306 lines
9.6 KiB
C
306 lines
9.6 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef __KVM_X86_MMU_H
|
||
|
#define __KVM_X86_MMU_H
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include "kvm_cache_regs.h"
|
||
|
#include "cpuid.h"
|
||
|
|
||
|
extern bool __read_mostly enable_mmio_caching;
|
||
|
|
||
|
#define PT_WRITABLE_SHIFT 1
|
||
|
#define PT_USER_SHIFT 2
|
||
|
|
||
|
#define PT_PRESENT_MASK (1ULL << 0)
|
||
|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
|
||
|
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
|
||
|
#define PT_PWT_MASK (1ULL << 3)
|
||
|
#define PT_PCD_MASK (1ULL << 4)
|
||
|
#define PT_ACCESSED_SHIFT 5
|
||
|
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
|
||
|
#define PT_DIRTY_SHIFT 6
|
||
|
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
|
||
|
#define PT_PAGE_SIZE_SHIFT 7
|
||
|
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
|
||
|
#define PT_PAT_MASK (1ULL << 7)
|
||
|
#define PT_GLOBAL_MASK (1ULL << 8)
|
||
|
#define PT64_NX_SHIFT 63
|
||
|
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
|
||
|
|
||
|
#define PT_PAT_SHIFT 7
|
||
|
#define PT_DIR_PAT_SHIFT 12
|
||
|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
|
||
|
|
||
|
#define PT64_ROOT_5LEVEL 5
|
||
|
#define PT64_ROOT_4LEVEL 4
|
||
|
#define PT32_ROOT_LEVEL 2
|
||
|
#define PT32E_ROOT_LEVEL 3
|
||
|
|
||
|
#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
|
||
|
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
|
||
|
|
||
|
#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
|
||
|
#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
|
||
|
|
||
|
static __always_inline u64 rsvd_bits(int s, int e)
|
||
|
{
|
||
|
BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
|
||
|
|
||
|
if (__builtin_constant_p(e))
|
||
|
BUILD_BUG_ON(e > 63);
|
||
|
else
|
||
|
e &= 63;
|
||
|
|
||
|
if (e < s)
|
||
|
return 0;
|
||
|
|
||
|
return ((2ULL << (e - s)) - 1) << s;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The number of non-reserved physical address bits irrespective of features
|
||
|
* that repurpose legal bits, e.g. MKTME.
|
||
|
*/
|
||
|
extern u8 __read_mostly shadow_phys_bits;
|
||
|
|
||
|
static inline gfn_t kvm_mmu_max_gfn(void)
|
||
|
{
|
||
|
/*
|
||
|
* Note that this uses the host MAXPHYADDR, not the guest's.
|
||
|
* EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
|
||
|
* assuming KVM is running on bare metal, guest accesses beyond
|
||
|
* host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
|
||
|
* (either EPT Violation/Misconfig or #NPF), and so KVM will never
|
||
|
* install a SPTE for such addresses. If KVM is running as a VM
|
||
|
* itself, on the other hand, it might see a MAXPHYADDR that is less
|
||
|
* than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
|
||
|
* disallows such SPTEs entirely and simplifies the TDP MMU.
|
||
|
*/
|
||
|
int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
|
||
|
|
||
|
return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
|
||
|
}
|
||
|
|
||
|
static inline u8 kvm_get_shadow_phys_bits(void)
|
||
|
{
|
||
|
/*
|
||
|
* boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
|
||
|
* in CPU detection code, but the processor treats those reduced bits as
|
||
|
* 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
|
||
|
* the physical address bits reported by CPUID.
|
||
|
*/
|
||
|
if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
|
||
|
return cpuid_eax(0x80000008) & 0xff;
|
||
|
|
||
|
/*
|
||
|
* Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
|
||
|
* custom CPUID. Proceed with whatever the kernel found since these features
|
||
|
* aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
|
||
|
*/
|
||
|
return boot_cpu_data.x86_phys_bits;
|
||
|
}
|
||
|
|
||
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
|
||
|
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
|
||
|
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
|
||
|
|
||
|
void kvm_init_mmu(struct kvm_vcpu *vcpu);
|
||
|
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
|
||
|
unsigned long cr4, u64 efer, gpa_t nested_cr3);
|
||
|
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
|
||
|
int huge_page_level, bool accessed_dirty,
|
||
|
gpa_t new_eptp);
|
||
|
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
|
||
|
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
|
||
|
u64 fault_address, char *insn, int insn_len);
|
||
|
void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_mmu *mmu);
|
||
|
|
||
|
int kvm_mmu_load(struct kvm_vcpu *vcpu);
|
||
|
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
|
||
|
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
|
||
|
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
|
||
|
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
|
||
|
|
||
|
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
|
||
|
return 0;
|
||
|
|
||
|
return kvm_mmu_load(vcpu);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
|
||
|
{
|
||
|
BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
|
||
|
|
||
|
return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
|
||
|
? cr3 & X86_CR3_PCID_MASK
|
||
|
: 0;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
|
||
|
}
|
||
|
|
||
|
static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u64 root_hpa = vcpu->arch.mmu->root.hpa;
|
||
|
|
||
|
if (!VALID_PAGE(root_hpa))
|
||
|
return;
|
||
|
|
||
|
static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
|
||
|
vcpu->arch.mmu->root_role.level);
|
||
|
}
|
||
|
|
||
|
static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_mmu *mmu)
|
||
|
{
|
||
|
/*
|
||
|
* When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
|
||
|
* @mmu's snapshot of CR0.WP and thus all related paging metadata may
|
||
|
* be stale. Refresh CR0.WP and the metadata on-demand when checking
|
||
|
* for permission faults. Exempt nested MMUs, i.e. MMUs for shadowing
|
||
|
* nEPT and nNPT, as CR0.WP is ignored in both cases. Note, KVM does
|
||
|
* need to refresh nested_mmu, a.k.a. the walker used to translate L2
|
||
|
* GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
|
||
|
*/
|
||
|
if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
|
||
|
return;
|
||
|
|
||
|
__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if a given access (described through the I/D, W/R and U/S bits of a
|
||
|
* page fault error code pfec) causes a permission fault with the given PTE
|
||
|
* access rights (in ACC_* format).
|
||
|
*
|
||
|
* Return zero if the access does not fault; return the page fault error code
|
||
|
* if the access faults.
|
||
|
*/
|
||
|
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
||
|
unsigned pte_access, unsigned pte_pkey,
|
||
|
u64 access)
|
||
|
{
|
||
|
/* strip nested paging fault error codes */
|
||
|
unsigned int pfec = access;
|
||
|
unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
|
||
|
|
||
|
/*
|
||
|
* For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
|
||
|
* For implicit supervisor accesses, SMAP cannot be overridden.
|
||
|
*
|
||
|
* SMAP works on supervisor accesses only, and not_smap can
|
||
|
* be set or not set when user access with neither has any bearing
|
||
|
* on the result.
|
||
|
*
|
||
|
* We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
|
||
|
* this bit will always be zero in pfec, but it will be one in index
|
||
|
* if SMAP checks are being disabled.
|
||
|
*/
|
||
|
u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
|
||
|
bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
|
||
|
int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
|
||
|
u32 errcode = PFERR_PRESENT_MASK;
|
||
|
bool fault;
|
||
|
|
||
|
kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
|
||
|
|
||
|
fault = (mmu->permissions[index] >> pte_access) & 1;
|
||
|
|
||
|
WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
|
||
|
if (unlikely(mmu->pkru_mask)) {
|
||
|
u32 pkru_bits, offset;
|
||
|
|
||
|
/*
|
||
|
* PKRU defines 32 bits, there are 16 domains and 2
|
||
|
* attribute bits per domain in pkru. pte_pkey is the
|
||
|
* index of the protection domain, so pte_pkey * 2 is
|
||
|
* is the index of the first bit for the domain.
|
||
|
*/
|
||
|
pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
|
||
|
|
||
|
/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
|
||
|
offset = (pfec & ~1) +
|
||
|
((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
|
||
|
|
||
|
pkru_bits &= mmu->pkru_mask >> offset;
|
||
|
errcode |= -pkru_bits & PFERR_PK_MASK;
|
||
|
fault |= (pkru_bits != 0);
|
||
|
}
|
||
|
|
||
|
return -(u32)fault & errcode;
|
||
|
}
|
||
|
|
||
|
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
|
||
|
|
||
|
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
|
||
|
|
||
|
int kvm_mmu_post_init_vm(struct kvm *kvm);
|
||
|
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
|
||
|
|
||
|
static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
|
||
|
{
|
||
|
/*
|
||
|
* Read shadow_root_allocated before related pointers. Hence, threads
|
||
|
* reading shadow_root_allocated in any lock context are guaranteed to
|
||
|
* see the pointers. Pairs with smp_store_release in
|
||
|
* mmu_first_shadow_root_alloc.
|
||
|
*/
|
||
|
return smp_load_acquire(&kvm->arch.shadow_root_allocated);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
|
||
|
#else
|
||
|
static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
|
||
|
#endif
|
||
|
|
||
|
static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
|
||
|
{
|
||
|
return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
|
||
|
}
|
||
|
|
||
|
static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
|
||
|
{
|
||
|
/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
|
||
|
return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
|
||
|
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
|
||
|
}
|
||
|
|
||
|
static inline unsigned long
|
||
|
__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
|
||
|
int level)
|
||
|
{
|
||
|
return gfn_to_index(slot->base_gfn + npages - 1,
|
||
|
slot->base_gfn, level) + 1;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long
|
||
|
kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
|
||
|
{
|
||
|
return __kvm_mmu_slot_lpages(slot, slot->npages, level);
|
||
|
}
|
||
|
|
||
|
static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
|
||
|
{
|
||
|
atomic64_add(count, &kvm->stat.pages[level - 1]);
|
||
|
}
|
||
|
|
||
|
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
|
||
|
struct x86_exception *exception);
|
||
|
|
||
|
static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_mmu *mmu,
|
||
|
gpa_t gpa, u64 access,
|
||
|
struct x86_exception *exception)
|
||
|
{
|
||
|
if (mmu != &vcpu->arch.nested_mmu)
|
||
|
return gpa;
|
||
|
return translate_nested_gpa(vcpu, gpa, access, exception);
|
||
|
}
|
||
|
#endif
|