557 lines
14 KiB
C
557 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0+
|
||
|
/*
|
||
|
* Kernel Probes (KProbes)
|
||
|
*
|
||
|
* Copyright IBM Corp. 2002, 2006
|
||
|
*
|
||
|
* s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "kprobes: " fmt
|
||
|
|
||
|
#include <linux/moduleloader.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/preempt.h>
|
||
|
#include <linux/stop_machine.h>
|
||
|
#include <linux/kdebug.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <linux/ftrace.h>
|
||
|
#include <asm/set_memory.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/dis.h>
|
||
|
#include "entry.h"
|
||
|
|
||
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
||
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||
|
|
||
|
struct kretprobe_blackpoint kretprobe_blacklist[] = { };
|
||
|
|
||
|
DEFINE_INSN_CACHE_OPS(s390_insn);
|
||
|
|
||
|
static int insn_page_in_use;
|
||
|
|
||
|
void *alloc_insn_page(void)
|
||
|
{
|
||
|
void *page;
|
||
|
|
||
|
page = module_alloc(PAGE_SIZE);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static void *alloc_s390_insn_page(void)
|
||
|
{
|
||
|
if (xchg(&insn_page_in_use, 1) == 1)
|
||
|
return NULL;
|
||
|
return &kprobes_insn_page;
|
||
|
}
|
||
|
|
||
|
static void free_s390_insn_page(void *page)
|
||
|
{
|
||
|
xchg(&insn_page_in_use, 0);
|
||
|
}
|
||
|
|
||
|
struct kprobe_insn_cache kprobe_s390_insn_slots = {
|
||
|
.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
|
||
|
.alloc = alloc_s390_insn_page,
|
||
|
.free = free_s390_insn_page,
|
||
|
.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
|
||
|
.insn_size = MAX_INSN_SIZE,
|
||
|
};
|
||
|
|
||
|
static void copy_instruction(struct kprobe *p)
|
||
|
{
|
||
|
kprobe_opcode_t insn[MAX_INSN_SIZE];
|
||
|
s64 disp, new_disp;
|
||
|
u64 addr, new_addr;
|
||
|
unsigned int len;
|
||
|
|
||
|
len = insn_length(*p->addr >> 8);
|
||
|
memcpy(&insn, p->addr, len);
|
||
|
p->opcode = insn[0];
|
||
|
if (probe_is_insn_relative_long(&insn[0])) {
|
||
|
/*
|
||
|
* For pc-relative instructions in RIL-b or RIL-c format patch
|
||
|
* the RI2 displacement field. We have already made sure that
|
||
|
* the insn slot for the patched instruction is within the same
|
||
|
* 2GB area as the original instruction (either kernel image or
|
||
|
* module area). Therefore the new displacement will always fit.
|
||
|
*/
|
||
|
disp = *(s32 *)&insn[1];
|
||
|
addr = (u64)(unsigned long)p->addr;
|
||
|
new_addr = (u64)(unsigned long)p->ainsn.insn;
|
||
|
new_disp = ((addr + (disp * 2)) - new_addr) / 2;
|
||
|
*(s32 *)&insn[1] = new_disp;
|
||
|
}
|
||
|
s390_kernel_write(p->ainsn.insn, &insn, len);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(copy_instruction);
|
||
|
|
||
|
static int s390_get_insn_slot(struct kprobe *p)
|
||
|
{
|
||
|
/*
|
||
|
* Get an insn slot that is within the same 2GB area like the original
|
||
|
* instruction. That way instructions with a 32bit signed displacement
|
||
|
* field can be patched and executed within the insn slot.
|
||
|
*/
|
||
|
p->ainsn.insn = NULL;
|
||
|
if (is_kernel((unsigned long)p->addr))
|
||
|
p->ainsn.insn = get_s390_insn_slot();
|
||
|
else if (is_module_addr(p->addr))
|
||
|
p->ainsn.insn = get_insn_slot();
|
||
|
return p->ainsn.insn ? 0 : -ENOMEM;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(s390_get_insn_slot);
|
||
|
|
||
|
static void s390_free_insn_slot(struct kprobe *p)
|
||
|
{
|
||
|
if (!p->ainsn.insn)
|
||
|
return;
|
||
|
if (is_kernel((unsigned long)p->addr))
|
||
|
free_s390_insn_slot(p->ainsn.insn, 0);
|
||
|
else
|
||
|
free_insn_slot(p->ainsn.insn, 0);
|
||
|
p->ainsn.insn = NULL;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(s390_free_insn_slot);
|
||
|
|
||
|
/* Check if paddr is at an instruction boundary */
|
||
|
static bool can_probe(unsigned long paddr)
|
||
|
{
|
||
|
unsigned long addr, offset = 0;
|
||
|
kprobe_opcode_t insn;
|
||
|
struct kprobe *kp;
|
||
|
|
||
|
if (paddr & 0x01)
|
||
|
return false;
|
||
|
|
||
|
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
|
||
|
return false;
|
||
|
|
||
|
/* Decode instructions */
|
||
|
addr = paddr - offset;
|
||
|
while (addr < paddr) {
|
||
|
if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
|
||
|
return false;
|
||
|
|
||
|
if (insn >> 8 == 0) {
|
||
|
if (insn != BREAKPOINT_INSTRUCTION) {
|
||
|
/*
|
||
|
* Note that QEMU inserts opcode 0x0000 to implement
|
||
|
* software breakpoints for guests. Since the size of
|
||
|
* the original instruction is unknown, stop following
|
||
|
* instructions and prevent setting a kprobe.
|
||
|
*/
|
||
|
return false;
|
||
|
}
|
||
|
/*
|
||
|
* Check if the instruction has been modified by another
|
||
|
* kprobe, in which case the original instruction is
|
||
|
* decoded.
|
||
|
*/
|
||
|
kp = get_kprobe((void *)addr);
|
||
|
if (!kp) {
|
||
|
/* not a kprobe */
|
||
|
return false;
|
||
|
}
|
||
|
insn = kp->opcode;
|
||
|
}
|
||
|
addr += insn_length(insn >> 8);
|
||
|
}
|
||
|
return addr == paddr;
|
||
|
}
|
||
|
|
||
|
int arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (!can_probe((unsigned long)p->addr))
|
||
|
return -EINVAL;
|
||
|
/* Make sure the probe isn't going on a difficult instruction */
|
||
|
if (probe_is_prohibited_opcode(p->addr))
|
||
|
return -EINVAL;
|
||
|
if (s390_get_insn_slot(p))
|
||
|
return -ENOMEM;
|
||
|
copy_instruction(p);
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
||
|
|
||
|
struct swap_insn_args {
|
||
|
struct kprobe *p;
|
||
|
unsigned int arm_kprobe : 1;
|
||
|
};
|
||
|
|
||
|
static int swap_instruction(void *data)
|
||
|
{
|
||
|
struct swap_insn_args *args = data;
|
||
|
struct kprobe *p = args->p;
|
||
|
u16 opc;
|
||
|
|
||
|
opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
|
||
|
s390_kernel_write(p->addr, &opc, sizeof(opc));
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(swap_instruction);
|
||
|
|
||
|
void arch_arm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
|
||
|
|
||
|
stop_machine_cpuslocked(swap_instruction, &args, NULL);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
||
|
|
||
|
void arch_disarm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
|
||
|
|
||
|
stop_machine_cpuslocked(swap_instruction, &args, NULL);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
||
|
|
||
|
void arch_remove_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
s390_free_insn_slot(p);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
||
|
|
||
|
static void enable_singlestep(struct kprobe_ctlblk *kcb,
|
||
|
struct pt_regs *regs,
|
||
|
unsigned long ip)
|
||
|
{
|
||
|
struct per_regs per_kprobe;
|
||
|
|
||
|
/* Set up the PER control registers %cr9-%cr11 */
|
||
|
per_kprobe.control = PER_EVENT_IFETCH;
|
||
|
per_kprobe.start = ip;
|
||
|
per_kprobe.end = ip;
|
||
|
|
||
|
/* Save control regs and psw mask */
|
||
|
__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
|
||
|
kcb->kprobe_saved_imask = regs->psw.mask &
|
||
|
(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
|
||
|
|
||
|
/* Set PER control regs, turns on single step for the given address */
|
||
|
__ctl_load(per_kprobe, 9, 11);
|
||
|
regs->psw.mask |= PSW_MASK_PER;
|
||
|
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
|
||
|
regs->psw.addr = ip;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(enable_singlestep);
|
||
|
|
||
|
static void disable_singlestep(struct kprobe_ctlblk *kcb,
|
||
|
struct pt_regs *regs,
|
||
|
unsigned long ip)
|
||
|
{
|
||
|
/* Restore control regs and psw mask, set new psw address */
|
||
|
__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
|
||
|
regs->psw.mask &= ~PSW_MASK_PER;
|
||
|
regs->psw.mask |= kcb->kprobe_saved_imask;
|
||
|
regs->psw.addr = ip;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(disable_singlestep);
|
||
|
|
||
|
/*
|
||
|
* Activate a kprobe by storing its pointer to current_kprobe. The
|
||
|
* previous kprobe is stored in kcb->prev_kprobe. A stack of up to
|
||
|
* two kprobes can be active, see KPROBE_REENTER.
|
||
|
*/
|
||
|
static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
|
||
|
{
|
||
|
kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
|
||
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||
|
__this_cpu_write(current_kprobe, p);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(push_kprobe);
|
||
|
|
||
|
/*
|
||
|
* Deactivate a kprobe by backing up to the previous state. If the
|
||
|
* current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
|
||
|
* for any other state prev_kprobe.kp will be NULL.
|
||
|
*/
|
||
|
static void pop_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
||
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||
|
kcb->prev_kprobe.kp = NULL;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(pop_kprobe);
|
||
|
|
||
|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||
|
{
|
||
|
ri->ret_addr = (kprobe_opcode_t *)regs->gprs[14];
|
||
|
ri->fp = (void *)regs->gprs[15];
|
||
|
|
||
|
/* Replace the return addr with trampoline addr */
|
||
|
regs->gprs[14] = (unsigned long)&__kretprobe_trampoline;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
|
||
|
|
||
|
static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
|
||
|
{
|
||
|
switch (kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
kprobes_inc_nmissed_count(p);
|
||
|
break;
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
default:
|
||
|
/*
|
||
|
* A kprobe on the code path to single step an instruction
|
||
|
* is a BUG. The code path resides in the .kprobes.text
|
||
|
* section and is executed with interrupts disabled.
|
||
|
*/
|
||
|
pr_err("Failed to recover from reentered kprobes.\n");
|
||
|
dump_kprobe(p);
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_reenter_check);
|
||
|
|
||
|
static int kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb;
|
||
|
struct kprobe *p;
|
||
|
|
||
|
/*
|
||
|
* We want to disable preemption for the entire duration of kprobe
|
||
|
* processing. That includes the calls to the pre/post handlers
|
||
|
* and single stepping the kprobe instruction.
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
kcb = get_kprobe_ctlblk();
|
||
|
p = get_kprobe((void *)(regs->psw.addr - 2));
|
||
|
|
||
|
if (p) {
|
||
|
if (kprobe_running()) {
|
||
|
/*
|
||
|
* We have hit a kprobe while another is still
|
||
|
* active. This can happen in the pre and post
|
||
|
* handler. Single step the instruction of the
|
||
|
* new probe but do not call any handler function
|
||
|
* of this secondary kprobe.
|
||
|
* push_kprobe and pop_kprobe saves and restores
|
||
|
* the currently active kprobe.
|
||
|
*/
|
||
|
kprobe_reenter_check(kcb, p);
|
||
|
push_kprobe(kcb, p);
|
||
|
kcb->kprobe_status = KPROBE_REENTER;
|
||
|
} else {
|
||
|
/*
|
||
|
* If we have no pre-handler or it returned 0, we
|
||
|
* continue with single stepping. If we have a
|
||
|
* pre-handler and it returned non-zero, it prepped
|
||
|
* for changing execution path, so get out doing
|
||
|
* nothing more here.
|
||
|
*/
|
||
|
push_kprobe(kcb, p);
|
||
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
||
|
pop_kprobe(kcb);
|
||
|
preempt_enable_no_resched();
|
||
|
return 1;
|
||
|
}
|
||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||
|
}
|
||
|
enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
|
||
|
return 1;
|
||
|
} /* else:
|
||
|
* No kprobe at this address and no active kprobe. The trap has
|
||
|
* not been caused by a kprobe breakpoint. The race of breakpoint
|
||
|
* vs. kprobe remove does not exist because on s390 as we use
|
||
|
* stop_machine to arm/disarm the breakpoints.
|
||
|
*/
|
||
|
preempt_enable_no_resched();
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_handler);
|
||
|
|
||
|
void arch_kretprobe_fixup_return(struct pt_regs *regs,
|
||
|
kprobe_opcode_t *correct_ret_addr)
|
||
|
{
|
||
|
/* Replace fake return address with real one. */
|
||
|
regs->gprs[14] = (unsigned long)correct_ret_addr;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_kretprobe_fixup_return);
|
||
|
|
||
|
/*
|
||
|
* Called from __kretprobe_trampoline
|
||
|
*/
|
||
|
void trampoline_probe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
kretprobe_trampoline_handler(regs, (void *)regs->gprs[15]);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(trampoline_probe_handler);
|
||
|
|
||
|
/* assembler function that handles the kretprobes must not be probed itself */
|
||
|
NOKPROBE_SYMBOL(__kretprobe_trampoline);
|
||
|
|
||
|
/*
|
||
|
* Called after single-stepping. p->addr is the address of the
|
||
|
* instruction whose first byte has been replaced by the "breakpoint"
|
||
|
* instruction. To avoid the SMP problems that can occur when we
|
||
|
* temporarily put back the original opcode to single-step, we
|
||
|
* single-stepped a copy of the instruction. The address of this
|
||
|
* copy is p->ainsn.insn.
|
||
|
*/
|
||
|
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
unsigned long ip = regs->psw.addr;
|
||
|
int fixup = probe_get_fixup_type(p->ainsn.insn);
|
||
|
|
||
|
if (fixup & FIXUP_PSW_NORMAL)
|
||
|
ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
|
||
|
|
||
|
if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
|
||
|
int ilen = insn_length(p->ainsn.insn[0] >> 8);
|
||
|
if (ip - (unsigned long) p->ainsn.insn == ilen)
|
||
|
ip = (unsigned long) p->addr + ilen;
|
||
|
}
|
||
|
|
||
|
if (fixup & FIXUP_RETURN_REGISTER) {
|
||
|
int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
|
||
|
regs->gprs[reg] += (unsigned long) p->addr -
|
||
|
(unsigned long) p->ainsn.insn;
|
||
|
}
|
||
|
|
||
|
disable_singlestep(kcb, regs, ip);
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(resume_execution);
|
||
|
|
||
|
static int post_kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
struct kprobe *p = kprobe_running();
|
||
|
|
||
|
if (!p)
|
||
|
return 0;
|
||
|
|
||
|
resume_execution(p, regs);
|
||
|
if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
p->post_handler(p, regs, 0);
|
||
|
}
|
||
|
pop_kprobe(kcb);
|
||
|
preempt_enable_no_resched();
|
||
|
|
||
|
/*
|
||
|
* if somebody else is singlestepping across a probe point, psw mask
|
||
|
* will have PER set, in which case, continue the remaining processing
|
||
|
* of do_single_step, as if this is not a probe hit.
|
||
|
*/
|
||
|
if (regs->psw.mask & PSW_MASK_PER)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(post_kprobe_handler);
|
||
|
|
||
|
static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
struct kprobe *p = kprobe_running();
|
||
|
|
||
|
switch(kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
/*
|
||
|
* We are here because the instruction being single
|
||
|
* stepped caused a page fault. We reset the current
|
||
|
* kprobe and the nip points back to the probe address
|
||
|
* and allow the page fault handler to continue as a
|
||
|
* normal page fault.
|
||
|
*/
|
||
|
disable_singlestep(kcb, regs, (unsigned long) p->addr);
|
||
|
pop_kprobe(kcb);
|
||
|
preempt_enable_no_resched();
|
||
|
break;
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
/*
|
||
|
* In case the user-specified fault handler returned
|
||
|
* zero, try to fix up.
|
||
|
*/
|
||
|
if (fixup_exception(regs))
|
||
|
return 1;
|
||
|
/*
|
||
|
* fixup_exception() could not handle it,
|
||
|
* Let do_page_fault() fix it.
|
||
|
*/
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_trap_handler);
|
||
|
|
||
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
||
|
local_irq_disable();
|
||
|
ret = kprobe_trap_handler(regs, trapnr);
|
||
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
||
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
||
|
return ret;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
||
|
|
||
|
/*
|
||
|
* Wrapper routine to for handling exceptions.
|
||
|
*/
|
||
|
int kprobe_exceptions_notify(struct notifier_block *self,
|
||
|
unsigned long val, void *data)
|
||
|
{
|
||
|
struct die_args *args = (struct die_args *) data;
|
||
|
struct pt_regs *regs = args->regs;
|
||
|
int ret = NOTIFY_DONE;
|
||
|
|
||
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
||
|
local_irq_disable();
|
||
|
|
||
|
switch (val) {
|
||
|
case DIE_BPT:
|
||
|
if (kprobe_handler(regs))
|
||
|
ret = NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_SSTEP:
|
||
|
if (post_kprobe_handler(regs))
|
||
|
ret = NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_TRAP:
|
||
|
if (!preemptible() && kprobe_running() &&
|
||
|
kprobe_trap_handler(regs, args->trapnr))
|
||
|
ret = NOTIFY_STOP;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
|
||
|
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
|
||
|
|
||
|
int __init arch_init_kprobes(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int arch_trampoline_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|