
|
|
||
|
dma_set_max_seg_size(&pdev->dev, SUN4I_DMA_MAX_SEG_SIZE);
|
||
|
|
||
|
dma_cap_zero(priv->slave.cap_mask);
|
||
|
dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
|
||
|
dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
|
||
|
dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
|
||
|
dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
|
||
|
|
||
|
INIT_LIST_HEAD(&priv->slave.channels);
|
||
|
priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
|
||
|
priv->slave.device_tx_status = sun4i_dma_tx_status;
|
||
|
priv->slave.device_issue_pending = sun4i_dma_issue_pending;
|
||
|
priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
|
||
|
priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
|
||
|
priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
|
||
|
priv->slave.device_config = sun4i_dma_config;
|
||
|
priv->slave.device_terminate_all = sun4i_dma_terminate_all;
|
||
|
priv->slave.copy_align = 2;
|
||
|
priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
||
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
||
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
||
|
priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
||
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
||
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
||
|
priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
|
||
|
BIT(DMA_MEM_TO_DEV);
|
||
|
priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
||
|
|
||
|
priv->slave.dev = &pdev->dev;
|
||
|
|
||
|
priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
|
||
|
sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
|
||
|
priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
|
||
|
sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
|
||
|
if (!priv->vchans || !priv->pchans)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/*
|
||
|
* [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
|
||
|
* [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
|
||
|
* dedicated ones
|
||
|
*/
|
||
|
for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
|
||
|
priv->pchans[i].base = priv->base +
|
||
|
SUN4I_NDMA_CHANNEL_REG_BASE(i);
|
||
|
|
||
|
for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
|
||
|
priv->pchans[i].base = priv->base +
|
||
|
SUN4I_DDMA_CHANNEL_REG_BASE(j);
|
||
|
priv->pchans[i].is_dedicated = 1;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
|
||
|
struct sun4i_dma_vchan *vchan = &priv->vchans[i];
|
||
|
|
||
|
spin_lock_init(&vchan->vc.lock);
|
||
|
vchan->vc.desc_free = sun4i_dma_free_contract;
|
||
|
vchan_init(&vchan->vc, &priv->slave);
|
||
|
}
|
||
|
|
||
|
ret = clk_prepare_enable(priv->clk);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "Couldn't enable the clock\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make sure the IRQs are all disabled and accounted for. The bootloader
|
||
|
* likes to leave these dirty
|
||
|
*/
|
||
|
writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
|
||
|
writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
|
||
|
|
||
|
ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
|
||
|
0, dev_name(&pdev->dev), priv);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "Cannot request IRQ\n");
|
||
|
goto err_clk_disable;
|
||
|
}
|
||
|
|
||
|
ret = dma_async_device_register(&priv->slave);
|
||
|
if (ret) {
|
||
|
dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
|
||
|
goto err_clk_disable;
|
||
|
}
|
||
|
|
||
|
ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
|
||
|
priv);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "of_dma_controller_register failed\n");
|
||
|
goto err_dma_unregister;
|
||
|
}
|
||
|
|
||
|
dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_dma_unregister:
|
||
|
dma_async_device_unregister(&priv->slave);
|
||
|
err_clk_disable:
|
||
|
clk_disable_unprepare(priv->clk);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sun4i_dma_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
|
||
|
|
||
|
/* Disable IRQ so no more work is scheduled */
|
||
|
disable_irq(priv->irq);
|
||
|
|
||
|
of_dma_controller_free(pdev->dev.of_node);
|
||
|
dma_async_device_unregister(&priv->slave);
|
||
|
|
||
|
clk_disable_unprepare(priv->clk);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id sun4i_dma_match[] = {
|
||
|
{ .compatible = "allwinner,sun4i-a10-dma" },
|
||
|
{ /* sentinel */ },
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, sun4i_dma_match);
|
||
|
|
||
|
static struct platform_driver sun4i_dma_driver = {
|
||
|
.probe = sun4i_dma_probe,
|
||
|
.remove = sun4i_dma_remove,
|
||
|
.driver = {
|
||
|
.name = "sun4i-dma",
|
||
|
.of_match_table = sun4i_dma_match,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_platform_driver(sun4i_dma_driver);
|
||
|
|
||
|
MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
|
||
|
MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
|
||
|
MODULE_LICENSE("GPL");
|