linuxdebug/fs/f2fs/checkpoint.c

1955 lines
48 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include <linux/kthread.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "iostat.h"
#include <trace/events/f2fs.h>
#define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
static struct kmem_cache *ino_entry_slab;
struct kmem_cache *f2fs_inode_entry_slab;
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
unsigned char reason)
{
f2fs_build_fault_attr(sbi, 0, 0);
set_ckpt_flags(sbi, CP_ERROR_FLAG);
if (!end_io) {
f2fs_flush_merged_writes(sbi);
f2fs_handle_stop(sbi, reason);
}
}
/*
* We guarantee no failure on the returned page.
*/
struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page;
repeat:
page = f2fs_grab_cache_page(mapping, index, false);
if (!page) {
cond_resched();
goto repeat;
}
f2fs_wait_on_page_writeback(page, META, true, true);
if (!PageUptodate(page))
SetPageUptodate(page);
return page;
}
static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
bool is_meta)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = META,
.op = REQ_OP_READ,
.op_flags = REQ_META | REQ_PRIO,
.old_blkaddr = index,
.new_blkaddr = index,
.encrypted_page = NULL,
.is_por = !is_meta,
};
int err;
if (unlikely(!is_meta))
fio.op_flags &= ~REQ_META;
repeat:
page = f2fs_grab_cache_page(mapping, index, false);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
fio.page = page;
err = f2fs_submit_page_bio(&fio);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
f2fs_handle_page_eio(sbi, page->index, META);
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
out:
return page;
}
struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
return __get_meta_page(sbi, index, true);
}
struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct page *page;
int count = 0;
retry:
page = __get_meta_page(sbi, index, true);
if (IS_ERR(page)) {
if (PTR_ERR(page) == -EIO &&
++count <= DEFAULT_RETRY_IO_COUNT)
goto retry;
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
}
return page;
}
/* for POR only */
struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
return __get_meta_page(sbi, index, false);
}
static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
int type)
{
struct seg_entry *se;
unsigned int segno, offset;
bool exist;
if (type == DATA_GENERIC)
return true;
segno = GET_SEGNO(sbi, blkaddr);
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
exist = f2fs_test_bit(offset, se->cur_valid_map);
if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
blkaddr, exist);
set_sbi_flag(sbi, SBI_NEED_FSCK);
return exist;
}
if (!exist && type == DATA_GENERIC_ENHANCE) {
f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
blkaddr, exist);
set_sbi_flag(sbi, SBI_NEED_FSCK);
dump_stack();
}
return exist;
}
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
switch (type) {
case META_NAT:
break;
case META_SIT:
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
return false;
break;
case META_SSA:
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
blkaddr < SM_I(sbi)->ssa_blkaddr))
return false;
break;
case META_CP:
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
blkaddr < __start_cp_addr(sbi)))
return false;
break;
case META_POR:
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
blkaddr < MAIN_BLKADDR(sbi)))
return false;
break;
case DATA_GENERIC:
case DATA_GENERIC_ENHANCE:
case DATA_GENERIC_ENHANCE_READ:
case DATA_GENERIC_ENHANCE_UPDATE:
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
blkaddr < MAIN_BLKADDR(sbi))) {
f2fs_warn(sbi, "access invalid blkaddr:%u",
blkaddr);
set_sbi_flag(sbi, SBI_NEED_FSCK);
dump_stack();
return false;
} else {
return __is_bitmap_valid(sbi, blkaddr, type);
}
break;
case META_GENERIC:
if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
blkaddr >= MAIN_BLKADDR(sbi)))
return false;
break;
default:
BUG();
}
return true;
}
/*
* Readahead CP/NAT/SIT/SSA/POR pages
*/
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
int type, bool sync)
{
struct page *page;
block_t blkno = start;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = META,
.op = REQ_OP_READ,
.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
.encrypted_page = NULL,
.in_list = false,
.is_por = (type == META_POR),
};
struct blk_plug plug;
int err;
if (unlikely(type == META_POR))
fio.op_flags &= ~REQ_META;
blk_start_plug(&plug);
for (; nrpages-- > 0; blkno++) {
if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
goto out;
switch (type) {
case META_NAT:
if (unlikely(blkno >=
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
blkno = 0;
/* get nat block addr */
fio.new_blkaddr = current_nat_addr(sbi,
blkno * NAT_ENTRY_PER_BLOCK);
break;
case META_SIT:
if (unlikely(blkno >= TOTAL_SEGS(sbi)))
goto out;
/* get sit block addr */
fio.new_blkaddr = current_sit_addr(sbi,
blkno * SIT_ENTRY_PER_BLOCK);
break;
case META_SSA:
case META_CP:
case META_POR:
fio.new_blkaddr = blkno;
break;
default:
BUG();
}
page = f2fs_grab_cache_page(META_MAPPING(sbi),
fio.new_blkaddr, false);
if (!page)
continue;
if (PageUptodate(page)) {
f2fs_put_page(page, 1);
continue;
}
fio.page = page;
err = f2fs_submit_page_bio(&fio);
f2fs_put_page(page, err ? 1 : 0);
if (!err)
f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
F2FS_BLKSIZE);
}
out:
blk_finish_plug(&plug);
return blkno - start;
}
void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
unsigned int ra_blocks)
{
struct page *page;
bool readahead = false;
if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
return;
page = find_get_page(META_MAPPING(sbi), index);
if (!page || !PageUptodate(page))
readahead = true;
f2fs_put_page(page, 0);
if (readahead)
f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
}
static int __f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc,
enum iostat_type io_type)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
trace_f2fs_writepage(page, META);
if (unlikely(f2fs_cp_error(sbi))) {
if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
ClearPageUptodate(page);
dec_page_count(sbi, F2FS_DIRTY_META);
unlock_page(page);
return 0;
}
goto redirty_out;
}
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
goto redirty_out;
f2fs_do_write_meta_page(sbi, page, io_type);
dec_page_count(sbi, F2FS_DIRTY_META);
if (wbc->for_reclaim)
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
unlock_page(page);
if (unlikely(f2fs_cp_error(sbi)))
f2fs_submit_merged_write(sbi, META);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
return __f2fs_write_meta_page(page, wbc, FS_META_IO);
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
long diff, written;
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
/* collect a number of dirty meta pages and write together */
if (wbc->sync_mode != WB_SYNC_ALL &&
get_pages(sbi, F2FS_DIRTY_META) <
nr_pages_to_skip(sbi, META))
goto skip_write;
/* if locked failed, cp will flush dirty pages instead */
if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
goto skip_write;
trace_f2fs_writepages(mapping->host, wbc, META);
diff = nr_pages_to_write(sbi, META, wbc);
written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
f2fs_up_write(&sbi->cp_global_sem);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
return 0;
skip_write:
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
trace_f2fs_writepages(mapping->host, wbc, META);
return 0;
}
long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write, enum iostat_type io_type)
{
struct address_space *mapping = META_MAPPING(sbi);
pgoff_t index = 0, prev = ULONG_MAX;
struct pagevec pvec;
long nwritten = 0;
int nr_pages;
struct writeback_control wbc = {
.for_reclaim = 0,
};
struct blk_plug plug;
pagevec_init(&pvec);
blk_start_plug(&plug);
while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY))) {
int i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (prev == ULONG_MAX)
prev = page->index - 1;
if (nr_to_write != LONG_MAX && page->index != prev + 1) {
pagevec_release(&pvec);
goto stop;
}
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
f2fs_wait_on_page_writeback(page, META, true, true);
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
if (__f2fs_write_meta_page(page, &wbc, io_type)) {
unlock_page(page);
break;
}
nwritten++;
prev = page->index;
if (unlikely(nwritten >= nr_to_write))
break;
}
pagevec_release(&pvec);
cond_resched();
}
stop:
if (nwritten)
f2fs_submit_merged_write(sbi, type);
blk_finish_plug(&plug);
return nwritten;
}
static bool f2fs_dirty_meta_folio(struct address_space *mapping,
struct folio *folio)
{
trace_f2fs_set_page_dirty(&folio->page, META);
if (!folio_test_uptodate(folio))
folio_mark_uptodate(folio);
if (filemap_dirty_folio(mapping, folio)) {
inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
set_page_private_reference(&folio->page);
return true;
}
return false;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.dirty_folio = f2fs_dirty_meta_folio,
.invalidate_folio = f2fs_invalidate_folio,
.release_folio = f2fs_release_folio,
.migrate_folio = filemap_migrate_folio,
};
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e = NULL, *new = NULL;
if (type == FLUSH_INO) {
rcu_read_lock();
e = radix_tree_lookup(&im->ino_root, ino);
rcu_read_unlock();
}
retry:
if (!e)
new = f2fs_kmem_cache_alloc(ino_entry_slab,
GFP_NOFS, true, NULL);
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (!e) {
if (!new) {
spin_unlock(&im->ino_lock);
goto retry;
}
e = new;
if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
f2fs_bug_on(sbi, 1);
memset(e, 0, sizeof(struct ino_entry));
e->ino = ino;
list_add_tail(&e->list, &im->ino_list);
if (type != ORPHAN_INO)
im->ino_num++;
}
if (type == FLUSH_INO)
f2fs_set_bit(devidx, (char *)&e->dirty_device);
spin_unlock(&im->ino_lock);
radix_tree_preload_end();
if (new && e != new)
kmem_cache_free(ino_entry_slab, new);
}
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (e) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, ino);
im->ino_num--;
spin_unlock(&im->ino_lock);
kmem_cache_free(ino_entry_slab, e);
return;
}
spin_unlock(&im->ino_lock);
}
void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* add new dirty ino entry into list */
__add_ino_entry(sbi, ino, 0, type);
}
void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* remove dirty ino entry from list */
__remove_ino_entry(sbi, ino, type);
}
/* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
{
struct inode_management *im = &sbi->im[mode];
struct ino_entry *e;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
spin_unlock(&im->ino_lock);
return e ? true : false;
}
void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
{
struct ino_entry *e, *tmp;
int i;
for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
struct inode_management *im = &sbi->im[i];
spin_lock(&im->ino_lock);
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
list_del(&e->list);
radix_tree_delete(&im->ino_root, e->ino);
kmem_cache_free(ino_entry_slab, e);
im->ino_num--;
}
spin_unlock(&im->ino_lock);
}
}
void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type)
{
__add_ino_entry(sbi, ino, devidx, type);
}
bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type)
{
struct inode_management *im = &sbi->im[type];
struct ino_entry *e;
bool is_dirty = false;
spin_lock(&im->ino_lock);
e = radix_tree_lookup(&im->ino_root, ino);
if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
is_dirty = true;
spin_unlock(&im->ino_lock);
return is_dirty;
}
int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
int err = 0;
spin_lock(&im->ino_lock);
if (time_to_inject(sbi, FAULT_ORPHAN)) {
spin_unlock(&im->ino_lock);
f2fs_show_injection_info(sbi, FAULT_ORPHAN);
return -ENOSPC;
}
if (unlikely(im->ino_num >= sbi->max_orphans))
err = -ENOSPC;
else
im->ino_num++;
spin_unlock(&im->ino_lock);
return err;
}
void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
{
struct inode_management *im = &sbi->im[ORPHAN_INO];
spin_lock(&im->ino_lock);
f2fs_bug_on(sbi, im->ino_num == 0);
im->ino_num--;
spin_unlock(&im->ino_lock);
}
void f2fs_add_orphan_inode(struct inode *inode)
{
/* add new orphan ino entry into list */
__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
f2fs_update_inode_page(inode);
}
void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* remove orphan entry from orphan list */
__remove_ino_entry(sbi, ino, ORPHAN_INO);
}
static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode;
struct node_info ni;
int err;
inode = f2fs_iget_retry(sbi->sb, ino);
if (IS_ERR(inode)) {
/*
* there should be a bug that we can't find the entry
* to orphan inode.
*/
f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
return PTR_ERR(inode);
}
err = f2fs_dquot_initialize(inode);
if (err) {
iput(inode);
goto err_out;
}
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
err = f2fs_get_node_info(sbi, ino, &ni, false);
if (err)
goto err_out;
/* ENOMEM was fully retried in f2fs_evict_inode. */
if (ni.blk_addr != NULL_ADDR) {
err = -EIO;
goto err_out;
}
return 0;
err_out:
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
__func__, ino);
return err;
}
int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blocks, i, j;
unsigned int s_flags = sbi->sb->s_flags;
int err = 0;
#ifdef CONFIG_QUOTA
int quota_enabled;
#endif
if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
return 0;
if (bdev_read_only(sbi->sb->s_bdev)) {
f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
return 0;
}
if (s_flags & SB_RDONLY) {
f2fs_info(sbi, "orphan cleanup on readonly fs");
sbi->sb->s_flags &= ~SB_RDONLY;
}
#ifdef CONFIG_QUOTA
/*
* Turn on quotas which were not enabled for read-only mounts if
* filesystem has quota feature, so that they are updated correctly.
*/
quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
#endif
start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
for (i = 0; i < orphan_blocks; i++) {
struct page *page;
struct f2fs_orphan_block *orphan_blk;
page = f2fs_get_meta_page(sbi, start_blk + i);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto out;
}
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
err = recover_orphan_inode(sbi, ino);
if (err) {
f2fs_put_page(page, 1);
goto out;
}
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
out:
set_sbi_flag(sbi, SBI_IS_RECOVERED);
#ifdef CONFIG_QUOTA
/* Turn quotas off */
if (quota_enabled)
f2fs_quota_off_umount(sbi->sb);
#endif
sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
return err;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head;
struct f2fs_orphan_block *orphan_blk = NULL;
unsigned int nentries = 0;
unsigned short index = 1;
unsigned short orphan_blocks;
struct page *page = NULL;
struct ino_entry *orphan = NULL;
struct inode_management *im = &sbi->im[ORPHAN_INO];
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
/*
* we don't need to do spin_lock(&im->ino_lock) here, since all the
* orphan inode operations are covered under f2fs_lock_op().
* And, spin_lock should be avoided due to page operations below.
*/
head = &im->ino_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_entry(orphan, head, list) {
if (!page) {
page = f2fs_grab_meta_page(sbi, start_blk++);
orphan_blk =
(struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
}
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
nentries = 0;
page = NULL;
}
}
if (page) {
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
struct f2fs_checkpoint *ckpt)
{
unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
__u32 chksum;
chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
if (chksum_ofs < CP_CHKSUM_OFFSET) {
chksum_ofs += sizeof(chksum);
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
F2FS_BLKSIZE - chksum_ofs);
}
return chksum;
}
static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
struct f2fs_checkpoint **cp_block, struct page **cp_page,
unsigned long long *version)
{
size_t crc_offset = 0;
__u32 crc;
*cp_page = f2fs_get_meta_page(sbi, cp_addr);
if (IS_ERR(*cp_page))
return PTR_ERR(*cp_page);
*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
crc_offset > CP_CHKSUM_OFFSET) {
f2fs_put_page(*cp_page, 1);
f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
return -EINVAL;
}
crc = f2fs_checkpoint_chksum(sbi, *cp_block);
if (crc != cur_cp_crc(*cp_block)) {
f2fs_put_page(*cp_page, 1);
f2fs_warn(sbi, "invalid crc value");
return -EINVAL;
}
*version = cur_cp_version(*cp_block);
return 0;
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
struct f2fs_checkpoint *cp_block = NULL;
unsigned long long cur_version = 0, pre_version = 0;
unsigned int cp_blocks;
int err;
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
&cp_page_1, version);
if (err)
return NULL;
cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
le32_to_cpu(cp_block->cp_pack_total_block_count));
goto invalid_cp;
}
pre_version = *version;
cp_addr += cp_blocks - 1;
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
&cp_page_2, version);
if (err)
goto invalid_cp;
cur_version = *version;
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
f2fs_put_page(cp_page_2, 1);
invalid_cp:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
unsigned int cp_blks = 1 + __cp_payload(sbi);
block_t cp_blk_no;
int i;
int err;
sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack 1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += ((unsigned long long)1) <<
le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
err = -EFSCORRUPTED;
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
if (cur_page == cp1)
sbi->cur_cp_pack = 1;
else
sbi->cur_cp_pack = 2;
/* Sanity checking of checkpoint */
if (f2fs_sanity_check_ckpt(sbi)) {
err = -EFSCORRUPTED;
goto free_fail_no_cp;
}
if (cp_blks <= 1)
goto done;
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
if (cur_page == cp2)
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
for (i = 1; i < cp_blks; i++) {
void *sit_bitmap_ptr;
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
if (IS_ERR(cur_page)) {
err = PTR_ERR(cur_page);
goto free_fail_no_cp;
}
sit_bitmap_ptr = page_address(cur_page);
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
f2fs_put_page(cur_page, 1);
}
done:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
free_fail_no_cp:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
fail_no_cp:
kvfree(sbi->ckpt);
return err;
}
static void __add_dirty_inode(struct inode *inode, enum inode_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
if (is_inode_flag_set(inode, flag))
return;
set_inode_flag(inode, flag);
list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
stat_inc_dirty_inode(sbi, type);
}
static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
{
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
return;
list_del_init(&F2FS_I(inode)->dirty_list);
clear_inode_flag(inode, flag);
stat_dec_dirty_inode(F2FS_I_SB(inode), type);
}
void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
spin_lock(&sbi->inode_lock[type]);
if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
__add_dirty_inode(inode, type);
inode_inc_dirty_pages(inode);
spin_unlock(&sbi->inode_lock[type]);
set_page_private_reference(&folio->page);
}
void f2fs_remove_dirty_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
return;
spin_lock(&sbi->inode_lock[type]);
__remove_dirty_inode(inode, type);
spin_unlock(&sbi->inode_lock[type]);
}
int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
bool from_cp)
{
struct list_head *head;
struct inode *inode;
struct f2fs_inode_info *fi;
bool is_dir = (type == DIR_INODE);
unsigned long ino = 0;
trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
get_pages(sbi, is_dir ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
retry:
if (unlikely(f2fs_cp_error(sbi))) {
trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
get_pages(sbi, is_dir ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
return -EIO;
}
spin_lock(&sbi->inode_lock[type]);
head = &sbi->inode_list[type];
if (list_empty(head)) {
spin_unlock(&sbi->inode_lock[type]);
trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
get_pages(sbi, is_dir ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
return 0;
}
fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
inode = igrab(&fi->vfs_inode);
spin_unlock(&sbi->inode_lock[type]);
if (inode) {
unsigned long cur_ino = inode->i_ino;
if (from_cp)
F2FS_I(inode)->cp_task = current;
F2FS_I(inode)->wb_task = current;
filemap_fdatawrite(inode->i_mapping);
F2FS_I(inode)->wb_task = NULL;
if (from_cp)
F2FS_I(inode)->cp_task = NULL;
iput(inode);
/* We need to give cpu to another writers. */
if (ino == cur_ino)
cond_resched();
else
ino = cur_ino;
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_merged_write(sbi, DATA);
cond_resched();
}
goto retry;
}
int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
{
struct list_head *head = &sbi->inode_list[DIRTY_META];
struct inode *inode;
struct f2fs_inode_info *fi;
s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
while (total--) {
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (list_empty(head)) {
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return 0;
}
fi = list_first_entry(head, struct f2fs_inode_info,
gdirty_list);
inode = igrab(&fi->vfs_inode);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
if (inode) {
sync_inode_metadata(inode, 0);
/* it's on eviction */
if (is_inode_flag_set(inode, FI_DIRTY_INODE))
f2fs_update_inode_page(inode);
iput(inode);
}
}
return 0;
}
static void __prepare_cp_block(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
nid_t last_nid = nm_i->next_scan_nid;
next_free_nid(sbi, &last_nid);
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
}
static bool __need_flush_quota(struct f2fs_sb_info *sbi)
{
bool ret = false;
if (!is_journalled_quota(sbi))
return false;
if (!f2fs_down_write_trylock(&sbi->quota_sem))
return true;
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
ret = false;
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
ret = false;
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
ret = true;
} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
ret = true;
}
f2fs_up_write(&sbi->quota_sem);
return ret;
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static int block_operations(struct f2fs_sb_info *sbi)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
int err = 0, cnt = 0;
/*
* Let's flush inline_data in dirty node pages.
*/
f2fs_flush_inline_data(sbi);
retry_flush_quotas:
f2fs_lock_all(sbi);
if (__need_flush_quota(sbi)) {
int locked;
if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
goto retry_flush_dents;
}
f2fs_unlock_all(sbi);
/* only failed during mount/umount/freeze/quotactl */
locked = down_read_trylock(&sbi->sb->s_umount);
f2fs_quota_sync(sbi->sb, -1);
if (locked)
up_read(&sbi->sb->s_umount);
cond_resched();
goto retry_flush_quotas;
}
retry_flush_dents:
/* write all the dirty dentry pages */
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
f2fs_unlock_all(sbi);
err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
if (err)
return err;
cond_resched();
goto retry_flush_quotas;
}
/*
* POR: we should ensure that there are no dirty node pages
* until finishing nat/sit flush. inode->i_blocks can be updated.
*/
f2fs_down_write(&sbi->node_change);
if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
f2fs_up_write(&sbi->node_change);
f2fs_unlock_all(sbi);
err = f2fs_sync_inode_meta(sbi);
if (err)
return err;
cond_resched();
goto retry_flush_quotas;
}
retry_flush_nodes:
f2fs_down_write(&sbi->node_write);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
f2fs_up_write(&sbi->node_write);
atomic_inc(&sbi->wb_sync_req[NODE]);
err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
atomic_dec(&sbi->wb_sync_req[NODE]);
if (err) {
f2fs_up_write(&sbi->node_change);
f2fs_unlock_all(sbi);
return err;
}
cond_resched();
goto retry_flush_nodes;
}
/*
* sbi->node_change is used only for AIO write_begin path which produces
* dirty node blocks and some checkpoint values by block allocation.
*/
__prepare_cp_block(sbi);
f2fs_up_write(&sbi->node_change);
return err;
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
f2fs_up_write(&sbi->node_write);
f2fs_unlock_all(sbi);
}
void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
{
DEFINE_WAIT(wait);
for (;;) {
if (!get_pages(sbi, type))
break;
if (unlikely(f2fs_cp_error(sbi) &&
!is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
break;
if (type == F2FS_DIRTY_META)
f2fs_sync_meta_pages(sbi, META, LONG_MAX,
FS_CP_META_IO);
else if (type == F2FS_WB_CP_DATA)
f2fs_submit_merged_write(sbi, DATA);
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
io_schedule_timeout(DEFAULT_IO_TIMEOUT);
}
finish_wait(&sbi->cp_wait, &wait);
}
static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long flags;
if (cpc->reason & CP_UMOUNT) {
if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
f2fs_notice(sbi, "Disable nat_bits due to no space");
} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
f2fs_nat_bitmap_enabled(sbi)) {
f2fs_enable_nat_bits(sbi);
set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
f2fs_notice(sbi, "Rebuild and enable nat_bits");
}
}
spin_lock_irqsave(&sbi->cp_lock, flags);
if (cpc->reason & CP_TRIMMED)
__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
else
__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
if (cpc->reason & CP_UMOUNT)
__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
if (cpc->reason & CP_FASTBOOT)
__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
if (orphan_num)
__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
else
__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
else
__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
else
__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
else
__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
/* set this flag to activate crc|cp_ver for recovery */
__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
static void commit_checkpoint(struct f2fs_sb_info *sbi,
void *src, block_t blk_addr)
{
struct writeback_control wbc = {
.for_reclaim = 0,
};
/*
* pagevec_lookup_tag and lock_page again will take
* some extra time. Therefore, f2fs_update_meta_pages and
* f2fs_sync_meta_pages are combined in this function.
*/
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
int err;
f2fs_wait_on_page_writeback(page, META, true, true);
memcpy(page_address(page), src, PAGE_SIZE);
set_page_dirty(page);
if (unlikely(!clear_page_dirty_for_io(page)))
f2fs_bug_on(sbi, 1);
/* writeout cp pack 2 page */
err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
if (unlikely(err && f2fs_cp_error(sbi))) {
f2fs_put_page(page, 1);
return;
}
f2fs_bug_on(sbi, err);
f2fs_put_page(page, 0);
/* submit checkpoint (with barrier if NOBARRIER is not set) */
f2fs_submit_merged_write(sbi, META_FLUSH);
}
static inline u64 get_sectors_written(struct block_device *bdev)
{
return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
}
u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
{
if (f2fs_is_multi_device(sbi)) {
u64 sectors = 0;
int i;
for (i = 0; i < sbi->s_ndevs; i++)
sectors += get_sectors_written(FDEV(i).bdev);
return sectors;
}
return get_sectors_written(sbi->sb->s_bdev);
}
static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
block_t start_blk;
unsigned int data_sum_blocks, orphan_blocks;
__u32 crc32 = 0;
int i;
int cp_payload_blks = __cp_payload(sbi);
struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
u64 kbytes_written;
int err;
/* Flush all the NAT/SIT pages */
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
/* start to update checkpoint, cp ver is already updated previously */
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
spin_lock_irqsave(&sbi->cp_lock, flags);
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
orphan_blocks);
if (__remain_node_summaries(cpc->reason))
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
cp_payload_blks + data_sum_blocks +
orphan_blocks + NR_CURSEG_NODE_TYPE);
else
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
cp_payload_blks + data_sum_blocks +
orphan_blocks);
/* update ckpt flag for checkpoint */
update_ckpt_flags(sbi, cpc);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
*((__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset)))
= cpu_to_le32(crc32);
start_blk = __start_cp_next_addr(sbi);
/* write nat bits */
if ((cpc->reason & CP_UMOUNT) &&
is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
__u64 cp_ver = cur_cp_version(ckpt);
block_t blk;
cp_ver |= ((__u64)crc32 << 32);
*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
for (i = 0; i < nm_i->nat_bits_blocks; i++)
f2fs_update_meta_page(sbi, nm_i->nat_bits +
(i << F2FS_BLKSIZE_BITS), blk + i);
}
/* write out checkpoint buffer at block 0 */
f2fs_update_meta_page(sbi, ckpt, start_blk++);
for (i = 1; i < 1 + cp_payload_blks; i++)
f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
start_blk++);
if (orphan_num) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
f2fs_write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
/* Record write statistics in the hot node summary */
kbytes_written = sbi->kbytes_written;
kbytes_written += (f2fs_get_sectors_written(sbi) -
sbi->sectors_written_start) >> 1;
seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
if (__remain_node_summaries(cpc->reason)) {
f2fs_write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
percpu_counter_set(&sbi->alloc_valid_block_count, 0);
percpu_counter_set(&sbi->rf_node_block_count, 0);
/* Here, we have one bio having CP pack except cp pack 2 page */
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
/* Wait for all dirty meta pages to be submitted for IO */
f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
/* wait for previous submitted meta pages writeback */
f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
/* flush all device cache */
err = f2fs_flush_device_cache(sbi);
if (err)
return err;
/* barrier and flush checkpoint cp pack 2 page if it can */
commit_checkpoint(sbi, ckpt, start_blk);
f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
/*
* invalidate intermediate page cache borrowed from meta inode which are
* used for migration of encrypted, verity or compressed inode's blocks.
*/
if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
f2fs_sb_has_compression(sbi))
invalidate_mapping_pages(META_MAPPING(sbi),
MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
f2fs_release_ino_entry(sbi, false);
f2fs_reset_fsync_node_info(sbi);
clear_sbi_flag(sbi, SBI_IS_DIRTY);
clear_sbi_flag(sbi, SBI_NEED_CP);
clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
spin_lock(&sbi->stat_lock);
sbi->unusable_block_count = 0;
spin_unlock(&sbi->stat_lock);
__set_cp_next_pack(sbi);
/*
* redirty superblock if metadata like node page or inode cache is
* updated during writing checkpoint.
*/
if (get_pages(sbi, F2FS_DIRTY_NODES) ||
get_pages(sbi, F2FS_DIRTY_IMETA))
set_sbi_flag(sbi, SBI_IS_DIRTY);
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
}
int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
int err = 0;
if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
return -EROFS;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
if (cpc->reason != CP_PAUSE)
return 0;
f2fs_warn(sbi, "Start checkpoint disabled!");
}
if (cpc->reason != CP_RESIZE)
f2fs_down_write(&sbi->cp_global_sem);
if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
goto out;
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto out;
}
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
err = block_operations(sbi);
if (err)
goto out;
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
f2fs_flush_merged_writes(sbi);
/* this is the case of multiple fstrims without any changes */
if (cpc->reason & CP_DISCARD) {
if (!f2fs_exist_trim_candidates(sbi, cpc)) {
unblock_operations(sbi);
goto out;
}
if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
SIT_I(sbi)->dirty_sentries == 0 &&
prefree_segments(sbi) == 0) {
f2fs_flush_sit_entries(sbi, cpc);
f2fs_clear_prefree_segments(sbi, cpc);
unblock_operations(sbi);
goto out;
}
}
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
err = f2fs_flush_nat_entries(sbi, cpc);
if (err) {
f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
goto stop;
}
f2fs_flush_sit_entries(sbi, cpc);
/* save inmem log status */
f2fs_save_inmem_curseg(sbi);
err = do_checkpoint(sbi, cpc);
if (err) {
f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
f2fs_release_discard_addrs(sbi);
} else {
f2fs_clear_prefree_segments(sbi, cpc);
}
f2fs_restore_inmem_curseg(sbi);
stop:
unblock_operations(sbi);
stat_inc_cp_count(sbi->stat_info);
if (cpc->reason & CP_RECOVERY)
f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
/* update CP_TIME to trigger checkpoint periodically */
f2fs_update_time(sbi, CP_TIME);
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
out:
if (cpc->reason != CP_RESIZE)
f2fs_up_write(&sbi->cp_global_sem);
return err;
}
void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < MAX_INO_ENTRY; i++) {
struct inode_management *im = &sbi->im[i];
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
spin_lock_init(&im->ino_lock);
INIT_LIST_HEAD(&im->ino_list);
im->ino_num = 0;
}
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
F2FS_ORPHANS_PER_BLOCK;
}
int __init f2fs_create_checkpoint_caches(void)
{
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
sizeof(struct ino_entry));
if (!ino_entry_slab)
return -ENOMEM;
f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
sizeof(struct inode_entry));
if (!f2fs_inode_entry_slab) {
kmem_cache_destroy(ino_entry_slab);
return -ENOMEM;
}
return 0;
}
void f2fs_destroy_checkpoint_caches(void)
{
kmem_cache_destroy(ino_entry_slab);
kmem_cache_destroy(f2fs_inode_entry_slab);
}
static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
{
struct cp_control cpc = { .reason = CP_SYNC, };
int err;
f2fs_down_write(&sbi->gc_lock);
err = f2fs_write_checkpoint(sbi, &cpc);
f2fs_up_write(&sbi->gc_lock);
return err;
}
static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
struct ckpt_req *req, *next;
struct llist_node *dispatch_list;
u64 sum_diff = 0, diff, count = 0;
int ret;
dispatch_list = llist_del_all(&cprc->issue_list);
if (!dispatch_list)
return;
dispatch_list = llist_reverse_order(dispatch_list);
ret = __write_checkpoint_sync(sbi);
atomic_inc(&cprc->issued_ckpt);
llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
req->ret = ret;
complete(&req->wait);
sum_diff += diff;
count++;
}
atomic_sub(count, &cprc->queued_ckpt);
atomic_add(count, &cprc->total_ckpt);
spin_lock(&cprc->stat_lock);
cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
if (cprc->peak_time < cprc->cur_time)
cprc->peak_time = cprc->cur_time;
spin_unlock(&cprc->stat_lock);
}
static int issue_checkpoint_thread(void *data)
{
struct f2fs_sb_info *sbi = data;
struct ckpt_req_control *cprc = &sbi->cprc_info;
wait_queue_head_t *q = &cprc->ckpt_wait_queue;
repeat:
if (kthread_should_stop())
return 0;
if (!llist_empty(&cprc->issue_list))
__checkpoint_and_complete_reqs(sbi);
wait_event_interruptible(*q,
kthread_should_stop() || !llist_empty(&cprc->issue_list));
goto repeat;
}
static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
struct ckpt_req *wait_req)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
if (!llist_empty(&cprc->issue_list)) {
__checkpoint_and_complete_reqs(sbi);
} else {
/* already dispatched by issue_checkpoint_thread */
if (wait_req)
wait_for_completion(&wait_req->wait);
}
}
static void init_ckpt_req(struct ckpt_req *req)
{
memset(req, 0, sizeof(struct ckpt_req));
init_completion(&req->wait);
req->queue_time = ktime_get();
}
int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
struct ckpt_req req;
struct cp_control cpc;
cpc.reason = __get_cp_reason(sbi);
if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
int ret;
f2fs_down_write(&sbi->gc_lock);
ret = f2fs_write_checkpoint(sbi, &cpc);
f2fs_up_write(&sbi->gc_lock);
return ret;
}
if (!cprc->f2fs_issue_ckpt)
return __write_checkpoint_sync(sbi);
init_ckpt_req(&req);
llist_add(&req.llnode, &cprc->issue_list);
atomic_inc(&cprc->queued_ckpt);
/*
* update issue_list before we wake up issue_checkpoint thread,
* this smp_mb() pairs with another barrier in ___wait_event(),
* see more details in comments of waitqueue_active().
*/
smp_mb();
if (waitqueue_active(&cprc->ckpt_wait_queue))
wake_up(&cprc->ckpt_wait_queue);
if (cprc->f2fs_issue_ckpt)
wait_for_completion(&req.wait);
else
flush_remained_ckpt_reqs(sbi, &req);
return req.ret;
}
int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
struct ckpt_req_control *cprc = &sbi->cprc_info;
if (cprc->f2fs_issue_ckpt)
return 0;
cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
if (IS_ERR(cprc->f2fs_issue_ckpt)) {
cprc->f2fs_issue_ckpt = NULL;
return -ENOMEM;
}
set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
return 0;
}
void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
struct task_struct *ckpt_task;
if (!cprc->f2fs_issue_ckpt)
return;
ckpt_task = cprc->f2fs_issue_ckpt;
cprc->f2fs_issue_ckpt = NULL;
kthread_stop(ckpt_task);
f2fs_flush_ckpt_thread(sbi);
}
void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
flush_remained_ckpt_reqs(sbi, NULL);
/* Let's wait for the previous dispatched checkpoint. */
while (atomic_read(&cprc->queued_ckpt))
io_schedule_timeout(DEFAULT_IO_TIMEOUT);
}
void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
{
struct ckpt_req_control *cprc = &sbi->cprc_info;
atomic_set(&cprc->issued_ckpt, 0);
atomic_set(&cprc->total_ckpt, 0);
atomic_set(&cprc->queued_ckpt, 0);
cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
init_waitqueue_head(&cprc->ckpt_wait_queue);
init_llist_head(&cprc->issue_list);
spin_lock_init(&cprc->stat_lock);
}