472 lines
11 KiB
C
472 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <linux/sched.h>
|
||
|
#include "ctree.h"
|
||
|
#include "disk-io.h"
|
||
|
#include "print-tree.h"
|
||
|
#include "transaction.h"
|
||
|
#include "locking.h"
|
||
|
|
||
|
static struct kmem_cache *btrfs_inode_defrag_cachep;
|
||
|
|
||
|
/*
|
||
|
* When auto defrag is enabled we queue up these defrag structs to remember
|
||
|
* which inodes need defragging passes.
|
||
|
*/
|
||
|
struct inode_defrag {
|
||
|
struct rb_node rb_node;
|
||
|
/* Inode number */
|
||
|
u64 ino;
|
||
|
/*
|
||
|
* Transid where the defrag was added, we search for extents newer than
|
||
|
* this.
|
||
|
*/
|
||
|
u64 transid;
|
||
|
|
||
|
/* Root objectid */
|
||
|
u64 root;
|
||
|
|
||
|
/*
|
||
|
* The extent size threshold for autodefrag.
|
||
|
*
|
||
|
* This value is different for compressed/non-compressed extents, thus
|
||
|
* needs to be passed from higher layer.
|
||
|
* (aka, inode_should_defrag())
|
||
|
*/
|
||
|
u32 extent_thresh;
|
||
|
};
|
||
|
|
||
|
static int __compare_inode_defrag(struct inode_defrag *defrag1,
|
||
|
struct inode_defrag *defrag2)
|
||
|
{
|
||
|
if (defrag1->root > defrag2->root)
|
||
|
return 1;
|
||
|
else if (defrag1->root < defrag2->root)
|
||
|
return -1;
|
||
|
else if (defrag1->ino > defrag2->ino)
|
||
|
return 1;
|
||
|
else if (defrag1->ino < defrag2->ino)
|
||
|
return -1;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pop a record for an inode into the defrag tree. The lock must be held
|
||
|
* already.
|
||
|
*
|
||
|
* If you're inserting a record for an older transid than an existing record,
|
||
|
* the transid already in the tree is lowered.
|
||
|
*
|
||
|
* If an existing record is found the defrag item you pass in is freed.
|
||
|
*/
|
||
|
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
|
||
|
struct inode_defrag *defrag)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
||
|
struct inode_defrag *entry;
|
||
|
struct rb_node **p;
|
||
|
struct rb_node *parent = NULL;
|
||
|
int ret;
|
||
|
|
||
|
p = &fs_info->defrag_inodes.rb_node;
|
||
|
while (*p) {
|
||
|
parent = *p;
|
||
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
||
|
|
||
|
ret = __compare_inode_defrag(defrag, entry);
|
||
|
if (ret < 0)
|
||
|
p = &parent->rb_left;
|
||
|
else if (ret > 0)
|
||
|
p = &parent->rb_right;
|
||
|
else {
|
||
|
/*
|
||
|
* If we're reinserting an entry for an old defrag run,
|
||
|
* make sure to lower the transid of our existing
|
||
|
* record.
|
||
|
*/
|
||
|
if (defrag->transid < entry->transid)
|
||
|
entry->transid = defrag->transid;
|
||
|
entry->extent_thresh = min(defrag->extent_thresh,
|
||
|
entry->extent_thresh);
|
||
|
return -EEXIST;
|
||
|
}
|
||
|
}
|
||
|
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
|
||
|
rb_link_node(&defrag->rb_node, parent, p);
|
||
|
rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
|
||
|
return 0;
|
||
|
|
||
|
if (btrfs_fs_closing(fs_info))
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert a defrag record for this inode if auto defrag is enabled.
|
||
|
*/
|
||
|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_inode *inode, u32 extent_thresh)
|
||
|
{
|
||
|
struct btrfs_root *root = inode->root;
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct inode_defrag *defrag;
|
||
|
u64 transid;
|
||
|
int ret;
|
||
|
|
||
|
if (!__need_auto_defrag(fs_info))
|
||
|
return 0;
|
||
|
|
||
|
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
|
||
|
return 0;
|
||
|
|
||
|
if (trans)
|
||
|
transid = trans->transid;
|
||
|
else
|
||
|
transid = inode->root->last_trans;
|
||
|
|
||
|
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
|
||
|
if (!defrag)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
defrag->ino = btrfs_ino(inode);
|
||
|
defrag->transid = transid;
|
||
|
defrag->root = root->root_key.objectid;
|
||
|
defrag->extent_thresh = extent_thresh;
|
||
|
|
||
|
spin_lock(&fs_info->defrag_inodes_lock);
|
||
|
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
|
||
|
/*
|
||
|
* If we set IN_DEFRAG flag and evict the inode from memory,
|
||
|
* and then re-read this inode, this new inode doesn't have
|
||
|
* IN_DEFRAG flag. At the case, we may find the existed defrag.
|
||
|
*/
|
||
|
ret = __btrfs_add_inode_defrag(inode, defrag);
|
||
|
if (ret)
|
||
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
||
|
} else {
|
||
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
||
|
}
|
||
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pick the defragable inode that we want, if it doesn't exist, we will get the
|
||
|
* next one.
|
||
|
*/
|
||
|
static struct inode_defrag *btrfs_pick_defrag_inode(
|
||
|
struct btrfs_fs_info *fs_info, u64 root, u64 ino)
|
||
|
{
|
||
|
struct inode_defrag *entry = NULL;
|
||
|
struct inode_defrag tmp;
|
||
|
struct rb_node *p;
|
||
|
struct rb_node *parent = NULL;
|
||
|
int ret;
|
||
|
|
||
|
tmp.ino = ino;
|
||
|
tmp.root = root;
|
||
|
|
||
|
spin_lock(&fs_info->defrag_inodes_lock);
|
||
|
p = fs_info->defrag_inodes.rb_node;
|
||
|
while (p) {
|
||
|
parent = p;
|
||
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
||
|
|
||
|
ret = __compare_inode_defrag(&tmp, entry);
|
||
|
if (ret < 0)
|
||
|
p = parent->rb_left;
|
||
|
else if (ret > 0)
|
||
|
p = parent->rb_right;
|
||
|
else
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
|
||
|
parent = rb_next(parent);
|
||
|
if (parent)
|
||
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
||
|
else
|
||
|
entry = NULL;
|
||
|
}
|
||
|
out:
|
||
|
if (entry)
|
||
|
rb_erase(parent, &fs_info->defrag_inodes);
|
||
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct inode_defrag *defrag;
|
||
|
struct rb_node *node;
|
||
|
|
||
|
spin_lock(&fs_info->defrag_inodes_lock);
|
||
|
node = rb_first(&fs_info->defrag_inodes);
|
||
|
while (node) {
|
||
|
rb_erase(node, &fs_info->defrag_inodes);
|
||
|
defrag = rb_entry(node, struct inode_defrag, rb_node);
|
||
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
||
|
|
||
|
cond_resched_lock(&fs_info->defrag_inodes_lock);
|
||
|
|
||
|
node = rb_first(&fs_info->defrag_inodes);
|
||
|
}
|
||
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
||
|
}
|
||
|
|
||
|
#define BTRFS_DEFRAG_BATCH 1024
|
||
|
|
||
|
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
|
||
|
struct inode_defrag *defrag)
|
||
|
{
|
||
|
struct btrfs_root *inode_root;
|
||
|
struct inode *inode;
|
||
|
struct btrfs_ioctl_defrag_range_args range;
|
||
|
int ret = 0;
|
||
|
u64 cur = 0;
|
||
|
|
||
|
again:
|
||
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
||
|
goto cleanup;
|
||
|
if (!__need_auto_defrag(fs_info))
|
||
|
goto cleanup;
|
||
|
|
||
|
/* Get the inode */
|
||
|
inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
|
||
|
if (IS_ERR(inode_root)) {
|
||
|
ret = PTR_ERR(inode_root);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
|
||
|
btrfs_put_root(inode_root);
|
||
|
if (IS_ERR(inode)) {
|
||
|
ret = PTR_ERR(inode);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
if (cur >= i_size_read(inode)) {
|
||
|
iput(inode);
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
/* Do a chunk of defrag */
|
||
|
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
|
||
|
memset(&range, 0, sizeof(range));
|
||
|
range.len = (u64)-1;
|
||
|
range.start = cur;
|
||
|
range.extent_thresh = defrag->extent_thresh;
|
||
|
|
||
|
sb_start_write(fs_info->sb);
|
||
|
ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
|
||
|
BTRFS_DEFRAG_BATCH);
|
||
|
sb_end_write(fs_info->sb);
|
||
|
iput(inode);
|
||
|
|
||
|
if (ret < 0)
|
||
|
goto cleanup;
|
||
|
|
||
|
cur = max(cur + fs_info->sectorsize, range.start);
|
||
|
goto again;
|
||
|
|
||
|
cleanup:
|
||
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Run through the list of inodes in the FS that need defragging.
|
||
|
*/
|
||
|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
|
||
|
{
|
||
|
struct inode_defrag *defrag;
|
||
|
u64 first_ino = 0;
|
||
|
u64 root_objectid = 0;
|
||
|
|
||
|
atomic_inc(&fs_info->defrag_running);
|
||
|
while (1) {
|
||
|
/* Pause the auto defragger. */
|
||
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
||
|
break;
|
||
|
|
||
|
if (!__need_auto_defrag(fs_info))
|
||
|
break;
|
||
|
|
||
|
/* find an inode to defrag */
|
||
|
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
|
||
|
if (!defrag) {
|
||
|
if (root_objectid || first_ino) {
|
||
|
root_objectid = 0;
|
||
|
first_ino = 0;
|
||
|
continue;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
first_ino = defrag->ino + 1;
|
||
|
root_objectid = defrag->root;
|
||
|
|
||
|
__btrfs_run_defrag_inode(fs_info, defrag);
|
||
|
}
|
||
|
atomic_dec(&fs_info->defrag_running);
|
||
|
|
||
|
/*
|
||
|
* During unmount, we use the transaction_wait queue to wait for the
|
||
|
* defragger to stop.
|
||
|
*/
|
||
|
wake_up(&fs_info->transaction_wait);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Defrag all the leaves in a given btree.
|
||
|
* Read all the leaves and try to get key order to
|
||
|
* better reflect disk order
|
||
|
*/
|
||
|
|
||
|
int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
|
||
|
struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_path *path = NULL;
|
||
|
struct btrfs_key key;
|
||
|
int ret = 0;
|
||
|
int wret;
|
||
|
int level;
|
||
|
int next_key_ret = 0;
|
||
|
u64 last_ret = 0;
|
||
|
|
||
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
||
|
goto out;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
level = btrfs_header_level(root->node);
|
||
|
|
||
|
if (level == 0)
|
||
|
goto out;
|
||
|
|
||
|
if (root->defrag_progress.objectid == 0) {
|
||
|
struct extent_buffer *root_node;
|
||
|
u32 nritems;
|
||
|
|
||
|
root_node = btrfs_lock_root_node(root);
|
||
|
nritems = btrfs_header_nritems(root_node);
|
||
|
root->defrag_max.objectid = 0;
|
||
|
/* from above we know this is not a leaf */
|
||
|
btrfs_node_key_to_cpu(root_node, &root->defrag_max,
|
||
|
nritems - 1);
|
||
|
btrfs_tree_unlock(root_node);
|
||
|
free_extent_buffer(root_node);
|
||
|
memset(&key, 0, sizeof(key));
|
||
|
} else {
|
||
|
memcpy(&key, &root->defrag_progress, sizeof(key));
|
||
|
}
|
||
|
|
||
|
path->keep_locks = 1;
|
||
|
|
||
|
ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
if (ret > 0) {
|
||
|
ret = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
btrfs_release_path(path);
|
||
|
/*
|
||
|
* We don't need a lock on a leaf. btrfs_realloc_node() will lock all
|
||
|
* leafs from path->nodes[1], so set lowest_level to 1 to avoid later
|
||
|
* a deadlock (attempting to write lock an already write locked leaf).
|
||
|
*/
|
||
|
path->lowest_level = 1;
|
||
|
wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
||
|
|
||
|
if (wret < 0) {
|
||
|
ret = wret;
|
||
|
goto out;
|
||
|
}
|
||
|
if (!path->nodes[1]) {
|
||
|
ret = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
/*
|
||
|
* The node at level 1 must always be locked when our path has
|
||
|
* keep_locks set and lowest_level is 1, regardless of the value of
|
||
|
* path->slots[1].
|
||
|
*/
|
||
|
BUG_ON(path->locks[1] == 0);
|
||
|
ret = btrfs_realloc_node(trans, root,
|
||
|
path->nodes[1], 0,
|
||
|
&last_ret,
|
||
|
&root->defrag_progress);
|
||
|
if (ret) {
|
||
|
WARN_ON(ret == -EAGAIN);
|
||
|
goto out;
|
||
|
}
|
||
|
/*
|
||
|
* Now that we reallocated the node we can find the next key. Note that
|
||
|
* btrfs_find_next_key() can release our path and do another search
|
||
|
* without COWing, this is because even with path->keep_locks = 1,
|
||
|
* btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
|
||
|
* node when path->slots[node_level - 1] does not point to the last
|
||
|
* item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
|
||
|
* we search for the next key after reallocating our node.
|
||
|
*/
|
||
|
path->slots[1] = btrfs_header_nritems(path->nodes[1]);
|
||
|
next_key_ret = btrfs_find_next_key(root, path, &key, 1,
|
||
|
BTRFS_OLDEST_GENERATION);
|
||
|
if (next_key_ret == 0) {
|
||
|
memcpy(&root->defrag_progress, &key, sizeof(key));
|
||
|
ret = -EAGAIN;
|
||
|
}
|
||
|
out:
|
||
|
btrfs_free_path(path);
|
||
|
if (ret == -EAGAIN) {
|
||
|
if (root->defrag_max.objectid > root->defrag_progress.objectid)
|
||
|
goto done;
|
||
|
if (root->defrag_max.type > root->defrag_progress.type)
|
||
|
goto done;
|
||
|
if (root->defrag_max.offset > root->defrag_progress.offset)
|
||
|
goto done;
|
||
|
ret = 0;
|
||
|
}
|
||
|
done:
|
||
|
if (ret != -EAGAIN)
|
||
|
memset(&root->defrag_progress, 0,
|
||
|
sizeof(root->defrag_progress));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void __cold btrfs_auto_defrag_exit(void)
|
||
|
{
|
||
|
kmem_cache_destroy(btrfs_inode_defrag_cachep);
|
||
|
}
|
||
|
|
||
|
int __init btrfs_auto_defrag_init(void)
|
||
|
{
|
||
|
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
|
||
|
sizeof(struct inode_defrag), 0,
|
||
|
SLAB_MEM_SPREAD,
|
||
|
NULL);
|
||
|
if (!btrfs_inode_defrag_cachep)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return 0;
|
||
|
}
|