232 lines
5.8 KiB
C
232 lines
5.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
/*
|
||
|
* Copyright 2022, Nicholas Miehlbradt, IBM Corporation
|
||
|
* based on pkey_exec_prot.c
|
||
|
*
|
||
|
* Test if applying execute protection on pages works as expected.
|
||
|
*/
|
||
|
|
||
|
#define _GNU_SOURCE
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <signal.h>
|
||
|
|
||
|
#include <unistd.h>
|
||
|
#include <sys/mman.h>
|
||
|
|
||
|
#include "pkeys.h"
|
||
|
|
||
|
|
||
|
#define PPC_INST_NOP 0x60000000
|
||
|
#define PPC_INST_TRAP 0x7fe00008
|
||
|
#define PPC_INST_BLR 0x4e800020
|
||
|
|
||
|
static volatile sig_atomic_t fault_code;
|
||
|
static volatile sig_atomic_t remaining_faults;
|
||
|
static volatile unsigned int *fault_addr;
|
||
|
static unsigned long pgsize, numinsns;
|
||
|
static unsigned int *insns;
|
||
|
static bool pkeys_supported;
|
||
|
|
||
|
static bool is_fault_expected(int fault_code)
|
||
|
{
|
||
|
if (fault_code == SEGV_ACCERR)
|
||
|
return true;
|
||
|
|
||
|
/* Assume any pkey error is fine since pkey_exec_prot test covers them */
|
||
|
if (fault_code == SEGV_PKUERR && pkeys_supported)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void trap_handler(int signum, siginfo_t *sinfo, void *ctx)
|
||
|
{
|
||
|
/* Check if this fault originated from the expected address */
|
||
|
if (sinfo->si_addr != (void *)fault_addr)
|
||
|
sigsafe_err("got a fault for an unexpected address\n");
|
||
|
|
||
|
_exit(1);
|
||
|
}
|
||
|
|
||
|
static void segv_handler(int signum, siginfo_t *sinfo, void *ctx)
|
||
|
{
|
||
|
fault_code = sinfo->si_code;
|
||
|
|
||
|
/* Check if this fault originated from the expected address */
|
||
|
if (sinfo->si_addr != (void *)fault_addr) {
|
||
|
sigsafe_err("got a fault for an unexpected address\n");
|
||
|
_exit(1);
|
||
|
}
|
||
|
|
||
|
/* Check if too many faults have occurred for a single test case */
|
||
|
if (!remaining_faults) {
|
||
|
sigsafe_err("got too many faults for the same address\n");
|
||
|
_exit(1);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Restore permissions in order to continue */
|
||
|
if (is_fault_expected(fault_code)) {
|
||
|
if (mprotect(insns, pgsize, PROT_READ | PROT_WRITE | PROT_EXEC)) {
|
||
|
sigsafe_err("failed to set access permissions\n");
|
||
|
_exit(1);
|
||
|
}
|
||
|
} else {
|
||
|
sigsafe_err("got a fault with an unexpected code\n");
|
||
|
_exit(1);
|
||
|
}
|
||
|
|
||
|
remaining_faults--;
|
||
|
}
|
||
|
|
||
|
static int check_exec_fault(int rights)
|
||
|
{
|
||
|
/*
|
||
|
* Jump to the executable region.
|
||
|
*
|
||
|
* The first iteration also checks if the overwrite of the
|
||
|
* first instruction word from a trap to a no-op succeeded.
|
||
|
*/
|
||
|
fault_code = -1;
|
||
|
remaining_faults = 0;
|
||
|
if (!(rights & PROT_EXEC))
|
||
|
remaining_faults = 1;
|
||
|
|
||
|
FAIL_IF(mprotect(insns, pgsize, rights) != 0);
|
||
|
asm volatile("mtctr %0; bctrl" : : "r"(insns));
|
||
|
|
||
|
FAIL_IF(remaining_faults != 0);
|
||
|
if (!(rights & PROT_EXEC))
|
||
|
FAIL_IF(!is_fault_expected(fault_code));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int test(void)
|
||
|
{
|
||
|
struct sigaction segv_act, trap_act;
|
||
|
int i;
|
||
|
|
||
|
/* Skip the test if the CPU doesn't support Radix */
|
||
|
SKIP_IF(!have_hwcap2(PPC_FEATURE2_ARCH_3_00));
|
||
|
|
||
|
/* Check if pkeys are supported */
|
||
|
pkeys_supported = pkeys_unsupported() == 0;
|
||
|
|
||
|
/* Setup SIGSEGV handler */
|
||
|
segv_act.sa_handler = 0;
|
||
|
segv_act.sa_sigaction = segv_handler;
|
||
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &segv_act.sa_mask) != 0);
|
||
|
segv_act.sa_flags = SA_SIGINFO;
|
||
|
segv_act.sa_restorer = 0;
|
||
|
FAIL_IF(sigaction(SIGSEGV, &segv_act, NULL) != 0);
|
||
|
|
||
|
/* Setup SIGTRAP handler */
|
||
|
trap_act.sa_handler = 0;
|
||
|
trap_act.sa_sigaction = trap_handler;
|
||
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &trap_act.sa_mask) != 0);
|
||
|
trap_act.sa_flags = SA_SIGINFO;
|
||
|
trap_act.sa_restorer = 0;
|
||
|
FAIL_IF(sigaction(SIGTRAP, &trap_act, NULL) != 0);
|
||
|
|
||
|
/* Setup executable region */
|
||
|
pgsize = getpagesize();
|
||
|
numinsns = pgsize / sizeof(unsigned int);
|
||
|
insns = (unsigned int *)mmap(NULL, pgsize, PROT_READ | PROT_WRITE,
|
||
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
||
|
FAIL_IF(insns == MAP_FAILED);
|
||
|
|
||
|
/* Write the instruction words */
|
||
|
for (i = 1; i < numinsns - 1; i++)
|
||
|
insns[i] = PPC_INST_NOP;
|
||
|
|
||
|
/*
|
||
|
* Set the first instruction as an unconditional trap. If
|
||
|
* the last write to this address succeeds, this should
|
||
|
* get overwritten by a no-op.
|
||
|
*/
|
||
|
insns[0] = PPC_INST_TRAP;
|
||
|
|
||
|
/*
|
||
|
* Later, to jump to the executable region, we use a branch
|
||
|
* and link instruction (bctrl) which sets the return address
|
||
|
* automatically in LR. Use that to return back.
|
||
|
*/
|
||
|
insns[numinsns - 1] = PPC_INST_BLR;
|
||
|
|
||
|
/*
|
||
|
* Pick the first instruction's address from the executable
|
||
|
* region.
|
||
|
*/
|
||
|
fault_addr = insns;
|
||
|
|
||
|
/*
|
||
|
* Read an instruction word from the address when the page
|
||
|
* is execute only. This should generate an access fault.
|
||
|
*/
|
||
|
fault_code = -1;
|
||
|
remaining_faults = 1;
|
||
|
printf("Testing read on --x, should fault...");
|
||
|
FAIL_IF(mprotect(insns, pgsize, PROT_EXEC) != 0);
|
||
|
i = *fault_addr;
|
||
|
FAIL_IF(remaining_faults != 0 || !is_fault_expected(fault_code));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
/*
|
||
|
* Write an instruction word to the address when the page
|
||
|
* execute only. This should also generate an access fault.
|
||
|
*/
|
||
|
fault_code = -1;
|
||
|
remaining_faults = 1;
|
||
|
printf("Testing write on --x, should fault...");
|
||
|
FAIL_IF(mprotect(insns, pgsize, PROT_EXEC) != 0);
|
||
|
*fault_addr = PPC_INST_NOP;
|
||
|
FAIL_IF(remaining_faults != 0 || !is_fault_expected(fault_code));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on ---, should fault...");
|
||
|
FAIL_IF(check_exec_fault(PROT_NONE));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on r--, should fault...");
|
||
|
FAIL_IF(check_exec_fault(PROT_READ));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on -w-, should fault...");
|
||
|
FAIL_IF(check_exec_fault(PROT_WRITE));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on rw-, should fault...");
|
||
|
FAIL_IF(check_exec_fault(PROT_READ | PROT_WRITE));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on --x, should succeed...");
|
||
|
FAIL_IF(check_exec_fault(PROT_EXEC));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on r-x, should succeed...");
|
||
|
FAIL_IF(check_exec_fault(PROT_READ | PROT_EXEC));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on -wx, should succeed...");
|
||
|
FAIL_IF(check_exec_fault(PROT_WRITE | PROT_EXEC));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
printf("Testing exec on rwx, should succeed...");
|
||
|
FAIL_IF(check_exec_fault(PROT_READ | PROT_WRITE | PROT_EXEC));
|
||
|
printf("ok!\n");
|
||
|
|
||
|
/* Cleanup */
|
||
|
FAIL_IF(munmap((void *)insns, pgsize));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int main(void)
|
||
|
{
|
||
|
return test_harness(test, "exec_prot");
|
||
|
}
|