436 lines
11 KiB
C
436 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* linux/fs/ext4/readpage.c
|
||
|
*
|
||
|
* Copyright (C) 2002, Linus Torvalds.
|
||
|
* Copyright (C) 2015, Google, Inc.
|
||
|
*
|
||
|
* This was originally taken from fs/mpage.c
|
||
|
*
|
||
|
* The ext4_mpage_readpages() function here is intended to
|
||
|
* replace mpage_readahead() in the general case, not just for
|
||
|
* encrypted files. It has some limitations (see below), where it
|
||
|
* will fall back to read_block_full_page(), but these limitations
|
||
|
* should only be hit when page_size != block_size.
|
||
|
*
|
||
|
* This will allow us to attach a callback function to support ext4
|
||
|
* encryption.
|
||
|
*
|
||
|
* If anything unusual happens, such as:
|
||
|
*
|
||
|
* - encountering a page which has buffers
|
||
|
* - encountering a page which has a non-hole after a hole
|
||
|
* - encountering a page with non-contiguous blocks
|
||
|
*
|
||
|
* then this code just gives up and calls the buffer_head-based read function.
|
||
|
* It does handle a page which has holes at the end - that is a common case:
|
||
|
* the end-of-file on blocksize < PAGE_SIZE setups.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/kdev_t.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/bio.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/buffer_head.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/prefetch.h>
|
||
|
#include <linux/mpage.h>
|
||
|
#include <linux/writeback.h>
|
||
|
#include <linux/backing-dev.h>
|
||
|
#include <linux/pagevec.h>
|
||
|
|
||
|
#include "ext4.h"
|
||
|
|
||
|
#define NUM_PREALLOC_POST_READ_CTXS 128
|
||
|
|
||
|
static struct kmem_cache *bio_post_read_ctx_cache;
|
||
|
static mempool_t *bio_post_read_ctx_pool;
|
||
|
|
||
|
/* postprocessing steps for read bios */
|
||
|
enum bio_post_read_step {
|
||
|
STEP_INITIAL = 0,
|
||
|
STEP_DECRYPT,
|
||
|
STEP_VERITY,
|
||
|
STEP_MAX,
|
||
|
};
|
||
|
|
||
|
struct bio_post_read_ctx {
|
||
|
struct bio *bio;
|
||
|
struct work_struct work;
|
||
|
unsigned int cur_step;
|
||
|
unsigned int enabled_steps;
|
||
|
};
|
||
|
|
||
|
static void __read_end_io(struct bio *bio)
|
||
|
{
|
||
|
struct page *page;
|
||
|
struct bio_vec *bv;
|
||
|
struct bvec_iter_all iter_all;
|
||
|
|
||
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
||
|
page = bv->bv_page;
|
||
|
|
||
|
/* PG_error was set if verity failed. */
|
||
|
if (bio->bi_status || PageError(page)) {
|
||
|
ClearPageUptodate(page);
|
||
|
/* will re-read again later */
|
||
|
ClearPageError(page);
|
||
|
} else {
|
||
|
SetPageUptodate(page);
|
||
|
}
|
||
|
unlock_page(page);
|
||
|
}
|
||
|
if (bio->bi_private)
|
||
|
mempool_free(bio->bi_private, bio_post_read_ctx_pool);
|
||
|
bio_put(bio);
|
||
|
}
|
||
|
|
||
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
|
||
|
|
||
|
static void decrypt_work(struct work_struct *work)
|
||
|
{
|
||
|
struct bio_post_read_ctx *ctx =
|
||
|
container_of(work, struct bio_post_read_ctx, work);
|
||
|
struct bio *bio = ctx->bio;
|
||
|
|
||
|
if (fscrypt_decrypt_bio(bio))
|
||
|
bio_post_read_processing(ctx);
|
||
|
else
|
||
|
__read_end_io(bio);
|
||
|
}
|
||
|
|
||
|
static void verity_work(struct work_struct *work)
|
||
|
{
|
||
|
struct bio_post_read_ctx *ctx =
|
||
|
container_of(work, struct bio_post_read_ctx, work);
|
||
|
struct bio *bio = ctx->bio;
|
||
|
|
||
|
/*
|
||
|
* fsverity_verify_bio() may call readahead() again, and although verity
|
||
|
* will be disabled for that, decryption may still be needed, causing
|
||
|
* another bio_post_read_ctx to be allocated. So to guarantee that
|
||
|
* mempool_alloc() never deadlocks we must free the current ctx first.
|
||
|
* This is safe because verity is the last post-read step.
|
||
|
*/
|
||
|
BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
|
||
|
mempool_free(ctx, bio_post_read_ctx_pool);
|
||
|
bio->bi_private = NULL;
|
||
|
|
||
|
fsverity_verify_bio(bio);
|
||
|
|
||
|
__read_end_io(bio);
|
||
|
}
|
||
|
|
||
|
static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
|
||
|
{
|
||
|
/*
|
||
|
* We use different work queues for decryption and for verity because
|
||
|
* verity may require reading metadata pages that need decryption, and
|
||
|
* we shouldn't recurse to the same workqueue.
|
||
|
*/
|
||
|
switch (++ctx->cur_step) {
|
||
|
case STEP_DECRYPT:
|
||
|
if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
|
||
|
INIT_WORK(&ctx->work, decrypt_work);
|
||
|
fscrypt_enqueue_decrypt_work(&ctx->work);
|
||
|
return;
|
||
|
}
|
||
|
ctx->cur_step++;
|
||
|
fallthrough;
|
||
|
case STEP_VERITY:
|
||
|
if (ctx->enabled_steps & (1 << STEP_VERITY)) {
|
||
|
INIT_WORK(&ctx->work, verity_work);
|
||
|
fsverity_enqueue_verify_work(&ctx->work);
|
||
|
return;
|
||
|
}
|
||
|
ctx->cur_step++;
|
||
|
fallthrough;
|
||
|
default:
|
||
|
__read_end_io(ctx->bio);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool bio_post_read_required(struct bio *bio)
|
||
|
{
|
||
|
return bio->bi_private && !bio->bi_status;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* I/O completion handler for multipage BIOs.
|
||
|
*
|
||
|
* The mpage code never puts partial pages into a BIO (except for end-of-file).
|
||
|
* If a page does not map to a contiguous run of blocks then it simply falls
|
||
|
* back to block_read_full_folio().
|
||
|
*
|
||
|
* Why is this? If a page's completion depends on a number of different BIOs
|
||
|
* which can complete in any order (or at the same time) then determining the
|
||
|
* status of that page is hard. See end_buffer_async_read() for the details.
|
||
|
* There is no point in duplicating all that complexity.
|
||
|
*/
|
||
|
static void mpage_end_io(struct bio *bio)
|
||
|
{
|
||
|
if (bio_post_read_required(bio)) {
|
||
|
struct bio_post_read_ctx *ctx = bio->bi_private;
|
||
|
|
||
|
ctx->cur_step = STEP_INITIAL;
|
||
|
bio_post_read_processing(ctx);
|
||
|
return;
|
||
|
}
|
||
|
__read_end_io(bio);
|
||
|
}
|
||
|
|
||
|
static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
|
||
|
{
|
||
|
return fsverity_active(inode) &&
|
||
|
idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
|
||
|
}
|
||
|
|
||
|
static void ext4_set_bio_post_read_ctx(struct bio *bio,
|
||
|
const struct inode *inode,
|
||
|
pgoff_t first_idx)
|
||
|
{
|
||
|
unsigned int post_read_steps = 0;
|
||
|
|
||
|
if (fscrypt_inode_uses_fs_layer_crypto(inode))
|
||
|
post_read_steps |= 1 << STEP_DECRYPT;
|
||
|
|
||
|
if (ext4_need_verity(inode, first_idx))
|
||
|
post_read_steps |= 1 << STEP_VERITY;
|
||
|
|
||
|
if (post_read_steps) {
|
||
|
/* Due to the mempool, this never fails. */
|
||
|
struct bio_post_read_ctx *ctx =
|
||
|
mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
|
||
|
|
||
|
ctx->bio = bio;
|
||
|
ctx->enabled_steps = post_read_steps;
|
||
|
bio->bi_private = ctx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline loff_t ext4_readpage_limit(struct inode *inode)
|
||
|
{
|
||
|
if (IS_ENABLED(CONFIG_FS_VERITY) &&
|
||
|
(IS_VERITY(inode) || ext4_verity_in_progress(inode)))
|
||
|
return inode->i_sb->s_maxbytes;
|
||
|
|
||
|
return i_size_read(inode);
|
||
|
}
|
||
|
|
||
|
int ext4_mpage_readpages(struct inode *inode,
|
||
|
struct readahead_control *rac, struct page *page)
|
||
|
{
|
||
|
struct bio *bio = NULL;
|
||
|
sector_t last_block_in_bio = 0;
|
||
|
|
||
|
const unsigned blkbits = inode->i_blkbits;
|
||
|
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
|
||
|
const unsigned blocksize = 1 << blkbits;
|
||
|
sector_t next_block;
|
||
|
sector_t block_in_file;
|
||
|
sector_t last_block;
|
||
|
sector_t last_block_in_file;
|
||
|
sector_t blocks[MAX_BUF_PER_PAGE];
|
||
|
unsigned page_block;
|
||
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
||
|
int length;
|
||
|
unsigned relative_block = 0;
|
||
|
struct ext4_map_blocks map;
|
||
|
unsigned int nr_pages = rac ? readahead_count(rac) : 1;
|
||
|
|
||
|
map.m_pblk = 0;
|
||
|
map.m_lblk = 0;
|
||
|
map.m_len = 0;
|
||
|
map.m_flags = 0;
|
||
|
|
||
|
for (; nr_pages; nr_pages--) {
|
||
|
int fully_mapped = 1;
|
||
|
unsigned first_hole = blocks_per_page;
|
||
|
|
||
|
if (rac) {
|
||
|
page = readahead_page(rac);
|
||
|
prefetchw(&page->flags);
|
||
|
}
|
||
|
|
||
|
if (page_has_buffers(page))
|
||
|
goto confused;
|
||
|
|
||
|
block_in_file = next_block =
|
||
|
(sector_t)page->index << (PAGE_SHIFT - blkbits);
|
||
|
last_block = block_in_file + nr_pages * blocks_per_page;
|
||
|
last_block_in_file = (ext4_readpage_limit(inode) +
|
||
|
blocksize - 1) >> blkbits;
|
||
|
if (last_block > last_block_in_file)
|
||
|
last_block = last_block_in_file;
|
||
|
page_block = 0;
|
||
|
|
||
|
/*
|
||
|
* Map blocks using the previous result first.
|
||
|
*/
|
||
|
if ((map.m_flags & EXT4_MAP_MAPPED) &&
|
||
|
block_in_file > map.m_lblk &&
|
||
|
block_in_file < (map.m_lblk + map.m_len)) {
|
||
|
unsigned map_offset = block_in_file - map.m_lblk;
|
||
|
unsigned last = map.m_len - map_offset;
|
||
|
|
||
|
for (relative_block = 0; ; relative_block++) {
|
||
|
if (relative_block == last) {
|
||
|
/* needed? */
|
||
|
map.m_flags &= ~EXT4_MAP_MAPPED;
|
||
|
break;
|
||
|
}
|
||
|
if (page_block == blocks_per_page)
|
||
|
break;
|
||
|
blocks[page_block] = map.m_pblk + map_offset +
|
||
|
relative_block;
|
||
|
page_block++;
|
||
|
block_in_file++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Then do more ext4_map_blocks() calls until we are
|
||
|
* done with this page.
|
||
|
*/
|
||
|
while (page_block < blocks_per_page) {
|
||
|
if (block_in_file < last_block) {
|
||
|
map.m_lblk = block_in_file;
|
||
|
map.m_len = last_block - block_in_file;
|
||
|
|
||
|
if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
|
||
|
set_error_page:
|
||
|
SetPageError(page);
|
||
|
zero_user_segment(page, 0,
|
||
|
PAGE_SIZE);
|
||
|
unlock_page(page);
|
||
|
goto next_page;
|
||
|
}
|
||
|
}
|
||
|
if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
|
||
|
fully_mapped = 0;
|
||
|
if (first_hole == blocks_per_page)
|
||
|
first_hole = page_block;
|
||
|
page_block++;
|
||
|
block_in_file++;
|
||
|
continue;
|
||
|
}
|
||
|
if (first_hole != blocks_per_page)
|
||
|
goto confused; /* hole -> non-hole */
|
||
|
|
||
|
/* Contiguous blocks? */
|
||
|
if (page_block && blocks[page_block-1] != map.m_pblk-1)
|
||
|
goto confused;
|
||
|
for (relative_block = 0; ; relative_block++) {
|
||
|
if (relative_block == map.m_len) {
|
||
|
/* needed? */
|
||
|
map.m_flags &= ~EXT4_MAP_MAPPED;
|
||
|
break;
|
||
|
} else if (page_block == blocks_per_page)
|
||
|
break;
|
||
|
blocks[page_block] = map.m_pblk+relative_block;
|
||
|
page_block++;
|
||
|
block_in_file++;
|
||
|
}
|
||
|
}
|
||
|
if (first_hole != blocks_per_page) {
|
||
|
zero_user_segment(page, first_hole << blkbits,
|
||
|
PAGE_SIZE);
|
||
|
if (first_hole == 0) {
|
||
|
if (ext4_need_verity(inode, page->index) &&
|
||
|
!fsverity_verify_page(page))
|
||
|
goto set_error_page;
|
||
|
SetPageUptodate(page);
|
||
|
unlock_page(page);
|
||
|
goto next_page;
|
||
|
}
|
||
|
} else if (fully_mapped) {
|
||
|
SetPageMappedToDisk(page);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This page will go to BIO. Do we need to send this
|
||
|
* BIO off first?
|
||
|
*/
|
||
|
if (bio && (last_block_in_bio != blocks[0] - 1 ||
|
||
|
!fscrypt_mergeable_bio(bio, inode, next_block))) {
|
||
|
submit_and_realloc:
|
||
|
submit_bio(bio);
|
||
|
bio = NULL;
|
||
|
}
|
||
|
if (bio == NULL) {
|
||
|
/*
|
||
|
* bio_alloc will _always_ be able to allocate a bio if
|
||
|
* __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
|
||
|
*/
|
||
|
bio = bio_alloc(bdev, bio_max_segs(nr_pages),
|
||
|
REQ_OP_READ, GFP_KERNEL);
|
||
|
fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
|
||
|
GFP_KERNEL);
|
||
|
ext4_set_bio_post_read_ctx(bio, inode, page->index);
|
||
|
bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
|
||
|
bio->bi_end_io = mpage_end_io;
|
||
|
if (rac)
|
||
|
bio->bi_opf |= REQ_RAHEAD;
|
||
|
}
|
||
|
|
||
|
length = first_hole << blkbits;
|
||
|
if (bio_add_page(bio, page, length, 0) < length)
|
||
|
goto submit_and_realloc;
|
||
|
|
||
|
if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
|
||
|
(relative_block == map.m_len)) ||
|
||
|
(first_hole != blocks_per_page)) {
|
||
|
submit_bio(bio);
|
||
|
bio = NULL;
|
||
|
} else
|
||
|
last_block_in_bio = blocks[blocks_per_page - 1];
|
||
|
goto next_page;
|
||
|
confused:
|
||
|
if (bio) {
|
||
|
submit_bio(bio);
|
||
|
bio = NULL;
|
||
|
}
|
||
|
if (!PageUptodate(page))
|
||
|
block_read_full_folio(page_folio(page), ext4_get_block);
|
||
|
else
|
||
|
unlock_page(page);
|
||
|
next_page:
|
||
|
if (rac)
|
||
|
put_page(page);
|
||
|
}
|
||
|
if (bio)
|
||
|
submit_bio(bio);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int __init ext4_init_post_read_processing(void)
|
||
|
{
|
||
|
bio_post_read_ctx_cache =
|
||
|
kmem_cache_create("ext4_bio_post_read_ctx",
|
||
|
sizeof(struct bio_post_read_ctx), 0, 0, NULL);
|
||
|
if (!bio_post_read_ctx_cache)
|
||
|
goto fail;
|
||
|
bio_post_read_ctx_pool =
|
||
|
mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
|
||
|
bio_post_read_ctx_cache);
|
||
|
if (!bio_post_read_ctx_pool)
|
||
|
goto fail_free_cache;
|
||
|
return 0;
|
||
|
|
||
|
fail_free_cache:
|
||
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
||
|
fail:
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
void ext4_exit_post_read_processing(void)
|
||
|
{
|
||
|
mempool_destroy(bio_post_read_ctx_pool);
|
||
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
||
|
}
|